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1. Introduction

Entanglement dynamics is an important topic of current re-
search in quantum information processing and foundations of
quantum mechanics [1,2]. The relation between qualitative prop-
erties of quantum dynamics and the entanglement evolution plays
the crucial role in understanding of quantum to classical transition.
Systematic study of this question is difficult because: (a) a clear
categorization of the qualitative properties of quantum dynamics
is lacking [3], (b) suitable and easy to calculate general measure
of entanglement is not available [4] and (c) the quantum dynam-
ics must be considered as that of an open system because of the
crucial and unavoidable interaction of the system with its envi-
ronment [5]. This Letter presents results of our analysis of the
entanglement dynamics in examples of qualitatively different open
systems of qubits with Markov dynamics, that fall in the follow-
ing three categories: (a) quantum integrable with completely in-
tegrable classical limit; (b) quantum nonintegrable with chaotic
classical limit and (c) quantum integrable with a chaotic classical
limit.

Dynamics of entanglement in quantum systems possessing
qualitatively different dynamical properties has been studied from
different perspectives. Two broad classes of such studies can be
distinguished according to what is considered as the distinctive
feature to characterize the quantum dynamics. From the point of
view of the theory of Hamiltonian dynamical systems all quantum
system with finite number of degrees of freedom are completely
integrable and have qualitatively the same dynamical properties
[6]. In order to introduce a meaningful distinction between types
of quantum evolution two strategies have been employed, within
the context of the problem of quantum to classical transition or
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of the problem of solvability of the quantum evolution. The first
one relays on quantization of classical systems with qualitatively
different dynamical properties [7] and the second one relays on
the notion of integrability for infinite dynamical systems and its
quantum (noncommutative) generalization [8]. Properties of the
entanglement dynamics have been studied within both of these
approaches.

Within the approach based on quantization of systems with dif-
ferent classical dynamics, it is found that (a) quantum systems ob-
tained by quantization of classical Hamiltonian system with quali-
tatively different dynamics show different spectral properties, and
qualitatively different properties of entanglement in eigenstates in
different parts of spectra have been observed [9]; (b) entanglement
in the wave function initially localized in qualitatively different
parts of the phase space of some semi-classical approximation of
the quantum system has clearly different dynamics [10–18].

There is no generally accepted notion of genuinely quantum in-
tegrability [8]. The definition of what is a quantum chaotic system
is even less unique [19]. The most common approach, at least for
lattice spin systems, is based on the generalization of the notion of
thermodynamical integrability of classical spin systems [20]. Such
classical spin system in the thermodynamical limit is called inte-
grable (or exactly solvable) if it is possible to determine its parti-
tion function exactly. This somewhat restrictive definition requires
that the exact solution is given by the Bethe ansatz or requires
the existence of a nontrivial solution of the Yang–Baxter equations.
Analogously, quantum systems are called integrable if they are ex-
actly solvable by application of the generalized Bethe ansatz or by
the quantum inverse scattering method [8]. This is commonly ac-
cepted definition of integrability for systems represented by spin
chains [3], but is certainly not unique [19]. A quantum system is
nonintegrable if it has not been integrated. In what sense a quan-
tum nonintegrable system can be considered as quantum chaotic is
a matter of a debate [3]. Some quantum systems of finite number
of spins whose thermodynamical limit is quantum nonintegrable,
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show the same spectral properties as the systems obtained by
quantization of classically chaotic systems, and, furthermore, dis-
play the mixing properties that lead to expected equilibrium and
non-equilibrium thermodynamical behavior [3]. The dynamics of
entanglement in such quantum chaotic systems has been studied
and compared with the entanglement dynamics in quantum inte-
grable systems [9,21–25]. Later in the paper we shall compare the
results of these studies with out results.

It is a notorious fact that a quantum system, for all practi-
cal purposes, be that the dynamics of approach to equilibrium or
the quantum computing, must be considered in interaction with
its environment [5]. Dynamics of a special class of open quan-
tum systems is described by continuous semi-groups of completely
positive operators [19], and in that case the evolution of the quan-
tum state is governed by the Lindblad equation [5,27], with the
Hamiltonian and Lindblad operators that describe the correspond-
ing internal dynamics and the environmental influences. Common
examples of the environmental influences are thermal or dephas-
ing environments. If such an environment acts locally on each
of the parts of the quantum system then it is expected that the
entanglement between the parts will be destroyed eventually. In
what follows we shall report the results of our study of the in-
terplay of qualitatively different types of interaction and different
environments on the entanglement dynamics.

The Letter is organized as follows. In the next section we shall
first describe three examples of qubit chains with qualitatively dif-
ferent dynamics. We shall be careful to distinguish the chain with
integrable quantum dynamics and the integrable classical limit, the
chain with nonintegrable quantum dynamics and chaotic classical
limit and the chain which is considered quantum integrable, with
some corresponding spectral properties, but with chaotic classi-
cal limit. In the same section, brief recapitulation of the Lindblad
equation and thermal and dephasing environments will be given.
Finally, relevant measures of entanglement will be recapitulated. In
Section 3. we shall present the numerical results and discuss the
entanglement dynamics for isolated systems. It might be expected,
and is confirmed by our computations, that the entanglement dy-
namics qualitatively depends on the interaction but also on the
entanglement of the initial state. In the case of isolated qubits
chains, which are all the time in pure states, we shall compute and
compare the dynamics of pairwise entanglement with the global
entanglement. In Section 4, the influence of thermal and dephas-
ing environment will be illustrated and discussed. Summary and
our main conclusions are given in Section 5.

2. Representative models, Markov dynamics of open systems
and measures of entanglement

In our analyzes we shall use finite chains of qubits with a
Hamiltonian of the following form:

H(kx,kz, J ) =
N∑

i=1

(
kxσ

x
i + kzσ

z
i

) + J
N∑

i=1

σ x
i σ x

i+1,

σN+1 = σN . (1)

The Hamiltonian (1) describes a ring lattice of N 1/2 spins with
the Ising interaction subjected to a constant magnetic field tilted
in the (x, z) plane. We shall always use units in which h̄ = 1, fix
J = 1, and present all the results in units of dimensionless time
τ ≡ J t .

The symmetric system with longitudinal magnetic field kz = 0;
kx �= 0 is integrable by the Bethe ansatz [8]. The system with trans-
verse magnetic field kx = 0; kz �= 0 is transformed with the Jordan–
Wigner–Bogolybov (non-canonical) mapping [28] into a system of
noninteracting fermions, and as such is exactly solvable. The sys-
tem with both kx �= 0, kz �= 0 is considered quantum nonintegrable.
There are several ways to introduce classical approximations of the
dynamics of these three systems [29–32]. However, the classical
symmetric system H(kx,0, J ) is always completely integrable, and
both nonsymmetric systems H(0,kz, J ) and H(kx,kz, J ) have clas-
sical counterparts which display the transition from mostly regular
to dominantly chaotic dynamics [30]. On the other hand, the quan-
tum systems with either of the fields set to zero, that is the sys-
tems that are considered quantum integrable, display the spectral
properties typical of quantized classically completely integrable
systems [9,24], irrespective of the lack of the additional symme-
try in H(0,kz, J ). In particular, the standard diagnostic tool of the
quantized chaos, namely the nearest neighbor level spacing distri-
bution (NNLS distribution) in cases of H(kx,0, J ) and H(0,kz, J ) is
Poisonian, whereas in the case of H(kx,kz, J ) for sufficiently large
kx,kz , for example if kx = kz = 1.4; J = 1 the NNLS distribution
is Gaussian. The latter system is then considered quantum chaotic
and the symmetric H(kx,0, J ) and nonsymmetric H(0,kz, J ) sys-
tems are considered quantum integrable [3,24]. We shall analyze if
differences in qualitative properties of the entanglement dynamics
with qualitatively different initial states follow this classification
into quantum integrable and quantum chaotic. In particular it is
interesting to see if the case of the nonsymmetric quantum in-
tegrable system H(0,kz, J ) has some special status with respect
to the generated entanglement dynamics, at least for some initial
states.

Quantum integrability and quantum chaos in different spin
chains, and in particular of the form (1), with or without time-
dependent fields, have been intensively studied ([3] and references
therein). Entanglement in such spin chains has also been studied,
in particular the relation between phase transitions and the prop-
erties of entanglement in the ground or thermal state [33]. Dynam-
ics of entanglement in the system (1) and in the integrable versus
chaotic case has been recently studied in [9,23,24], but the prop-
erties of the nonsymmetric quantum integrable case H(0,kz, J )
where not emphasized. Dependence of the entanglement dynam-
ics on the symmetry of the spin Hamiltonian for dynamics from
an initial separable state was analyzed in [31] using only a pair of
interacting qubits.

2.1. Open systems

Quantum systems with a Hamiltonian like (1) with relatively
small number of qubits have been recently manufactured in labo-
ratories [34], and are considered as potentially useful for quantum
simulations and maybe quantum computations. In the conditions
of real experiments the quantum system is never isolated from
its environment, and for some purposes like the explanation of
quantum to classical transition such influence might play the cru-
cial role [35–37]. Therefore it is important to include the effects
of the environment in the studies of the entanglement dynamics.
Evolution of any quantum system is given by completely positive
transformations of its state or its observables. In many cases the
environment is such that the state transformations at successive
instants of time form a continuous Markov evolution. Then the
evolution of the state is describe by the Lindblad equation for the
state density matrix [5,19,26,27]

dρ(t)

dt
= −i[H,ρ] − 1

2

∑
k

[
Lkρ, L†

k

] + [
Lk,ρL†

k

]
, (2)

where −i[H,ρ] describes the unitary part and the rest is the dissi-
pative part. The Lindblad operators Lk are interpreted and inferred
from different types of the influence that the environment exerts
on the system. We shall analyze the entanglement dynamics in
the three examples of qualitatively different systems with the cor-
responding Hamiltonian H(kx,kz, J ) plugged in Eq. (2) and with



N. Burić, B.L. Lindén / Physics Letters A 373 (2009) 1531–1539 1533
the Lindblad operators that correspond to local thermal and de-
phasing environments. The Lindblad operators for these two types
of the environment are given by the following formulas [4,5]:
Li ≡ 11 ⊗ · · · (Li) · · · ⊗ 1N where for each qubit:

Li = Γ (n̄ + 1)

2
σ−

i + Γ n̄

2
σ+

i (3)

describes the thermal environment, and

Li = Γ σ+
i σ−

i (4)

corresponds to the dephasing effect of the environment. The pa-
rameter n̄ in (3) is proportional to the temperature and Γ in (3) or
(4) (not necessarily the same small numerical value) is treated here
as a small phenomenological parameter that describes the strength
of the coupling between a qubit and its environment.

The main problem with numerical solutions of the Lindblad
equation for finite chains of qubits is that the evolution of ρ(t)
requires large effective storage space. Recently, great savings of
the storage space have been achieved by applications of the
time dependent density matrix renormalization group method
(tDMRG) [42]. However, approximations involved in tDMRG rely
on the assumption that the entanglement between many differ-
ent subparts of the system is small, which is the case only for
some initial states and for some types of Hamiltonian interaction.
In general, and in particular for complex quantum evolution, it is
expected that long term dynamics leads to the significant entan-
glement between all subparts of the system. It has been demon-
strated that QNI evolution leads to exponential growth of mem-
ory resources needed for tDMRG computation with the evolution
time [3].

As is well known there is a class of alternative but equivalent
descriptions of an open Markov system dynamics given entirely in
terms of pure states. The evolution equation in these formulations
is a stochastic Schrödinger equation (SSE) with the state space of
dimension 2N . Such SSEs are called stochastic unraveling [5,36,43]
of the Lindblad master equation for the reduced density matrix
ρ(t). There are many different forms of nonlinear and linear SSEs
that have been used in the context of open systems [5,36,43–45].
In particular SSEs have been used to study the quantum to classical
transition of complex quantum dynamics [36,37]. All unravelings of
the Lindblad equation are consistent with the requirement that the
solutions of (2) and of the corresponding SSE satisfy

ρ(t) = E
[∣∣ψ(t)

〉〈
ψ(t)

∣∣], (5)

where E[|ψ(t)〉〈ψ(t)|] is the expectation with respect to the dis-
tribution of the stochastic process |ψ(t)〉.

In our computations we shall use a special form of the SSE,
given by the quantum state diffusion (QSD) theory because the
correspondence between QSD evolution equation and the Lindblad
equation is unique. We used the QSD method only as an efficient
computational tool, and did not explore the possibility to use the
fact that the stochastic evolution of pure states provides valuable
insides which can not be inferred from the density matrix ap-
proach [5,36,46–48].

The QSD evolution equation is given by the following formula:

|dψ〉 = −iH|ψ〉dt

+
[∑

k

2
〈
L†

k

〉
Lk − L†

k Lk − 〈
L†

k

〉〈Lk〉
]∣∣ψ(t)

〉
dt

+
∑

l

(
Lk − 〈Lk〉

)∣∣ψ(t)
〉
dWk, (6)

where Lk are the same Lindblad operators as in (2), and where 〈 〉
denotes the quantum expectation in the state |ψ(t)〉 and dWk are
independent increments of complex Wiener c-number processes
Wk(t) satisfying
E[dWk] = E[dWk dWk′ ] = 0,

E[dWl dW̄k′ ] = δk,k′ dt,

k = 1,2, . . . ,m. (7)

Here E[·] denotes the expectation with respect to the probability
distribution given by the multi-dimensional process W , and W̄k is
the complex conjugate of Wk .

2.2. Measures of entanglement

There are different types of entanglement that can be of in-
terest in the system of qubits like (1), and some of them can be
efficiently calculated [38]. If the total system is in a pure state |ψ〉
one can calculate the bipartite entanglement of formation between
a subsystem consisting of k < N qubits and the rest of the chain.
In particular, entanglement of formation between the ith qubit and
the rest of the chain is given by the Von Neuman entropy

Ei(ρi) = ρi Log(ρi), (8)

where ρi = Tr �=i |ψ〉〈ψ |, and Tr �=i denotes the partial trace over the
spaces of all except the ith qubit. We shall always use Log with
the base 2. Analogously, the bipartite entanglement of formation
between a pair of qubits, say the pair at sites 1 and 2, and the rest
of the chain is given by the Von Neumann entropy of the reduced
density matrix ρi j = Tr �=i, j |ψ〉〈ψ | of the considered pair:

E12,3...N = ρ12 Log(ρ12). (9)

Single qubit reduced matrix (ρi) can be used to define and
effectively compute a global measure of entanglement for the sys-
tem (1) in a pure state, which measures also some form of gen-
uine multi-partite entanglement. The measure is known as Meyer–
Wallach geometric measure [39], is given by

Q
(|ψ〉) = 2

(
1 − 1

N

N∑
i=1

Tr
(
ρ2

i

))
, (10)

and is not applicable if the entire system is in a mixed state. In
the case of open system of qubits, which are in a mixed state,
Q would also include the entanglement between the qubits and
the environment. Theory of multi-partite entanglement for systems
in mixed state is far from completed, and there are only estimates
of upper bounds that are relatively easy to compute [4].

Entanglement of formation between two qubits in the chain can
also be efficiently calculated for the particular pair of qubits using
the reduced density matrix ρi j , i.e. all the bi-partite correlation
functions 〈σ x,y,z

i σ
x,y,z
j 〉 for that particular pair [40,41]. First, a con-

currence is calculated by the following formula

C(ρi, j) = max{0,
√

λ1 − √
λ2 − √

λ3 − √
λ4}, (11)

where λ1 > · · · > λ4 are the eigenvalues of the matrix ρi j(σ
y

i ⊗
σ

y
j )ρ̄i j(σ

y
i ⊗ σ

y
j ), where ρ̄i j is the complex conjugate of ρi j calcu-

lated in the standard bases. The entanglement of formation is then
given via the function

h(x) = −x log x − (1 − x) log(1 − x)

by the following formula

E(ρi j) = h

(1 +
√

1 − C(ρi, j)
2

2

)
. (12)

The total amount of local pair-wise entanglement of formation
E(ρi j) is given by the sum over all (i, j) pairs. Instead, we shall
use the sum of all pair-wise squared concurrences (8).∑
i< j

C2(ρi j). (13)
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Fig. 1. Illustrates bipartite entanglement dynamics in isolated systems. E12 for N = 6 (gray), Ē12 for N = 3 (dotted), for N = 4 (dashed) for N = 5 (thin full) and N = 5 (thick
full) are shown. Figures (a), (b), (c) correspond to |max〉, (d), (e), (f) to |W 〉 and (g), (h), (k) to |sep〉 initial states. Figures (a), (d), (g) correspond to H(kx = 1.4,kz = 0, J = 1),
(b), (e), (h) to H(kx = 0,kz = 1.4, J = 1) and (c), (f), (k) to H(kx = 1.4,kz = 1.4, J = 1) systems.
Notice that Eij ≡ E(ρi j) characterizes the entanglement between
ith and jth qubit even when the entire system is entangled to the
environment, i.e. when the entire system is in a mixed state. We
shall calculate the time dependence of the pair-wise entanglement
of formation Eij in the cases of isolated and open systems and
the Von Neumann entropy Ei(ρi) and Q (|ψ〉) only for the isolated
systems.

3. Entanglement dynamics

We shall systematically illustrate our computations of the en-
tanglement dynamics using the rings of N = 6 qubits. However,
our main conclusions have been confirmed with larger rings up
to N = 12. In all results that are presented here we use the same
value of the interaction parameter J = 1. The parameters kx,kz are
set to typical values as follows. Symmetric quantum integrable (QI)
case is represented by H(kx = 1.4,kz = 0, J = 1), nonsymmetric
quatum integrable by H(kx = 0,kz = 1.4, J = 1) and the quantum
nonintegrable (QNI) case by H(kx = 1.4,kz = 1.4, J = 1). As the
initial states we have considered pure N qubit states with three
different distributions of entanglement: the separable states

|sep〉 ≡ |→1,↑2,↑3, . . . ,↑N 〉, (14)

the states with only one (i, i + 1)-pair maximally entangled and
the rest in product form

|max〉 ≡ [(|↑1,↓2〉 + |↓1,↑2〉
) ⊗ (|↓3, . . . ,↓N

)]
/
√

2 (15)

and an example of a state with distributed entanglement

|W 〉 ≡ (|↑1,↓2,↓3, . . . ,↓N 〉 + |↓1,↑2,↓3, . . . ,↓N 〉 + · · ·
+ |↓1,↓2, . . . ,↑N 〉)/√N. (16)

The states |sep〉 and |max〉 are typical in the sense that the
entanglement dynamics from other separable states or from other
states with initially localized entanglement that we have studied
are qualitatively the same as the entanglement dynamics from
|sep〉 and |max〉 respectively. The entanglement dynamics from
|W 〉 represents an example of an initial state with distributed



N. Burić, B.L. Lindén / Physics Letters A 373 (2009) 1531–1539 1535
Fig. 2. Illustrates total pair-wise squared concurrence (10) (black) and the global entanglement Q (ψ) (gray) dynamics in isolated systems for N = 6. Time averaged Q̄ (black
dotted) is also shown. Figures (a), (b), (c) correspond to |max〉, (d), (e), (f) to |W 〉 and (g), (h), (k) to |sep〉 initial states. Figures (a), (d), (g) correspond to H(kx = 1.4,

kz = 0, J = 1), (b), (e), (h) to H(kx = 0,kz = 1.4, J = 1) and (c), (f), (k) to H(kx = 1.4,kz = 1.4, J = 1) systems.
entanglement as opposed to |sep〉 and |max〉. Other states with
nonequivalent types of distributed entanglement should also be
analyzed. This becomes more relevant for chains with larger num-
ber of qubits.

Local thermal or dephasing environment exerts on all consid-
ered systems long-term effects of exponential dumping of the en-
tanglement in the similar way. The major factor that determines
the differences in the entanglement evolution are the qualitative
properties of the isolated systems dynamics. Therefor, we shall first
illustrate and discuss the dynamics of entanglement for isolated
systems.

3.1. Isolated systems

Isolated systems of the form (1) can always be considered to
be in a pure state. The initial state can be separable or entan-
gled and the subsequent states in the evolution are most often
entangled due to the interaction between the qubits. Each qubit
interacts only with two other qubits, its nearest neighbors, but the
quantum correlations, as expressed by different types of entangle-
ment, are established among all the qubits in the ring. Our task
in this subsection is to describe, for isolated systems of the form
(1), the evolution of the pair-wise entanglement between differ-
ent pairs of qubits and the global entanglement as described by
entanglement of each of the qubits with all N − 1 others and by
the geometric measure Q (|ψ〉). We shall stress the differences in
the entanglement evolution due to different qualitative properties
of the Hamiltonian. Entanglement evolution also qualitatively de-
pends on the entanglement in the initial state. As we shall see,
this dependence of the qualitative properties of the entanglement
evolution on the initial state is most obvious in the case of the
integrable nonsymmetric Hamiltonian H(0,kz, J ).

Figs. 1 and 2 illustrate the entanglement dynamics for isolated
systems using the ring with N = 6 qubits. Fig. 1 shows the long
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Fig. 3. Illustrates bipartite entanglement dynamics with Lindblad corresponding to the thermal environment for N = 6. E12 (gray), Ē12(T ) (black full) and E12(t,	T ) (dotted)
are shown. Figures (a), (b), (c) correspond to |max〉, (d), (e), (f) to |W 〉 and (g), (h), (k) to |sep〉 initial states. Figures (a), (d), (g) correspond to H(kx = 1.4,kz = 0, J = 1),
(b), (e), (h) to H(kx = 0,kz = 1.4, J = 1) and (c), (f), (k) to H(kx = 1.4,kz = 1.4, J = 1) systems.
term dynamics of only E12 and in Fig. 2 we have illustrated the
relation between global entanglement as expressed by Q (|ψ〉) (7)
and the total pair-wise squared concurrence C2

i, j given by (10). In
Fig. 1 we show also the time average of E12(t) defined as

Ē1,2(T ) = 1

T

T∫
0

E12(t)dt. (17)

Ē12(T ) gives expected value of E12 in a unit of time that is present
in the system during the time interval (0, T ). Time averaged en-
tanglement Ē12(T ) is displayed for N = 3,4,5,6. We shall use Ē12
also to compare E12 entanglement dynamics in rings of different
size N in the thermal and dephasing environments.

Let us make some remarks concerning the typical behavior of
the entanglement dynamics with different Hamiltonians and differ-
ent initial states, suggested by all our computations and illustrated
with the ring N = 6.

(a) QI symmetric Hamiltonian always generates simple periodic
entanglement dynamics. In the case of |max〉 initial state E12 en-
tanglement and E12,3...N entanglement are complementary. In the
case of |sep〉 initial states E12 ≈ 0 and E12,3...N regularly oscillates
between zero and unity. For |W 〉 initial state E12 and E13 have
qualitatively the same dynamics and this is the case with the QI
nonsymmetric Hamiltonian as well. It is also interesting to notice
that |max〉 initial state and symmetric QI Hamiltonian (Fig. 1(a))
lead to the same time averaged E12 for N = 4,5,6. In the non-
symmetric QI case time averaged E12 from |max〉 initial state is
similar for N = 3,4 and for 5,6 (Fig. 4(b)). In other cases the time
averaged E12 decreases as N is increased.

(b) Entanglement dynamics with the QNI Hamiltonian is that
of qualitatively complicated aperiodic oscillations for all three
types of the initial states. Global entanglement Q is clearly larger
than total pair-wise entanglement for the considered initial states
(Fig. 2).

(c) Consider now the details of the entanglement dynamics
with nonsymmetric QI Hamiltonian. Qualitatively, the entangle-
ment dynamics from |max〉 and |W 〉 is more similar to that with
symmetric QI, but from generic |sep〉 initial states it is more sim-
ilar to that with the QNI Hamiltonian. E12, E13 and the total pair-
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Fig. 4. Illustrates bipartite entanglement dynamics with Lindblad corresponding to the thermal environment. E12 for N = 6 (gray), Ē12 for N = 3 (dotted), for N = 4 (dashed)
for N = 5 (thin full) and N = 5 (thick full) are shown. Figures (a), (b), (c) correspond to |max〉, (d), (e), (f) to |W 〉 and (g), (h), (k) to |sep〉 initial states. Figures (a), (d), (g)
correspond to H(kx = 1.4,kz = 0, J = 1), (b), (e), (h) to H(kx = 0,kz = 1.4, J = 1) and (c), (f), (k) to H(kx = 1.4,kz = 1.4, J = 1) systems.
wise entanglement with |max〉 and |W 〉 initial states are on the
average smaller than with the QI symmetric Hamiltonian but larger
than with the QNI Hamiltonian. On the other hand E12,3...N and
Q are on the average larger than with QI symmetric and smaller
than with QNI Hamiltonian. In the case of generic |sep〉 initial state
E12, E13 and the total pair-wise entanglement are the largest for
nonsymmetric QI Hamiltonian and the smallest with symmetric QI
Hamiltonian with the nonintegrable case in the middle. E12,3...N

and Q are larger with the QNI Hamiltonian than with either of
the other two systems.

All these observations support the following general conclu-
sions. Entanglement dynamics with the QNI Hamiltonian is qual-
itatively more complicated than with symmetric QI Hamiltonian
irrespective of the initial state. Also, independently of the ini-
tial state if there is some initial entanglement it becomes more
distributed between all the qubits, but the local pair-wise entan-
glement is much smaller, with the QNI Hamiltonian than in the,
symmetric QI case. The entanglement in nonsymmetric QI system
shows qualitatively different dynamics for different initial states.
Separable initial conditions make the properties of the entangle-
ment dynamics with the nonsymmetric QI Hamiltonian similar
to the case of QNI system. On the other hand, globally entan-
gled initial state renders the entanglement dynamics with the QI
nonsymmetric system more similar to that of the symmetric QI
system.

4. Open systems

The study of entanglement dynamics in realistic systems must
take into the account the interactions, and entanglement, between
the system and its environment. The environmental influence usu-
ally leads to dissipation of the entanglement from the system, i.e.
to decoherence, but could also increase the entanglement between
subparts of the system if the environments acting on the different
parts are in some correlation.

We have used the QSD equation (16) with the Hamiltonian op-
erators corresponding to the three qualitatively different systems
(1) and the Lindblad operators corresponding to the local thermal
(3) or local dephasing (4) environments. In our case there are N
Lindblad operators, one of the form (3) or (4) for each qubit, so
m = N in Eq. (16). A single realization of the stochastic process
is used to calculate, for example, 〈σ j

i 〉 or 〈σ j
i σ k

i+1〉; j,k = x, y, z
and then averaging over many sample paths gives the average
values E〈σ j

i 〉 = Tr[ρσ
j

i ] and correlation functions E[〈σ j
i σ k

i+1〉] =
Tr[ρσ

j
i iσ k

i+1] which are needed for the calculation of the entangle-
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Fig. 5. Illustrates bipartite entanglement dynamics with Lindblad corresponding to the dephasing environment for N = 6. E12 (gray), Ē12(T ) (black full) are shown. Figures
(a), (b), (c) correspond to |max〉, (d), (e), (f) to |W 〉 and (g), (h), (k) to |sep〉 initial states. Figures (a), (d), (g) correspond to H(kx = 1.4,kz = 0, J = 1), (b), (e), (h) to
H(k = 0,k = 1.4, J = 1) and (c), (f), (k) to H(k = 1.4,k = 1.4, J = 1) systems.
x z x z
ment measures. Notice that the memory storage space is in general
2N times smaller than in the direct numerical solution for the den-
sity matrix master equation. The computational time depends on
the number of paths needed for the required accuracy of the aver-
ages and correlations. In order to infer clear definitive conclusions
about the qualitative differences of the entanglement dynamics in
our computations it was enough to use only about a couple of
hundred sample paths.

There is no efficient way to compute any of the proposed mea-
sures of multi-partite or global entanglement for system in mixed
states [4], so we have analyzed only the pair-wise entanglement
Eij(ρ(t)) for different pairs. Results of numerical computations us-
ing the QSD method are illustrated in Figs. 3 and 4 for the thermal
and in Fig. 5 for the dephasing environments. Only E12(t) is illus-
trated, since Eij for other pairs follow similar patterns. In Fig. 3
we have illustrated the long term dynamics of E12(t) for the ring
of N = 6 qubits. Together with E12(t) plotted are the time average
Ē12(t) and the short time average Ē12(t,	T ). The latter is defined
as the average over a short time interval 	T from time t up to
t + 	T , i.e.

Ē12(t;	T ) = 1

	T

t+	T∫
t

E12(t)dt. (18)

All our computations support the conclusion that the long term
dynamics of pair-wise entanglement is that of exponential decay,
while the dynamics over short intervals of time displays the same
qualitative properties as for the isolated systems. In fact Ē12(t)
quickly converges onto the curve of exponential decay:

lim
t→∞

Ē12(t)

A exp(−Bt) + C
= 1. (19)

The coefficient B seems to be dependent on the Hamiltonian, ini-
tial state and of course on the system-environment coupling.

In Fig. 4 we have illustrated the dependence of Ē12(t) on the
number of qubits N for different Hamiltonian and different initial
states. Again the exponential decay is just superposed on the type
of the dependence on N that is displayed by the isolated systems,
as was illustrated in Fig. 1.

Our results suggest the conclusion that the qualitative proper-
ties of the entanglement dynamics for open Markov systems with
thermal or dephasing Lindblad operators are determined by the
Hamiltonian and the initial state. The influence of the local envi-
ronment is qualitatively the same irrespective of the Hamiltonian
or the initial state.

5. Summary

We have studied dynamics of entanglement in open systems of
qubits whose evolution is described by a Lindblad master equation,
with the Lindblad operators of the form corresponding to local



N. Burić, B.L. Lindén / Physics Letters A 373 (2009) 1531–1539 1539
thermal or dephasing environments. As examples of qubits systems
we have chosen periodic chains of spins with Ising interaction
in variously oriented external fields. In the Hamiltonian limit the
qualitative properties of the dynamics of the three considered sys-
tems are quite different. One of them is quantum integrable with
an additional symmetry and with the integrable classical limit; the
other is quantum nonintegrable with the chaotic classical limit and
the third is considered quantum integrable but has the chaotic
classical limit. We have been interested in manifestations of quali-
tatively different dynamical properties of the Hamiltonian in the
entanglement dynamics of the systems influenced by the local
Markov environment.

In order to solve numerically the Lindblad master equation we
have used the quantum state diffusion method, which relies on a
stochastic Schrödinger equation for pure states, equivalent to the
Lindblad equation for mixtures, on averaging over many sample
paths. In the case of the isolated systems we have computed the
entanglement of formation for different pairs of qubits and also the
global multi-partite entanglement as measured by Meyer–Wallach
Q (ψ) measure. In the case of open systems only the pair-wise en-
tanglement dynamics was analyzed.

Results of the numerical computations can be summarized as
follows. Local Markov environments exert on all considered sys-
tems long-term effects of exponential dumping of the entangle-
ment in the similar way. The major factor that determines the
entanglement evolution are the qualitative properties of the iso-
lated systems dynamics. The later depend on the Hamiltonian, but
also, and specially for the nonsymmetric quantum integrable sys-
tem, on the initial state. In general entanglement of the quantum
nonintegrable system is quickly distributed over the chain and re-
mains more in the form of global multi-partite rather than local
pair-wise entanglement. On the other hand, dynamics of the sym-
metric quantum integrable system favours various forms of bipar-
tite entanglement between different qubits. The entanglement dy-
namics of the nonsymmetric quantum integrable system strongly
depends on the entanglement in the initial state. In the case of
globally entangled initial state, like the considered |W 〉 state, the
entanglement dynamics with such Hamiltonian is qualitatively and
quantitatively similar to that of the quantum integrable symmetric
system. On the other hand, the entanglement dynamics from the
separable initial states is like that of the quantum nonintegrable
system.

We have studied entanglement dynamics in different systems
with the same quite strong inter-qubit interaction, and the quali-
tative differences of the dynamics are introduced by different ori-
entation of the external field. The strong interaction lead to very
fast entanglement dynamics and the effects of the dissipation and
decoherence are seen only over time intervals that cover many
characteristic oscillations of the entanglement. This is quite dif-
ferent from the situation recently studied for example in [49,50].
There the inter-qubit interaction is weak and of the same order
as the environment-qubit interaction. In this case only few char-
acteristic oscillations of the entanglement occur before it reaches
a stationary value. On the other hand the systems and the prob-
lems analyzed in this work are similar to those reported in [23,
24] and [9]. In these papers only the isolated systems have been
studied and the dependence on the initial state was not empha-
sized. The conclusion about faster distribution of the entanglement
from |max〉 initial state with the quantum nonintegrable system
is the same as in our case. The qualitative differences of the en-
tanglement dynamics with the nonsymmetric quantum integrable
system (with chaotic classical limit) for different types of initial
states have not been reported before, and we believe deserve fur-
ther study. It would also be interesting to study the effects on the
entanglement dynamics of Lindblad operators that contain prod-
ucts of operators pertaining to different qubits for qualitatively
different Hamiltonian systems [51].
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