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Abstract

Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system
on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite
quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that cor-
responds to the quantum system constrained on the manifold of separable states, using as an impor-
tant example the system of two interacting qubits. The constraints introduce nonlinearities which
render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics
clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton’s oper-
ator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical
features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations
of the separability constraints are discussed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Classical and quantum descriptions of a physical system that is considered as composed
of interacting subsystems have radically different features. The typical feature of quantum
dynamics is the creation of specifically quantum correlations, the entanglement, among the
subsystems. On the other hand, the typical property of classical description is the occur-
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rence of chaotic orbits and fractality of the phase space portrait, which can be considered
as typically classical type of correlations between the subsystems. The type of correlations
introduced by the dynamical entanglement does not occur in the classical description, and
likewise, the type of correlations introduced by the chaotic orbits with fractal structures
does not occur in the quantum description. This intriguing complementarity of the two
descriptions represents a problem that is expected to be solved by a detailed formulation
of the correspondence principle.

Comparison of typical features of classical and quantum mechanics is facilitated if the
same mathematical framework is used in both theories. It is well known, since the work of
Kibble [1–3], that the quantum evolution, determined by the linear Schroedinger equation,
can be represented using the typical language of classical mechanics, that is as a Hamilto-
nian dynamical system on an appropriate phase space, given by the Hilbert space geom-
etry of the quantum system. This line of research was later developed into the full
geometric Hamiltonian representation of quantum mechanics [4–12]. Such geometric for-
mulation of quantum mechanics has recently inspired natural definitions of measures of
the entanglement [13], and has been used to model the spontaneous collapse of the state
vector [14,15], and dynamics of decoherence [16].

It is our goal to use the geometric Hamiltonian formulation of quantum mechanics to
study the relation between the dynamical entanglement and typical qualitative properties
of Hamiltonian dynamics. Motivated by the fact that the Schroedinger equation can
always be considered as a Hamiltonian dynamical system, and that for Hamiltonian sys-
tems the definitions and properties of the dynamical chaos are well understood, we shall
seek for a formal condition that when imposed on Hamiltonian system representing the
Schroedinger equation of the compound quantum system renders the Hamiltonian
dynamics nonintegrable and chaotic. It is well known that the linear Schroedinger equa-
tion of quantum mechanics represents always an integrable Hamiltonian dynamical sys-
tem, irrespective of the dynamical symmetries of the system. This is in sharp contrast
with the Hamiltonian formulation of classical systems, where enough symmetry implies
integrability and the lack of it implies the chaotic dynamics. Linearity of the quantum
Hamiltonian dynamics, and the consequent integrability, is introduced in the Hamiltonian
formulation by a very large dimensionality of the phase space of the quantum system. This
high dimensionality can be considered as a consequence of two reasons. For a single quan-
tum system, say a one dimensional particle in a potential, linear evolution and with it the
principle of state superposition require infinite dimensional phase space of the Hamilto-
nian formulation. If the classical mechanical model is linear, say the harmonic oscillator,
the quantum Hamiltonian dynamics can be exactly describe on the reduced finite-dimen-
sional phase space, the real plane in the case of the harmonic oscillator. The other related
reason that increases the dimensionality of the quantum phase space compared to the clas-
sical model is in the way the state space of the compound systems are formed out of the
components state spaces in the two theories. In order to represents the entangled states as
points of the quantum phase space the dimensionality of the quantum phase space is much
larger than just the sum of the dimensions of the components phase spaces. The points in
the Cartesian product of the components phase spaces represent the separable quantum
states and form a subset of the full quantum phase space. Needles to say, although the sep-
arable states are the most classical-like states of the compound system, they still are quan-
tum states with nonclassical properties like nonzero dispersion of some subsystem’s
variables. Our main result will be that when the quantum dynamics, represented as a
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Hamiltonian system, is constrained on the manifold of separable quantum states the rela-
tion between the symmetry and the qualitative properties of the dynamics such as integra-
bility or chaotic motion is reestablished. Thus, suppression of dynamical entanglement is
enough to enable manifestations of the qualitative differences in dynamics of quantum sys-
tems and the relation between integrability and symmetry, traditionally related with clas-
sical mechanical models.

In order to study the relation between the dynamical entanglement, separability and the
properties of Hamiltonian formulation of the quantum dynamics we shall use, in this
paper, the simplest quantum system that displays the dynamical entanglement, that is a
system of two interacting qubits

H ¼ xr1 þ xr2 þ lxr
1
xr

2
x þ lyr

1
yr

2
y þ lzr

1
z r

2
z ; ð1Þ

where rx,y,z
i are the three Pauli matrices of the ith qubit, and satisfy the usual SU(2) com-

mutation relations. In particular, we shall compare the dynamics of the system (1) in the
case lz „ 0, lx = ly = 0 with the case when lx „ 0, lz = ly = 0. The former case is symmet-
ric with respect to SO(2) rotations around z-axis and the later lacks this symmetry. Besides
its simplicity, the systems of the form (1) are of considerable current interest because the
Hamiltonian of the universal quantum processor is of this form [17,18].

Various lines of research, during the last decade, improved the understanding of the
relation between dynamical entanglement and properties of the dynamics. Strong impetus
to the study of all aspects of quantum entanglement came from the theory of quantum
computation [18]. Quantization of classical nonintegrable systems, and various character-
istic properties of resulting quantum systems, have been studied for a long time [19]. The
dependence of the dynamical entanglement, between a quantum system and its environ-
ment, on the qualitative properties of the dynamics of the system was studied indirectly,
within the theory of environmental decoherence [20]. The relation between the rates of
dynamical entanglement and the qualitative properties of the dynamics in the semi-classi-
cal regime was initiated in the reference [21] and various aspects of this relations have been
studied since [22–31]. The relation between the symmetry of the genuinely quantum system
(1) and the degree of dynamical entanglement was studied in reference [32]. As we shall
see, our present analyzes is related to the quoted works, but the relation between the
dynamical entanglement and symmetry is here approached from a very different angle.

The structure of the paper is as follows. We shall first recapitulate the necessary back-
ground such as: the complex symplectic and Riemannian geometry of CPn; Hamiltonian for-
mulation on CPn of the quantum dynamics; geometric formulation of the set of separable
pure states and Hamiltonian formulation of the constrained dynamics. In parallel with the
general reminder, the explicit formulas for the system of two interacting qubits will be given.
These are then applied, in Section 3, to the study the qualitative properties of the separability
constrained dynamics for the qubits systems. The main results are summarized and discussed
in Section 4. There we also discuss a model of an open quantum system with dynamics that
clearly differentiates between the symmetric and the nonsymmetric systems.
2. Geometry of the state space CPn

Hamiltonian formulation of quantum mechanics is based on the fact that the scalar
product of vectors |wæ in the Hilbert space of a quantum system can be used to represent
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the linear Schroedinger equation of quantum mechanics in the form of Hamilton’s equa-
tions. The canonical phase space structure of this equations is determined by the imagi-
nary part of the scalar product, and the Hamilton’ s function is given by the quantum
expectation Æw|H|wæ of the quantum Hamiltonian.

However, due to phase invariance and arbitrary normalization the proper space of pure
quantum states is not the Hilbert space used to formulate the Schroedinger equation, but
the projective Hilbert space which is the manifold to be used in the Hamiltonian formu-
lation of quantum mechanics. In general, the resulting Hamiltonian dynamical system is
infinite-dimensional, but we shall need the general definitions only for the case of quantum
system with finite-dimensional Hilbert space, like the finite collection of qubits, in which
case the quantum phase space is also finite-dimensional. We shall first review the definition
of the complex projective space CPn, and then briefly state the basic definitions and reca-
pitulate the formulas which are needed for the Hamiltonian formulation of the quantum
dynamics on the state space and its restriction on the separable state subset. The general
reference for the mathematical aspects of complex differential geometry is [33]. All con-
cepts and formulas will be illustrated using the system of two interacting qubits.

Differential geometry of the state space CPn is discussed by viewing it as a real 2n

dimensional manifold endowed with complex, Riemannian and symplectic structure. In
the case of CPn this three structures are compatible.

2.1. Definition and intrinsic coordinates of CPn

States of a collection of N = n + 1 qubits are represented using normalized vectors of
the complex Hilbert space CN. Since all quantum mechanical predictions are given in terms
of the Hermitian scalar product on CN, and this is invariant under multiplication by a con-
stant (vector independent) phase factor, the states of the quantum system are actually rep-
resented by equivalence classes of vectors in CN. Two vectors w1 and w2 are equivalent:
w2 � w1 if there is a complex scalar a „ 0 such that w2 = aw1. This set of equivalence classes
defines the complex projective space: CPn: ” (Cn+1 � 0)/�. It is the state space of the sys-
tem of N qubits. Global coordinates (c1, . . . ,cN) of a vector in CN that represent an equiv-
alence class [w], that is an element of CPn, are called homogeneous coordinates on CPn.
The complex projective space is topologically equivalent to S2n+1/S1, where the 2n + 1-
dimensional sphere comes from normalization and the circle S1 takes care of the unimpor-
tant overall phase factor.

The projective space CPn is locally homeomorphic with Cn. Intrinsic coordinates on
CPn are introduced as follows. A chart Ul consists of equivalence classes of all vectors
in (Cn+1 � 0) such that cl „ 0. In the chart Ul the local ( so called inhomogeneous) coor-
dinates fm, >m = 1,2, . . . ,n are given by

fm ¼ nm ðm 6 l� 1Þ; fm ¼ nmþ1 ðm > lÞ; ð2Þ

where

nm ¼ cm=cl m ¼ 1; 2; . . . ; l� 1; lþ 1; . . . ; nþ 1: ð3Þ

The coordinates fm
lðcÞ and fm

l0 ðcÞ of a point c which belongs to the domain where two
charts Ul and Ul0 overlap are related by the following holomorphic transformation

fm
l0 ðcÞ ¼ ðcl=cl0Þfm

lðcÞ: ð4Þ
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As an illustration consider the system of two qubits. The Hilbert space is
H ¼ H1 �H2 ¼ C2 � C2 ¼ C4. As a basis we can choose the set of separable vectors
|››æ, Æ|›flæ, |fl›æ, |flflæ or any other four orthogonal vectors. The coordinates of a vector
in C4 with respect to a basis are denoted (c1,c2,c3,c4). The corresponding projective space
is CP3 ” S7/S1. At least two charts are needed to define the intrinsic coordinates over all
CP3. Consider first all vectors with a nonzero component along |1æ = |››æ that is c1 „ 0,
i.e. all vectors except the vector |flflæ. Then the numbers nm

1 are defined as
n1

1 ¼ c1=c1 ¼ 1; n2
1 ¼ c2=c1; n3

1 ¼ c3=c1; n4
1 ¼ c4=c1 and finally the three intrinsic coordinates

ðf1
1; f

2
1; f

3
1Þ are given by relabelling of nm

1: f1
1 ¼ n2

1; f
2
1 ¼ n3

1; f
3
1 ¼ n4

1. To coordinatize the vec-
tor |4æ = |flflæ we need another chart.

Quantum mean values of linear operators on C4 are indeed reduced to functions on
CP3. For example, consider the following Hamiltonian operator

H ¼ xrz � 1þ x1� rz þ lrx � rx: ð5Þ
In the separable bases the normalized quantum expectation Æw|H|wæ/Æw|wæ is given by the
following function of ðc1; c2; . . . ;�c4Þ

H ¼ 2xðc1�c1 � c4�c4Þ þ lð�c2c3 þ �c3c2 þ �c1c4 þ �c4c1Þ
c1�c1 þ c2�c2 þ c3�c3 þ c4�c4

: ð6Þ

In the intrinsic coordinates f1,f2, f3 and their conjugates this expression is given by

H ¼ 2xð1� f3f3Þ þ lðf1f2 þ f2f1 þ f3 þ f3Þ
1þ f1f1 þ f2f2 þ f3f3

: ð7Þ

We shall also analyze the following Hamiltonian

H ¼ xrz � 1þ x1� rz þ lrz � rz; ð8Þ
whose normalized mean value is given by

H ¼ 2xðc1�c1 � c4�c4Þ þ lðc1�c1 þ c4�c4 � c2�c2 � c3�c3Þ
c1�c1 þ c2�c2 þ c3�c3 þ c4�c4

: ð9Þ

The corresponding function on CP3 is, in the intrinsic coordinates, given by

H ¼ xð1� f3f3Þ þ lð1þ f3f3 � f1f1 � f2f2Þ
1þ f1f1 þ f2f2 þ f3f3

: ð10Þ
2.1.1. Submanifold of separable states

Consider two quantum systems A and B with the corresponding Hilbert spaces HA and
HB. Taken together, the systems A and B form another quantum system. The statistics of
measurements that could be performed on this compound system requires that the Hilbert
space of the compound system is given by the direct product HAB ¼ HA �HB. The space of
pure states of the compound system is the projective Hilbert space PHAB. In the case of
finite dimensional state spaces PHnþ1

A ¼ CP n and PHmþ1
A ¼ CP m the state space of the com-

pound system is CP(m+1)(n+1)�1. Vectors in HAB of the form wA � wB where wA=B 2 HA=B

are called separable. The corresponding separable states form the (m + n)-dimensional
submanifold CPm · CPn embedded in CP(m+1)(n+1)�1.

In the case of two qubits the submanifold of the separable states CP1 · CP1 forms a
quadric in the full state space CP3, given in terms of the homogeneous coordinates
(c1,c2,c3,c4) of CP3 by the following formula
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c1c4 ¼ c2c3: ð11Þ
In terms of the intrinsic coordinates f1,f2,f3, in the chart with c1 „ 0, i.e. n1 = 1, Eq. (11) is

f1f2 ¼ f3: ð12Þ
2.2. Complex structure on CPn

Consider a complex manifold M with complex dimension dimCM ¼ n (in particular
CPn ). We can look at M as a real manifold with dimRM ¼ 2n. The real coordinates
(x1, . . . ,x2n) are related to the holomorphic (f1, . . . ,fn) and anti-holomorphic ðf1; . . . ; fnÞ
coordinates via the following formulas:

ðxm þ ıxmþnÞ=
ffiffiffi
2
p
¼fm; m ¼ 1; 2; . . . n;

ðxm � ıxmþnÞ=
ffiffiffi
2
p
¼fm; m ¼ 1; 2; . . . n; ð13Þ

and

qm � xm ¼ðfm þ fmÞ=
ffiffiffi
2
p

; m ¼ 1; 2; . . . n;

pm � xmþn ¼ðfm � fmÞ=
ffiffiffi
2
p

; m ¼ 1; 2; . . . n: ð14Þ

The tangent space T xM is spanned by 2n vectors

o

oq1
; � � � o

oqn
;

o

op1
; � � � o

opn

� �
ð15Þ

or by the basis

o

of1
; � � � o

ofn
;

o

of1
; � � � o

ofn

� �
: ð16Þ

An almost complex structure on a real 2n-dimensional manifold is given by a (1,1) ten-
sor J satisfying bf J2 = 1, i.e. J a

cJ c
b ¼ �da

b. Locally, the almost complex structure J is given
in the real coordinates by the following matrix

0 �1

1 0

� �
; ð17Þ

where 1 is n-dimensional unit matrix. If the real 2n manifold is actually a complex mani-
fold, like in our case, the almost complex structure is defined globally and is called the
complex structure.

2.3. Riemannian structure on CPn

Hermitian scalar product induces a complex Euclidean metric on CN. The metric
induced on CPn is the Fubini-Study metric, and is given, in ðf; fÞ coordinates, using an
n · n matrix with following entries

gl;mðf; fÞ ¼
dl;mð1þ ffÞ � flfm

ð1þ ffÞ2
; l; m ¼ 1; 2 . . . n; ð18Þ

where ff �
Pn

lf
lfl.
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The Fubini-Study metric in ðf; fÞ coordinates is then given by 2n · 2n matrix

Gðf; fÞ ¼ 1

2

0 gl;m

gl;m 0

 !
: ð19Þ

In the real coordinates the Fubini-Study metric is given by the standard transformation
formulas

Gi;jðq; �pÞ ¼ Gk;lðfðq; pÞ; fðq; pÞÞ
oZi

oX k

oZj

oX l
; ð20Þ

where we used Z ¼ ðf1; . . . ; fnÞ and X = (q1, . . . ,pn).
In the example of two qubits the Fubini-Study metric on CP3 is

2G ¼

0 0 0 ð1þffÞ�f1f1

ð1þffÞ2
�f1f2

ð1þffÞ2
�f1f3

ð1þffÞ2

0 0 0 �f2f1

ð1þffÞ2
ð1þffÞ�f2f2

ð1þffÞ2
�f2f3

ð1þffÞ2

0 0 0 �f3f1

ð1þffÞ2
�f3f2

ð1þffÞ2
ð1þffÞ�f3f3

ð1þffÞ2

ð1þffÞ�f1f1

ð1þffÞ2
�f2f1

ð1þffÞ2
�f3f1

ð1þffÞ2
0 0 0

�f1f2

ð1þffÞ2
ð1þffÞ�f2f2

ð1þffÞ2
�f3f2

ð1þffÞ2
0 0 0

�f1f3

ð1þffÞ2
�f2f3

ð1þffÞ2
ð1þffÞ�f3f3

ð1þffÞ2
0 0 0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: ð21Þ

Transformation to the real coordinates, by application of the formula (20), gives

b
a � p1p2þq1q2

a � p1p3þq1q3

a 0 p1q2�p2q1

a
p1q3�p3q1

a

� p1p2þq1q2

a
b
a

p2p3þq2q3

a
p2q1�p1q2

a 0 p2q3�p3q2

a

� p1p2þq1q2

a
p2p3þq2q3

a
b
a

p3q1�p1q3

a
p3q2�p2q3

a 0

0 p2q1�p1q2

a
p3q1�p1q3

a
b
a � p1p2þq1q2

a � p1p3q1q3

a

p1q2�p2q1

a 0 p3q2�p2q3

a � p1p2þq1q2

a
b
a � p2p3þq2q3

a

p1q3�p3q1

a
p2q3�q2p3

a 0 � p1p3�q1q3

a � p2p3þq2q3

a
b
a

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð22Þ

where

a ¼ ðp1Þ2 þ ðp2Þ2 þ ðp3Þ2 þ ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2 þ 2;

b ¼ ðp1Þ2 þ ðp3Þ2 þ ðq1Þ2 þ ðq3Þ2 þ 2:

Obviously, G is positive definite and symmetric.

2.4. Symplectic structure on CPn

The Hermitian scalar product on CN is also used to define the symplectic structure on
CN and this induces the symplectic structure on CPn. The symplectic structure is the closed
nondegenerate two form X on CPn, which is, in ðf; fÞ coordinates given by

x ¼ ıgðf; fÞl;m dfl ^ fm; ð23Þ
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where gl;m is the Fubini-Study metric (18). In real coordinates, the symplectic structure is
given by Xðq; pÞ ¼ JGðq; pÞ where Gðq; pÞ is given by (20) and J by (17).

The symplectic form on the two qubits state space is in the real bases given by the prod-
uct of matrices (17) and (22). The results is

X ¼

0 �p2q1þp1q2

a2
�p3q1þp1q3

a2 � b
a2

p1p2þq1q2

a2
p1p3þq1q3

a2

p2q1�p1q2

a2 0 p2q3�p3q2

a2
p2p1þq1q2

a2 � b
a2

p2p3þq2q3

a2

p3q1�p1q3

a2
p3q2�p2q3

a2 0 p1p3þq1q3

a2
p2p3þq2q3

a2 � b
a2

b
a2 � p2p1þq1q2

a2 � p1p3þq1q3

a2 0 p1q2�p2q1

a2
p1q3�p3q1

a2

� p1p2þq1q2

a2
b
a2 � p2p3þq2q3

a2
p2q1�p1q2

a2 0 p2q3�p3q2

a2

� p1p3þq1q3

a2 � p2p3þq2q3

a2
b
a2

p3q1�p1q3

a2
p3q2�p2q3

a2 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð24Þ
3. Quantum Hamiltonian dynamical system on CPn

The Schroedinger equation on CN is in some basis {jwi+æ, i = 1,2 . . . ,N} given by

ı
dci

dt
¼ hwj j H j wiicj: ð25Þ

In the real coordinates this equation assumes the form of a Hamiltonian dynamical system
on R2N with a global gauge symmetry corresponding to the invariance |wæ fi exp(ix)|wæ.
Reduction with respect to this symmetry results in the Hamiltonian system on CPn, con-
sidered as a real manifold with the symplectic structure given by (23). The Hamilton equa-
tion on CPn, that are equivalent to the Schroedinger equation (25), are

dxl

dt
¼ 2Xl;krkHðxÞ; ð26Þ

where Xl,k is the inverse of the symplectic form, and H(x) is given by the normalized quan-
tum expectation of Hamilton’s operator Æw|H|wæ/Æw|wæ expressed in terms of the real coor-
dinates (14). For example, the hamiltonian (7) is given in terms of the real coordinates
qi ” xi, pi ” xi+n, i = 1, . . . ,n by

H ¼ x
a

2� ðp3Þ2 � ðq3Þ2
h i

þ l
a

p1p2 þ q1q2 þ
ffiffiffi
2
p

q3
� �

; ð27Þ

and the symmetric hamiltonian (9) is given by

H ¼ x
a

2� ðp3Þ2 � ðq3Þ2
h i
� l

a
ðp1Þ2 þ ðp2Þ2 þ ðq1Þ2 þ ðq2Þ2 � ðp3Þ2 � ðq3Þ2 � 2
h i

: ð28Þ

Hamilton’s equations (26) with the hamiltonian (27) and the symplectic form (24) assume
the following form:
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_q1 ¼� 2xp1 þ lp2 � lðp3q1 þ p1q3Þ=
ffiffiffi
2
p

_q2 ¼� 2xp2 þ lp2 � lðp3q2 þ p2q3Þ=
ffiffiffi
2
p

_q3 ¼� 4xp3 �
ffiffiffi
2
p

lp3q3

_p1 ¼2xq1 � lq2 þ lðq3q1 � p1p3Þ=
ffiffiffi
2
p

_p2 ¼2xq2 � lq1 þ lðq3q2 � p2p3Þ=
ffiffiffi
2
p

_p3 ¼4xq3 þ lððq3Þ2 � ðp3Þ2 � 2Þ=
ffiffiffi
2
p

: ð29Þ

The equations of motion with the symmetric hamiltonian (28) on CP3 are quite simple

_q1 ¼� 2ðxþ lÞp1

_q2 ¼� 2ðxþ lÞp2

_q3 ¼� 4xp3

_p1 ¼2ðxþ lÞq1

_p2 ¼2ðxþ lÞq1

_p3 ¼4xq3: ð30Þ
3.1. Quantum Hamiltonian system with imposed separability constraints

Dynamics of a constrained Hamiltonian system is usually described by the method of
Lagrange multipliers [34,35]. Consider a Hamiltonian system given by a symplectic man-
ifold M with the symplectic form X and Hamilton’s function H on M. Suppose that
besides the forces described by H the dynamics of the system is affected also by forces
whose sole effect is to constrain the motion on a submanifold N 2M determined by a
set functional relations

f1ðq; pÞ ¼ . . . fkðq; pÞ ¼ 0: ð31Þ

The method of Lagrange multiplies assumes that the dynamics on N is determined by the
following set of differential equations

_X ¼ XðrX ;rH 0Þ; H 0 ¼ H þ
Xk

j

kjfj; ð32Þ

which should be solved together with the equations of the constraints (31). The Lagrange
multipliers kj are functions of (p,q) that are to be determined from the following, so called
compatibility, conditions

_f l ¼ Xðrfl;rH 0Þ; ð33Þ

on N . Eq. (33) uniquely determine the functions k1(p,q), . . . ,kk(p,q) if and only if the ma-
trix of Poison brackets {fi, fj} = X($fi,$fj) is nonsingular. If this is the case then all con-
straints (31) are called primary, and N is symplectic manifold with the symplectic
structure determined by the so called Dirac–Poison brackets



26 N. Burić / Annals of Physics 323 (2008) 17–33
fF 1; F 2g0 ¼ fF 1; F 2g þ
Xk

i;j

ffi; F 1gffi; fjg�1ffj; F 2g: ð34Þ
As we shall see, this is the case in the examples of pairs of interacting qubits constrained on
the manifold of separable states that we shall analyze. On the other hand, if some of the
compatibility equations do not contain multipliers, than for that constrain
_f j ¼ ffj;Hg ¼ 0, which represents an additional constraint. These are called secondary
constraints, and they must be added to the system of original constraints (31). If this en-
larged set of constraints is functionally independent one can repeat the procedure. At the
end one either obtains a contradiction, in which case the original problem has no solution,
or one obtains appropriate multipliers kk such that the system (33) is compatible. In the
later case the solution for kk might not be unique in which case the orbits of (32) and
(31) are not uniquely determined by the initial conditions.

Let us apply the formalism of Lagrange multipliers on the system of two interacting
qubits additionally constrained to remain on the manifold of separable pure state. The real
and imaginary parts of (12) give the two constraints in terms of real coordinates
(q1,q2,q3,p1,p2,p3)

f1 ¼ p1p2 � q1q2 þ
ffiffiffi
2
p

q3; f 2 ¼
ffiffiffi
2
p

q3 � p2q1 � p1q2: ð35Þ
The compatibility conditions (33) assume the following form

_f 1 ¼Xðrf1;rHÞ þ k2Xðrf1;rf2Þ ¼ 0;

_f 2 ¼Xðrf2;rHÞ þ k1Xðrf2;rf1Þ ¼ 0; ð36Þ

where X is the symplectic form (24) and X($f1,$ H) = Xa,b$af1$b H.
The matrix of Poisson brackets {fi, fj} on N is

0 ½2þ ðp1Þ2 þ ðq1Þ2�½2þ ðp2Þ2 þ ðq2Þ2�=8

�½2þ ðp1Þ2 þ ðq1Þ2�½2þ ðp2Þ2 þ ðq2Þ2�=8 0

 !
;

ð37Þ
and is nonsingular. Thus the compatibility conditions can be solved for the Lagrange mul-
tipliers k1(q,p),k2(q,p)

k1 ¼ 4l
4p1p2q1q2 þ ½ðq1Þ2 � 2�½2þ ðp2Þ2 � ðq2Þ2� þ ðp1Þ2½ðq2Þ2 � ðp2Þ2 � 2�

½2þ ðp1Þ2 þ ððq1Þ2Þ2ð2þ ðp2Þ2Þ þ ðq2Þ2�2
;

k2 ¼ 8l
ðp1Þ2p2q2 � p2q2½ðq1Þ2 � 2� þ p1q1½2þ ðp2Þ2 � ðq2Þ2�

½2þ ðp1Þ2 þ ððq1Þ2Þ2ð2þ ðp2Þ2Þ þ ðq2Þ2�2
: ð38Þ
Finally, the dynamics of the constrained system is described by Eqs. (32) and (31) with
k1(q,p),k2(q,p) and f1(q,p),f2(q,p) given by (38) and (35). For the Hamiltonian (27) the
resulting equations of motion for q1,q2,p1,p2 are
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_q1 ¼� 4lp1q1q2 þ 2xp1½2þ ðp2Þ2 þ ðq2Þ2�
2þ ðp2Þ2 þ ðq2Þ2

;

_q2 ¼� 4lp2q1q2 � 2xp2½2þ ðp1Þ2 þ ðq1Þ2�
2þ ðp1Þ2 þ ðq1Þ2

;

_p1 ¼ 2lq2½ðq1Þ2 � ðp1Þ2 � 2� þ 2xq1½2þ ðp2Þ2 þ ðq2Þ2�
2þ ðp2Þ2 þ ðq2Þ2

;

_p2 ¼ 2lq1½ðq2Þ2 � ðp2Þ2 � 2� þ 2xq2½2þ ðp1Þ2 þ ðq1Þ2�
2þ ðp1Þ2 þ ðq1Þ2

: ð39Þ

The same procedure for the symmetric hamiltonian (28) results with the following equa-
tions of motion:

_q1 ¼ 2lp1½ðp2Þ2 þ ððq2Þ2 � 2Þ� � 2xp1½2þ ðp2Þ2 þ ðq2Þ2�
2þ ðp2Þ2 þ ðq2Þ2

;

_q2 ¼ 2lp2½ðp1Þ2 þ ðq1Þ2 � 2� � 2xp2½ð2þ ðp1Þ2Þ þ ðq1Þ2�
2þ ðp1Þ2 þ ðq1Þ2

;

_p1 ¼�2lq1½ðq2Þ2 þ ðp2Þ2 � 2� þ 2xq1½2þ ðp2Þ2 þ ðq2Þ2�
2þ ðp2Þ2 þ ðq2Þ2

;

_p2 ¼�2lq2½ðq1Þ2 þ ðp1Þ2 � 2� þ 2xq2½2þ ðp1Þ2 þ ðq1Þ2�
2þ ðp1Þ2 þ ðq1Þ2

: ð40Þ

There are also the equations expressing _q3 and _p3 in terms of q1,q2,p1,p2, but the solutions
of these are already given by the constraints.

3.2. Qualitative properties of the constrained dynamics of two interacting qubits

In this section, we present the results of numerical analyzes of the qualitative properties
of the dynamics generated by the constrained equations (40) and (39), corresponding to
the quantum Hamiltonians (28) with the SO(2) symmetry and (27) without such
symmetry.

It is well known that any quantum system is integrable when considered as the Hamil-
tonian dynamical system on the symplectic space H, and that the reduction on the sym-
plectic manifold PH preserves this property. This is simply a consequence of the form
of the quantum Hamiloton’s function, which is always defined as the mean value of the
Hamiltonian operator. Contrary to the case of classical Hamiltonian systems, the symme-
try of the physical system has no relevance for the property of integrability in the Hamil-
tonian formulation of the Schroedinger equation. We illustrate this fact, in Figs. 1a and b,
by projections on (q1,p1) plane of a typical orbit for the symmetric and nonsymmetric
Hamiltonians of the pair of qubits. The motion on CP3 in the symmetric case has further
degeneracy compared with the nonsymmetric case, but both cases generate integrable, reg-
ular Hamiltonian dynamics.

On the other hand, the qualitative properties of the dynamics constrained by the sepa-
rability conditions, are quite different. Typical orbits in the symmetric and nonsymmetric
cases are illustrated in Figs. 1c and d. Symmetric dynamics constrained by separability is



Fig. 1. Projections on (q1,p1) plane of a typical orbit for the hamiltonian systems (28) (a) and (27) (b) on CP3 and
on the submanifold of separable states (c) for (40) and (d) for (39). The values of the parameters are x = 1 and
l = 1.7.
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still regular, while the nonsymmetric Hamiltonian generates the constrained dynamics
with typical chaotic orbits. This is further illustrated in Fig. 2, where we show Poincaré
surfaces of section, defined by q2 = 0,p2 > 0 and H(p1,q1,p2,q2) = h for different values
of the coupling l. Obviously, the constrained system displays the transition from predom-
inantly regular to predominantly chaotic dynamics, with all the intricate structure of the



Fig. 2. Poincaré sections for the separability constrained nonsymmetric quantum dynamics (39). The parameters
are x = 1,h = 1.5 and (a) l = 1.1, (b) l = 1.3, (c) l = 1.5 and (d) l = 1.7.
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phase portrait, characteristic for typical Hamiltonian dynamical systems. Thus, we can
conclude that the quantum system constrained on the manifold of separable state behaves
as typical classical Hamiltonian systems. If there is enough symmetry, i.e. enough integrals
of motion, the constrained dynamics is integrable, otherwise the constrained quantum
dynamics is that of typical chaotic Hamiltonian system.
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4. Summary and discussion

We have studied Hamiltonian formulation of quantum dynamics of two interacting
qubits. Hamiltonian dynamical system on the state space CP3 as the phase space, is inte-
grable irrespective of the different symmetries of the quantum system. We have then stud-
ied the dynamics of the quantum Hamiltonian system constrained on the manifold of
separable states. The main result of this analyzes, and of the paper, is that the quantum
Hamiltonian system without symmetry generates nonintegrable chaotic dynamics on the
set of separable states, while the constrained symmetric dynamics gives an integrable sys-
tem. It is important to bare on mind that neither the system nor the separable states that
lie on an orbit of the constrained system have an underlining classical mechanical model.
Thus, forcing a non-degenerate quantum system to remain on the manifold of separable
states is enough to generate a dynamical system with typical properties of Hamiltonian
chaos.

Our analyzes of the separability constrained quantum dynamics has been rather formal.
In order to inquire into possible interpretation of our results we need a model of a physical
realization of the separability constraints. To this end we consider an open quantum sys-
tem of two interacting qubits, whose dynamics satisfies the Markov assumption [36], and
we choose a Hermitian Lindblad operator of the following form:

L ¼l11r
1
þr

1
� � r2

þr
2
� þ l12r

1
þr

1
� � r2

�r
2
þ þ l21r

1
�r

1
þ � r2

þr
2
� þ l22r

1
�r

1
þ � r2

�r
2
þ

¼
X2

i;j¼1

li;jji >< jj1 � ji >< jj2; ð41Þ

where |1æ ” |›æ and |2æ ” |flæ.
The dynamics of a pure state of the open system under the action of a Hamiltonian H

and the Linblad cL is described by the following stochastic nonlinear Schroedinger equa-
tion [36,37]

jdw >¼� iH jw > dt þ c2

4
ðL� < wjLjw > Þ2jw > dt

þcðL� < wjLjw >Þjw > dW ; ð42Þ

where dW is the increment of complex Wiener c-number process W(t).
Eq. (42) represent a diffusion process on a complex Hilbert space, and is central in the

‘‘Quantum State Diffusion’’ (QSD) theory of open quantum systems [37]. It has been used
to study the systems of interacting qubits in various environments, for example, in [32,38],
and the effect of the Linblad operator (41) on the entanglement between two qubits was
considered in [16]. The influence of the nonHamiltonian terms of drift (proportional to
c2) and the diffusion (proportional to c), with the Linblad operator of the form (41), is
to drive an entangled state towards one of the separable states with the corresponding
probability. This process occurs on the time scale proportional to c�1. So, for large c there
occurs an almost instantaneous collapse of an entangled state into a separable one. We
believe that with a proper choice of the parameters li,j the long term dynamics of a pure
state described by (42) can have the same qualitative properties as the separability con-
strained quantum dynamics. In particular, the difference between the qualitative properties
of symmetric and nonsymmetric systems, reflected in the constrained Hamiltonian system,
should also manifest in the dynamics of (42) for a proper choice of li,j. This expectations
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are supported by Fig. 3, which illustrate the dynamics of ðhr1
xi; hr2

yiÞ for the Hamiltonian
operators (5) and (8) as calculated using the constrained Hamiltonian Eqs. (39) and (40)
(Figs. 3b and a ), or the QSD Eq. (42) (Figs. 3d and c) for a particular choice of li,j and
Fig. 3. Illustrate the dynamics of (Ærxæ,Æryæ) for the constrained Hamiltonian systems (40) (a) and (39) (b) and for
the stochastic Schroedinger equation (42) with the Linblad (41) and the hamiltonians (8) (c) and (5) (d). The
parameters are x = 1,l = 1.7,c = 5 and l1,1 = 0.21, l1,2 = 0.21, l2,1 = 0.215, l2,2 = 0.205.
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large c = 5. Of course, the choice of optimal values for li,j should be according to some
criterion, which is the problem we are currently investigating.

The pair of coupled qubits, analyzed in this paper, is the simplest quantum system
exhibiting dynamical entanglement. We intend to investigate the effects of suppression
of the dynamical entanglement in systems with spacial degrees of freedom, obtained by
quantization of classically chaotic systems, for example a pair of coupled nonlinear oscil-
lators. In this case, the Hamiltonian formulation of the quantum dynamics requires an
infinite-dimensional phase space, and the analyzes of the separability constrained dynam-
ics is more complicated. However, it wold be interesting to compare the dynamics
obtained by separability constraints with that of some more standard semi-classical
approximation.
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