
Vol. 40 (1997) REPORTS ON MATHEMATICAL PHYSICS No. 2 

QUANTIZATION OF MAGNETIC TOP 
IN THE SPINOR REPRESENTATION 

M. Boik, D. ARSENOVI~ and Z. MARIO 

Institute of Physics, P.O. Box 57, 11000 Belgrade, Yugoslavia 
(e-mail: epopomir@ubbg.etf.bg.ac.yu; arsenovic@shiva.phy.bg.ac.yu; maric@castor.phy.bg.ac.yu) 

(Received March 26, 1997) 

Classical magnetic top described in terms of spinors is quantized by applying Dirac’s 
method of quantization for systems with constraints. 

1. Introduction 

From various studies the Cartan spinor [l] arose as a very appropriate object for 
the description of top’s orientation. 

In his discussion of the prehistory of spin kinematics, Turrin pointed out [2] that 
those roots originate in Darboux’s work [3] on the spinor treatment of the rigid-body 
motion. Euler’s parameters, customarily known as the Cayley-Klein parameters [4], 
are considered also to be the predecessors of spinors. Later, as the orientation co- 
ordinates of a top, spinors were extensively studied and analyzed by Sudarshan and 
Mukunda [5], used by Hara, Goto, Tsai and Yabuki in their quantum theory of rigid 
body [6] and by Tisza [7] in the model of spin based on an orientable object. 

We showed recently [8, 91 that the Lagrange equations of motion of a top, as 
well as of a magnetic top, in terms of spinors reduce to the harmonic oscillator 
equations, free of singularities, and different from the Lagrange equations written 
in terms of Euler’s angles. Spinors are more convenient than Euler’s angles since 
they transparently transform under the SU(2) group elements. Spinors are global 
coordinates while Euler’s angles are not well defined for ti = 0 and 19 = X. From these 
features we have concluded [8, 91 that the spinor space is a natural configuration 
space for determining the rotational dynamics of the classical spherical top and the 
classical magnetic top. Quantization of a magnetic top described in terms of spinors 
is exposed in the present paper. 

2. Spinor as the orientation coordinate of a top 

By Cat-tan’s definition [l], a two-dimensional spinor 

El t=L) 2 
(2.1) 

[lb91 
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is associated with an isotropic vector 

c2=c.c=c~+c~+c~=o (2.2) 
through the relations 

r,” - s,” 
Cl = ~ 

r,” + rT 
2 ’ 

c2 = 
2i ’ 

c3 = E1[2. (2.3) 

These equations have two solutions given, for example, by the formulae: 

<i = l dD, (2 = *dX. (24 

Cartan pointed out that “it is necessary to keep solutions with both signs because 
it is not possible to give a consistent choice of sign which will hold for all isotropic 
vectors in such a manner that the solution varies continuously with the vector”. 

By separating the isotropic vector c in the real and imaginary parts one has 

c = a + ib. 

Brinkman found [lo] that the condition c2 = 0 amounts to 

a2 _ h2 = 0 

(2.5) 

(2.6) 

a.b=O. (2.7) 

It implies that the introduction of an isotropic vector c, as well as of the corre- 
sponding spinor {, is equivalent to that of an orthogonal vector triple of equal length 

(say 4 
a = eel, b = ee,, le3 = le, x e2. (24 

Since the orientation of a top is determined by the orientation of a frame attached 
to it, this correspondence shows that spinor is a suitable object for the orientation 
coordinate of a top. 

Being interested in the internal motion of a top, we shall assume that its center 
of mass is situated at the common point of a body (23) frame ei, e2, e3 and of an 
external laboratory (C) frame El, Ea, Es. 

Using the Pauli matrices, 

I=(; ;), OI=(; ;), “2=(; _k), 03=(:, yl), (2.9) 

the components of the complex vector c and of the vector triple el, e2, e3 are written 
in terms of spinors as follows [9] 

A * 

‘hE 5a2t 
Cl = ~ 

2 ’ 
c2 = - 

2 ’ 
c3 - b3r 

2 ’ 
. A A A 

ck + c; 
eP)k = e = 

<ok< + (@kt-)* ck - c; <ok< - (‘tk’k‘i)’ 
2Q , e(2)k = Y-&- = 

2iQ ’ 

(2.10) 

(2.11) 
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Here 
n 
e = icT2E = 12 

( ) --El ' 
(2.12) 

and 
@ - &*, [) t! c*<. (2.13) 

When written on the left-hand side of a matrix, i denotes the row matrix. 
For all spinors associated with orthogonal vector triples of a given length e, the 

function Q has constant value 

&A) = ]&I2 + 11212 = 2e. (2.14) 

The direction cosines of ei, ea, es relative to the axes El, E2, E3, 

aij = cos(ei, Ej) = ei . Ej = ecijj (2.15) 

satisfy the orthogonal&y relations 

akiaji = 6kj (2.16) 

and specify completely orientation of the top. 
Using the well-known expressions for the matrix elements in terms of Euler’s 

angles [4] and the relations (2.4), (2.11) and (2.15), one finds the relations between 
the spinor components and Euler’s angles: 

<l t9 
zl= - = ices-e -4%9+x)/2 t2 

d 2 ’ .,=z 

= sin ; ,i(ip-x)/2, (2.17) 

In order to take into account both signs in the relation (2.4), the usual region of 
Euler’s angles is extended and defined by the inequalities: 

0 < ;<cp + x) < 27r, -n < ;(cp - x) < n, 0 F 29.5 x> (2.18) 

allowing for the periodicity in the directions of the ‘p +x and (p-x axes. As shown by 
Jonker and de Vries [ll], with the above choice of the extended region for Euler’s 
angles, every point on the hypersphere 

(Re Ei)2 + (Re&)2 + (Im5i)2 + (Im&)2 = e2 (2.19) 

can be reached. 
After lengthly algebraic manipulations, it may be shown that under an active ro- 

tation of the frame ei, ea, ea, determined by Euler’s angles ,& /?o, px (defined with 
respect to the El, Ea, Es frame) a unit spinor .z transforms in the following way 

0 4 4 = ( 21 22 

where 
z1 = cos be-“+ 

2 
Evidently, the transformation matrix is 
SU(2) group. 

(2.20) 

2 
2 

= -isin &!e”+ 
2 . 

(2.21) 

unitary and unimodular-an element of 
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3. Magnetic top in terms of spinors-the classical system with constraints 

The magnetic top was introduced as a classical model for spin by Barut et al. 
[12]. It is a spherically symmetric top with a magnetic moment M proportional to 
the kinetic angular momentum EC, 

M = yIZ = ylw (3.1) 

(I is the moment of inertia and w is the angular velocity). Lagrangian of the top in an 
external magnetic field is 

L=T-U=Jg++u.B. (34 

In terms of the Cartan’s spinor, T, U and L read as [9]: 

6.i = 1,2,3,4, t3 = CT, E4 = t2*, (3.3) 

u = -yBl(i'o3~-&3<), 
e 

(3.4) 

(3.5) 

The magnetic top is a classical dynamical system with three degrees of freedom. But, 
using the Cartan’s spinor < for the description of the orientation of a top, we have sub- 
stituted the three-dimensional configuration space by the four-dimensional configuration 
space with one holonomic constraint 

hi E &,<) - 2e = 0, 2C is a time-independent constant. (3.6) 

The Lagrangian L is singular, i.e. det &?- = 0. 
at, @k 

The expression (3.3) for the kinetic energy T implies the following form of the metric 
tensor 

51 E2 t3 54 

El 

( 

+2 

I,,<; 
-GE; IlG + x26; -E2G 

(g..) = -L E2 -G2 -<15; 2&E; + E2G 
t.J Q2 J3 &ET + 2E2EZ -hEz* -E12 -E1J2 

(3.7) 

c4 -J2G 2ElG + E2G -5‘1E2 -E22 

It follows that D - dw = 0. 
The conjugate momenta are: 

(3.8) 
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where we find a primary constraint 

h:! = m$ + I?<* = 0, (3.9) 

which is of the first class at the moment. 
The vector quantity 

s = X + IyB = I(w + yB), (3.10) 

called the canonical angular momentum or spin, is the characteristic quantity of the 
magnetic top [12-151 since .s2, s3 and s: are constants of motion. The components 
of s relative to the C and I3 frame, respectively, expressed in terms of spinors read 
as: 

si = - ;(+gi< - (*gin*), (3.11) 

9; = ;(%c72[* - %*@<), s/2 = ;(?0?<* + ji*cQ), sj = ;(ii’<* - 7rE). (3.12) 

From the above it follows the expression for the square of the vector s in the 
spinor form 

s2 = s2 = (&)(ii’7r) - i(i;< + ji*<*)? (3.13) 

The Poisson brackets between the spin components form the same algebra as in 
the case of Euler’s angles: 

{si, sj} = EijkSk, {S:,S>} = -EijkSk, {Si,Si} = 0 (3.14) 

(&i2a = 1). Note the minus sign in the second equation. 
The canonical Hamiltonian takes the form (for B = BE3) 

II, = & { (&)(ii*7r) - i(i;[ + i*7r*)2 + 7Bli(iicTy< - i*u37r*) + y2B2P} = 

= &[s2 - 2yIBs3 + y212B2]. (3.15) 

But, for a system with the primary constraint (3.9) it is necessary to construct the 
effective Hamiltonian [16, 171 

He8 = H, + v2h2. (3.16) 

We can fix the arbitrary function v2 by imposing the gauge condition hl = it* - 2i? 
= 0. h,i and h2 now turn to be the second-class constraints. The Poisson bracket 
{., .} should be replaced by the Dirac bracket {., .}*, 

{A, B}* = {A, B} - {A, hi}c,j’{hj, B}, (3.17) 

where cij = {hi, hj}. However, it is not altered since {H, hi} = 0, and we will keep 
writing {., .} instead of {., .}*. Similarly, the corrected Hamiltonian H’ = 
H, - {H,, hi}c,jlhj is the same as the canonical one, H’ = H,. 
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4. Quantization in terms of spinors 

In the case of Euler’s angles as the orientation coordinates, the quantization is 
realized in the Hilbert space RFIE of wave functions $((p, 29, x) with the scalar product 

($Jl(cp> 6, XM2(V> ‘L9, x>) = J sin 8 S(cp, 8, x)$~((P, 8, xP-9 & dx. (4.1) 
V 

In the case of spinors as the orientation coordinates we work with the Hilbert space 
‘?iS of wave functions PC,&,&, I;,[;) = 9(<,<*). Spinors introduce a new variable e 
which enters the volume element as dV = qdXdtpd29de. Turning to E’s we obtain 
dV = d&dGd<;dG, i.e. 

P'1(<1E*)l*2i(E,I*)) = s ~;(E,E*)~2i(E,E*)d~ldJzd~;dE,'. (4.2) 

V 

From the general expression for the momentum operators in the framework of SchrGdin- 
ger’s quantization method 

Ijill, = LGafi+ 
ifi 8% ’ 

(4.3) 

where D = ,,/‘m and qi are coordinates, the following expressions for the operators 
of canonical momenta were obtained [13] in the case of Euler’s angles (D = sin@: 

The corresponding Hamilton operator reads: 

2 d2 I!&-; s+ct&+ 
[ &($+$)-2&&j 

+ yl3ih.z + ~ 
y21B2 

$9 2’ 

(4.4) 

(4.5) 

In the case of spinors, the determinant D = det gij = 0, and is therefore independent 
of <. This means that we may write the general expression (4.3) in the form 

Therefore, the coordinate and momentum operators in the Hilbert space ‘# are: 

(4.7) 

The spin operators ,G1, i2, ii, .?; can be written directly from (3.11) and (3.12). In the 
components & and 2; we have an ordering pfoblem with the factors 61~1, &7r~, [ET; and 
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<+?T* 2 2. We can calculate them using ihSs = [ai, &,J and --ih$ = [ii, $1, in accordance 
with (3.14). The result is: 

& = -fi(&i$ - ;foi+*), (4.8) 

2’1 = #ra2[* - &2[), ;; = $i(ia2i* + $*a2,$ ;; = $$*r; - ;r^>. (4.9) 

A straightforward calculation leads to 

-2 
s = 2: + 2; + i; = $2 + ;;2 + ;;2 

= +[4(&)(i*[) + 2ih(&[ + t*+*) - (&f + i*;i’)“]. (4.10) 

The Hamiltonian is equal to 

+yBli(&3( - f:*og?*) + y2B212 . (4.11) 

A comparison of this Hamiltonian with (4.5) is helpful. We can express the dif- 
ferential operators & in terms of &, 6, -& and & using (2.17) and vice versa. It 

turns out that Oi when transformed from c’s to cp, 29, x and Q contains neither Q nor 
&. The Hamiltonians (4.5) and (4.11) are equal: 

& = & + a; + 0; - 2LayBI + y2B212) = A. (4.12) 

Independently of which configuration space variables are used, the Hamilton op- 
erator commutes with the operators g2, .?a and ii. Therefore, the energy eigenstates 
are simultaneously eigenstates of i2, & and 2;. It is therefore convenient to label 
the energy eigenstates of BE, $,&G,cp, x), with quantum numbers associated with 
the eigenvalue equations: 

(4.13) 

The operator fi acts on wave functions !P([, c’). Using the transformation (2.17) 
!P may be written as a function of cp, 8, x and Q 

@(E, I’) = P’(cp> 6, x, e). (4.14) 

Since A, when expressed in terms of ti,(p and x, does not depend on e and 6, we 

can guess the form of the most general eigenstate of a: 

*(I, E*) = @s&z, z*)&?), (4.15) 
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where 

@S/J& z*> = ?IS/L”(P, 29, x) (4.16) 

and F(Q) is at this stage an arbitrary function. 
However, the magnetic top in the spinor form is a classical system with constraints 

h1 = 0 and hz = 0. The quantization of hl leads to 

fi, = p[ - 2e. 

The symmetrization of terms &7ri and <TV,’ in hz gives 

fi, = &[ + c*;i* = i;r + ,*,-*, 

Expressed in terms of cp, 6, x and Q they read: 

L, = 6 - 2e, A, = .& + I;,; = -ih2p& - 2ih. 

The eigenstates of a have to satisfy one of the constrained equations: 

fir@ = 0 + 9 = @sfiV(z, Z*). s(@ - ze), 

ii@ = 0 =+ !P = @spv(z, z*). a, 

so that the function F(Q) is no more arbitrary. 
By choosing the constraint (4.21) we conclude that the corresponding 

cannot be normalized to unity unless we limit the integration in (4.2) from 
region (<r, [a, CT, [;) to the one where a < <it; + &<2+ < b, where now a 
arbitrary, but have to be fixed. 

5. Conclusion 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

eigenstate 
the whole 
and b are 

The classical magnetic top described in terms of spinors is quantized by applying 
Dirac’s method of quantization for systems with constraints. The spin and Hamilton 
operators, given by (4.8) and (4.11), operate in the Hilbert space 3-tc of functions S(<, <*) 
in which the scalar product is given by 

P'1P22) = s ~~(~,~*)~2i(E,I*)d~ldE~d~;d~2i, (5.1) 

V 
a<e<b 

where a and b are positive real numbers. 
It js shown that the eigenstates !PS,,(<, <*) of J? have the form 

A 
@q&,J*) = -@s/Lv(z> z*), 

FE 
(5.2) 
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where A is a constant (determined by constants a and b) and QsPv(z, z*) = $,,,(cp, ~9, x) 
are eigenstates of riT E. In this way a one-to-one correspondence is established between 
states in the Hilbert spaces Fit and WE. 
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