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Quantum state diffusion approach to open system dynamics is used to study decoherence and dynamics
of the pointer observable of an angular momentum system in interaction with a macroscopic nonlinear
and dissipative environment. It is shown that dispersion of the pointer observable in the mixed state
of the open system is clearly larger if the environment is classically chaotic then in the case of the
environment with regular dynamics.
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1. Introduction

Possibility of classical behavior of objects described by quantum
mechanics is the major contribution of the theory of decoherence
to the understanding of quantum mechanics [1–3]. Interaction, and
the consequent entanglement, between the considered quantum
system S and an another system with large number of degrees
of freedom, called environment and denoted E , implies that some
of the system’s S observables, called pointer variables, behave as
classical physical quantities. The only dynamically stable states of
S are such that the chosen observable, i.e. the pointer variable,
most of the time during the evolution possess sharp values with
negligible dispersion. This is considered as a necessary property
for the classical behavior of the pointer variable.

Standard models that have been used to demonstrate and study
the decoherence are based on environments with trivial dynam-
ics [1]. It is supposed that the environment has the large number
of degrees of freedom so that the recurrence times can be as-
sumed to be arbitrary long. Furthermore, some sort of dissipation
of information or coarse graining is performed so that the precise
quantum (micro-state) of the environment is not known. However,
nontrivial dynamical properties of the environment might have
crucial influence on the decoherence process and on the dynamical
stability of the pointer variable. For example, since the environ-
ment is assumed to behave essentially like a macroscopic system
it is justified to study the decoherence due to environments that
can display classically chaotic behavior. It is the purpose of this
work to explore the decoherence and the behavior of the pointer
variable in a system coupled to an environment that can display
dynamics with properties typical of classical nonlinear dissipative
systems, like the chaotic behavior.

The importance of the environment dynamics is appreciated
but is not well understood, which is the reason for relatively recent
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interest in the decoherence due to the environments with interest-
ing dynamics. Decoherence by environments that have nontrivial
quantum dynamics, for example by kicked tops [4], kicked rota-
tors [5,6], spin chains [7–9] or abstract models [10–12], has been
studied. Such studies lead to somewhat controversial and incom-
plete conclusions. Our work is in the same general spirit of these
studies, of exploring decoherence with dynamically interesting en-
vironments, but is essentially different because we shall use for the
environment a system which in the macroscopic limit has prop-
erties of chaotic systems in the well-defined sense of classical
dynamical systems. As is well known, the dynamics of a quan-
tum system with finite number of degrees of freedom is always
integrable, i.e. the states follow either periodic or quasi-periodic
orbits. Thus, the environment must itself behave approximately as
a classical system in order to approximately displays the dynam-
ical chaos. Complexity of the dynamics of the quantum systems
that are used in the quoted references to play the role of the en-
vironment, is identified with certain properties of their spectral
distributions or with the chaoticity of the corresponding classical
model. Neither of these is equivalent to the existence of chaotic
state evolution. These properties also do not imply chaoticity of the
approximate phase space trajectories, i.e. these properties do not
imply existence of the phase space localized wave packet whose
centroid approximately displays classically chaotic evolution for all
times. The correspondence of the evolution of the quantum wave
packets with the classical chaotic dynamics is valid only up to the
Ehrenfest time. On the contrary, the system that we shall use to
model the environment is an open quantum system that in the
macroscopic limit can display the dynamical chaos and the bifur-
cations typical of a nonlinear dissipative classical systems. We have
used the same model of the environment to study the influence of
such environments on the entanglement between two qubits [13].
The same environment was recently used also to model the pro-
cess of measurement performed on a single qubit [14]. In this
Letter we concentrate on the dynamical behavior of the pointer
observable of a quantum system of variable size coupled to such
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macroscopic environment with different dynamical properties. Our
study clearly shows the implications of different classical dynami-
cal properties of the macroscopic environment on the decoherence
and dynamics of the pointer observable. Furthermore it is demon-
strated that application of quantum trajectories approach to the
open system dynamics is crucial in obtaining the proper under-
standing of these differences.

The Letter is organized as follows. In Section 2 the model to
be studied is introduced, and we briefly recapitulate the quantum
state diffusion (QSD) [15] approach to the open quantum system
dynamics which is the main tool of our analyzes. In Section 3
we present the results of our numerical computations and our
main conclusions concerning the decoherence by regular or chaotic
macroscopic environment. In Section 4 a classical model of the
quantum system given by equations on the classical phase space
is analyzed. Section 5 presents a summary and discussion of our
results.

2. The system and the environment

We shall study the system that is composed of a quantum sub-
system and its macroscopic environment. Dynamics of the quan-
tum subsystem, when isolated from the environment, is described
by the following Hamiltonian

H = −2α J x + 2ε J z + c J 2
z , (1)

where J x , J y , J z satisfy SU(2) commutation relations, with h̄ = 1.
Thus, SU(2) is the dynamical group of the system (1). The SU(2)

symmetry also suggests a special set of initial states, that is the
SU(2) coherent states [16,17]. However, notice that the Hamilto-
nian is a nonlinear expression of the group generators, so that the
set of SU(2) coherent states is not invariant on the evolution of the
system (1). Consequently evolution of the averages 〈 J x,y,z〉 gener-
ated by (1) does not satisfy the equations of the classical mean
field approximation. The classical limit corresponds to large value
of the Casimir operator J 2. If the nonlinearity parameter c � J 2

the dynamics of (1) is well approximated by the mean-field equa-
tions in the SU(2) coherent states. We shall be interested only in
the situation when the parameter α = const. In this case the dy-
namics of the averages over an initial coherent state of 〈 J x,y,z〉
represents regular periodic oscillations.

Physically the Hamiltonian (1) can be realized as a two mode
Bose–Hubbard system, given by

H = ε1a†
1a1 + ε2a†

2a2 + α
(
a†

1a2 + a†
2a1

) + c
(
a†2

1 a2
1 + a†2

2 a2
2

)
, (2)

where ε = ε1 − ε2 and ai , a†
i , i = 1,2 are bosonic operators [17].

The correspondence between (1) and (2) is established by express-
ing the angular momentum operators J x , J y , J z in terms of ai , a†

i
as follows

J x = 1

2

(
a†

1a2 + a†
2a1

)
,

J y = i

2

(
a†

1a2 − a†
2a1

)
,

J z = 1

2

(
a†

2a2 − a†
1a1

)
. (3)

The total particle number N = n1 + n2 is related to the J 2 =
N(N/2 + 1)/2 and is conserved. Large values of J correspond to
large total number of quanta.

We would like to couple the quantum system (1) to an environ-
ment that can behave as a classical dissipative nonlinear system.
As a formal model of such an environment we shall use an in-
verted oscillator with quartic nonlinearity and dissipation. Further-
more we shall suppose that the environment satisfies the Markov
assumption. The system representing the environment is charac-
terized by its Hamiltonian He and the Lindblad L operators given
by [18]

He = P 2/2 + β2 Q 4/4 − Q 2/2

+ g cos(t)Q /β + γ (Q P + P Q )/2, (4)

L = √
2γ a = √

2γ (Q − i P )/
√

2. (5)

In the dynamical system theory chaoticity of dynamics is de-
fined in terms of orbits of an individual system, i.e. by orbits
through points in the system’s phase space. The description of the
dynamics in terms of the evolution of an ensemble of systems i.e.
in terms of probability densities on the phase space is of course
equivalent but the chaoticity of an individual system orbit is made
less obvious in the averaged description by the probability densi-
ties. Our goal is to explore the influence of an environment whose
dynamical behavior is that of a typical classically chaotic system.
In order to capture this chaotic dynamics it is preferable to use the
description of the quantum dynamics in terms of evolution of indi-
vidual systems, and not that of ensembles. Complete description of
a state of an open quantum system is given by its density matrix ρ ,
and the evolution is commonly described by the corresponding
master equation for ρ(t) [19]. The evolution equation is linear and
the description corresponds to an ensemble of quantum systems,
analogously to the Liouvile or Focker–Planck evolution equations
for the probability densities of classical ensembles. On the other
hand, the mixed state is equivalent to a random pure state, and
the evolution of the pure state vector of a single open quantum
system can often be described by the Schroedinger equation with
additional terms due to dissipation and stochastic fluctuations [20,
21,15,19]. Stochastic Schroedinger equations (SSE) are obtained by
unraveling the master equation for ρ(t) and they are all consistent
with the requirement that the solutions of the master equation and
of the SSE satisfy

ρ(t) = E
[∣∣ψ(t)

〉〈
ψ(t)

∣∣], (6)

where E[|ψ(t)〉〈ψ(t)|] is the expectation with respect to the dis-
tribution of the random vector |ψ(t)〉.

In the case of continuous Markov evolution the unique SSE for
the stochastic state vector |ψ(t)〉 which has the same symmetry
properties as the Markov master equation in the Lindblad form for
ρ(t) [22,23,19], represent a complex diffusion process on the open
system’s Hilbert space and is given by the theory of quantum state
diffusion (QSD) [15]. The QSD evolution equation reads

|dψ〉 = −iH|ψ〉dt

+
[∑

k

2
〈
L†

k

〉
Lk − L†

k Lk − 〈
L†

k

〉〈Lk〉
]∣∣ψ(t)

〉
dt

+
∑

k

(
Lk − 〈Lk〉

)∣∣ψ(t)
〉
dWk (7)

where 〈〉 denotes the quantum expectation in the state |ψ(t)〉 and
dWk are independent increments of complex Wiener c-number
processes Wk(t) satisfying

E[dWk] = E[dWk dWk′ ] = 0, E[dWk dW̄ k′ ] = δk,k′ dt,

k = 1,2, . . . ,m. (8)

Here E[·] denotes the expectation with respect to the probability
distribution given by the multi-dimensional process W , and W̄k is
the complex conjugate of Wk .

There are two main approaches to the unraveling of the Lind-
blad master equation: the method of quantum state diffusion [15]
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and the relative state method [21,19], with specific advantages as-
sociated with each of the methods. The relative state method is
usually used do describe the situations when the measurement is
the dominant interaction with the environment. The method offers
particular flexibility in that the master equation can be unraveled
into different stochastic equations conditioned on the results of
measurement. On the other hand the correspondence between the
QSD equations and the Linblad master equations is unique, and is
not related to a particular measurement scheme, or the form of
the Markov environment.

QSD approach has been used often to study decoherence and
the classical limit [18,24–27,14,28–30,13,31]. In principle there is
an infinity of possible unravellings of the master equation con-
sistent with (6), and some, like quantum jumps [21,19] or real
diffusion [19] models are commonly used. However, the classical
limit of different unravellings of the Lindblad master equation has
been shown to result in the same dynamical picture [32]. Thus, for
our purpose of representing the effects of environment in the clas-
sical limit, all unravellings should produce approximately the same
single system dynamics as the unraveling given by the QSD which
we shall use.

The dynamics of the environment (4) and (5) crucially depends
on the parameters β and g and to the lesser extent on γ . The pa-
rameter β characterizes the classicality of the system in the sense
that the classical i.e. macroscopic limit is realized by rescaling
β → 0, which leads to the large ratio of the phase space covered
by the system’s motion and the area of the Planks cell. Also ap-
propriate values of γ imply good localization in the sense that the
dispersion of the dynamical variables is negligible with respect to
their variations during the motion. If β is sufficiently small and for
appropriate γ the QSD equation (7) with (4) and (5) reproduces
the qualitative and quantitative properties of the classical Duffing
oscillator, described by

d2q

dt2
+ 2γ

dq

dt
+ q3 − q = g cos(t). (9)

Depending on the parameter g the classical system (9) can have
simple regular attractors like fixed points or periodic orbits, or
a complicated chaotic attractor [33]. The open quantum system,
given by (4) and (5), which is considered here as the environment
of the system (1), for sufficiently small β , reproduces the classi-
cal dynamics of the Duffing oscillator. For example, for g = 0.3,
γ = 0.125 and for small β , say β = 0.01 the averages 〈Q (t)〉,
〈P (t)〉 of the open system (4) and (5) reproduce the chaotic tra-
jectories of the classical Duffing oscillator [18]. This represents our
model of the nonlinear classically chaotic environment.

The coupling between the quantum system (1) and its environ-
ment (4) and (5) is given by

Hint = μ J z Q . (10)

The environment is coupled to J z so it is expected that J z has
classical properties, i.e. the dispersion 	ψ(t) J z = 〈ψ(t)| J 2

z |ψ(t)〉 −
〈ψ(t)| J z|ψ(t)〉2 should quickly become and remain small. We shall
also briefly discuss other types of coupling.

In summary, we have a model that consists of a quantum sys-
tem (1) with the nonlinear Hamiltonian and of variable size (pa-
rameter J ) which interacts with the environment, given by (4)
and (5), that can behave as a classical system (for β small) and
in such regime can display classically regular or chaotic dynamics
(parameter g).

3. Numerical results

In this section we present results of numerical computations
that are aimed at getting an understanding of the role of various
parameters that influence behavior of the dispersions
	ψ(t) A = 〈
ψ(t)

∣∣A2
∣∣ψ(t)

〉 − 〈
ψ(t)

∣∣A
∣∣ψ(t)

〉2
(11)

and

	ρ(t) A = Tr
[
ρ A2] − Tr[ρ A]2 (12)

of an observable A in the random pure state ψ(t) (11) or the
mixed state ρ(t) = E(|ψ〉〈ψ |) (12). The total system is an open
system and thus its state is represented by the corresponding den-
sity matrix or by an ensemble of pure states, i.e. by random pure
states. The dispersion (11) represents purely quantum part of the
total dispersion in the mixed state ρ = E(|ψ〉〈ψ |) [19,34,35,31].
The pure state dispersion measures the distance of the random
pure state |ψ(t)〉 from an eigenstate of the operator A, and its en-
semble average represent the average dispersion in pure states that
appear in the resolution of ρ . Thus, it is a measure of average in-
trinsic quantum variance. Total dispersion (12) in the mixed state
ρ(t) is different from the ensemble average of the pure state dis-
persions (11). The total dispersion 	ρ(t) A contains an additional
term which represents the dispersion of the c-number 〈ψ |A|ψ〉
and represent statistical fluctuation of this classical quantity. We
shall use both types of dispersions 	ψ(t) and 	ρ(t) to study the
appearance of classical behavior, and compare the information that
can be obtained from one or the other.

All results that shall be presented were computed with rather
small value of β since we wanted the environment to behave as a
macroscopic system, and its dynamics to be qualitatively sensitive
to the values of the bifurcation parameter g . Our main interest is
in the dependence of the dispersion (11) on the values of g that
correspond to regular behavior, like stationary or periodic states,
or to the chaotic dynamics. On the way we shall observe also the
dependence of (11) on the influence of the size of the quantum
subsystem, i.e. the size of J , and on the type of the subsystem
environment coupling. All numerical results that we use here to il-
lustrate the effects of decoherence were obtained with initial states
in the form of SU(2) coherent states

|θ,ψ〉 = 1√
N!

(
cos(θ/2)a†

1 + sin(θ/2)exp(−iφ)a†
2

)N |0,0〉 (13)

with different J , but other initial states lead to qualitatively the
same conclusions. All our computations were performed with the
same values of ω = 1, α = 1, ε = 0, c = 0.25, γ = 0.125, and vari-
ous time series are always presented in terms of the dimensionless
time t ≡ ωt .

3.1. Main results

Fig. 1 illustrates the effects of decoherence and the influence
of different coupling strength on 〈 J z〉 and 	ψ J z when the envi-
ronment exhibits the regular motion in the form of convergence
to the stationary state. The values of the coupling parameter are
μ = 0; 0.1; 0.5 and J = 6. The conclusion is expected and obvi-
ous: stronger interaction with the environment imply faster con-
vergence of J z to one of its eigenstates.

In Figs. 2(a)–(f) illustrated are 〈 J z〉 and 	ψ J z for different dy-
namical behavior of the environment, characterized by g = 0.001
(fixed point attractor) g = 0.15 (limit cycle attractor) and g = 0.3
(chaotic attractor), for three values of μ and for J = 6. It is clear
that the regular dynamics of the environment, i.e. the station-
ary state and the periodic oscillations, imply similar behavior of
〈 J z〉 and 	ψ J z . In both situations |ψ〉 approaches an eigenstate
of J z and remains near the eigenstate. On the other hand, chaotic
dynamics of the environment leads to faster approach to an eigen-
state, but then |ψ〉 moves fast through the states with large 	ψ J z .
This cycle is irregularly repeated forever. 	ψ J z does not remain
near 	ψ J z = 0, like it does with the regular environment. We shall
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Fig. 1. Illustrates dynamics of the pointer observable 〈 J z(t)〉 (a) and its dispersion 	|ψ(t)〉 J z ≡ 	 J z (b) for the regular environment g = 0.001 and μ = 0 (gray dotted);
μ = 0.1 (light gray full); and μ = 0.5 (black full). Other parameters are J = 6, β = 0.01.
see that such behavior of 〈 J z〉 is qualitatively reproduced by a clas-
sical model of the quantum system. Thus, although 	ψ J z is not
small all the time, like it is in the case of the regular environ-
ments, the behavior of 〈 J z〉 can be considered as classical as far as
its dispersion 	ψ J z is considered.

In Fig. 3 we compare the dynamics of 〈 J z〉 with the dynam-
ics of environmental variable 〈Q 〉. Periods during which 	ψ J z is
large correspond to large variations of 〈Q 〉 that occur during the
chaotic motion of the environment. There are no such large vari-
ations when the dynamics of the environment is regular, either
stationary or oscillatory, and thus |ψ〉 remains close to an eigen-
state of J z .

Fig. 4 illustrate the dynamics of 〈 J y〉 and 	ψ J y for the coupling
μ = 0.5 and for different types of the environment. As expected it
is obvious that the variable 〈 J y〉 (and similarly 〈 J x〉, not shown)
has large dispersions all the time and cannot be considered as
classical, with no important qualitative dependence on the envi-
ronment.

Fig. 5 illustrates dependence of decoherence and the dynam-
ics of 	ψ J z on the size of J . Larger J implies faster decoherence,
i.e. faster approach of 	ψ J z to zero, but also larger variations of
	ψ J z . Large variations of 	ψ J z away from zero due to the chaotic
environment occur for any J . For larger J , such a large variation
is followed by fast decoherence 	ψ J z → 0, new large variation
and so on. Permanently occurring large variations of 	ψ J z do
not happen if the dynamics of the environment is regular for any
value of J . For any J , decoherence from a large value of 	ψ J z to
	ψ J z ≈ 0 is slower with regular environmental dynamics, and for
smaller J , but once the state has approached an eigenstate of J z it
remains there forever.

All the results presented so far are concerned with the behavior
of 〈 J z〉 and 	ψ J z for a single representative of the ensemble that
form the evolving mixed state of the system in the QSD unravel-
ing. In order to compute the total dispersion (12) in this mixed
state 	ρ J z we need first to compute ρ(t) = E(|ψ(t)〉〈ψ(t)|) and
then the required averages of J z and J 2

z , which is different from
the ensemble average E(	ψ J z). Tr[ρ J z] and the total dispersion
	ρ J z are illustrated in Fig. 6 and compared with the correspond-
ing quantities for the typical random state |ψ(t)〉. Again, the total
dispersion 	ρ J z has similar values for the environments with the
two types of regular dynamics but is quite different and signif-
icantly larger if the environment is classically chaotic. However,
here the dynamical explanation for the large values of the total
dispersion in the case of chaotic environment is hidden by the
averaging. Large values of total dispersion would indicate the non-
classical behavior of J z , but the picture provided by the unraveling
of ρ(t) by the stochastic states |ψ(t)〉 clearly shows the dynamical
origin of the large dispersions. Let us stress again that in our situ-
ation of the macroscopic limit, corresponding to small β , different
unraveling of the master equation, for example by the quantum
jumps approach, would provide essentially the same picture as
the QSD approach. Data presented in Fig. 6 were computed with
only 200 sample paths, and more sample paths do not qualitatively
change the conclusions.

Clear qualitative difference between the effect of the regular vs.
chaotic environments can be further illustrated by the time average

	ρ(t) J z = 1

t

t∫
0

	ρ(s) ds

of the total dispersions presented in Fig. 7.

3.2. Other types of coupling

Type of coupling with the environment determines the observ-
able with small averaged dispersion, and the basis of stable states
as opposed to the states that are quickly destroyed. In the previous
it was the observable J z . If J x (or J y) appears in (10) instead of J z

than 〈 J x〉 (or 〈 J y〉) behaves as approximately classical, and similar
properties as those that have been illustrated could be observed. If
only one of the operators J x,y,z appears in (10) only that observ-
able has small averaged dispersion and the other two have large
dispersions all the time. If all three angular variables are coupled
to the same environment, in the form of one Duffing oscillator, i.e.
Hint = ( J x + J y + J z)Q , all three angular observables have large
dispersions all the time, and none of them can be considered as
classical. In this case the observable with small dispersion is given
by the sum A = ( J x + J y + J z). It would be interesting to study
the case when the three angular observables are coupled to three
independent Duffing oscillators when one should expect decoher-
ence in all three observables. This system with three independent
environments in the form of three Duffing oscillators (4) and (5),
which requires considerable numerical resources, will be investi-
gated in the future.

4. Classical model

It is interesting to compare the dynamics of the open quantum
system (1) in the environment given by (4) and (5) with dynamics
of the corresponding classical model. One expects that the dynam-
ics of the quantum variable that behaves classically in the sense of
small dispersion should be at least qualitatively well approximated
by the corresponding variable of the classical model.
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Fig. 2. Illustrates the dependence of 〈 J z(t)〉 (a, c, e) and 	|ψ(t)〉 J z ≡ 	 J z (b, d, f) on the coupling strength (a) and (b) μ = 0.1; (c) and (d) μ = 0.5; (e) and (f) μ = 1 and
on the type of the environment dynamics: g = 0.001 (full black) stationary state attractor; g = 0.15 (full light gray) limit cycle attractor and g = 0.3 (dotted gray) chaotic
attractor. Other parameters are J = 6, β = 0.01.
A classical model of the quantum system (1) with the envi-
ronment (4) and (5) can be obtained by applying the mean field
or Ehrenfest approximation on the QSD equations for the averages
of the dynamical variables: 〈 J x〉, 〈 J y〉, 〈 J z〉, 〈Q 〉, 〈P 〉. For a gen-
eral variable 〈A〉 the dynamical equation corresponding to the QSD
evolution equation (7) is of the form

d〈A〉 = i
〈[H, A]〉dt − 1

2

〈
L†[L, A] + [

A, L†]L
〉
dt

+ σ
(

A†, L
)

dW + σ(L, A)dW , (14)

where σ(A, B) = 〈A† B〉 − 〈A〉〈A〉 and L is the (sum of) Lindblad
operator, in our case given by (5).
The approximate equations for 〈 J x〉 ≡ jx , 〈 J y〉 ≡ j y , 〈 J z〉 ≡ jz

are obtained by replacing averages of operator products by prod-
ucts of averaged operators, and are given by

djx

dt
= −2ε j y − 2cjz j y − μ j y〈Q 〉,

dj y

dt
= 2α jz + 2ε jx + 2cjx jz + μ jx〈Q 〉,

djz

dt
= −2α j y. (15)

Because the Lindblad operator commutes with the angular de-
grees of freedom the drift and the fluctuation parts in Eq. (14) in
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Fig. 3. Comparison of the evolution of 〈 J z(t)〉 (black full) and 	|ψ(t)〉 J z ≡ 	 J z (gray dotted) (a, c, e) with that of 〈Q (t)〉 (black full) and 	|ψ(t)〉 Q ≡ 	Q (gray dotted) (b, d, f)
for the three types of the environment dynamics: (a) and (b) g = 0.3 (chaotic); (c) and (d) g = 0.15 (limit cycle) and (e) and (f) g = 0.001 (stationary state). Other parameters
are J = 6, β = 0.01, μ = 0.5.
the case of 〈 J x〉, 〈 J y〉, 〈 J z〉 are zero. The only stochastic terms are
generated by 〈Q 〉. It is plausible to further approximate the QSD
equations for the variables 〈Q 〉 and 〈P 〉 by the equations of the
classical Duffing oscillator, and thus replace the stochastic differ-
ential equations by ordinary ones. This approximation is justified
in the classical limit of very small β which is the case studied
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Fig. 4. Illustrates the dependence of 〈 J y(t)〉 (black) and 	|ψ(t)〉 J y ≡ 	 J y (light gray) on the type of the environment dynamics: g = 0.001 (a); g = 0.15 (b) and g = 0.3 (c).
Other parameters are J = 6, β = 0.01.

Fig. 5. Illustrates the dependence of 	|ψ(t)〉 J z ≡ 	 J z on the size of the angular momentum: (a) J = 4; (b) J = 5; (c) J = 6 and (d) J = 7 for the three types of the
environment dynamics: g = 0.001 (full black); g = 0.15 (full light gray) and g = 0.3 (dotted gray). Other parameters are μ = 0.5, β = 0.01.
here. The Duffing equations with added interaction with 〈 J z〉 ≡ jz

read

dq/dt = p,

dp/dt = −2γ p + β4q3 + q − g

β
cos(t) − μ jz. (16)

Notice that there is no randomness is the evolution of the classical
model, given by ordinary differential equations (15) and (16), while
the quantum QSD dynamical equation of a single open quantum
system explicitly contain stochastic terms.

Eqs. (15) and (16) represent the classical model that we com-
pared with the open quantum system (1) with the environment
(4) and (5). The main conclusion of such comparison is that the
quantum dynamics of the decohereing variable 〈 J z〉 is qualitatively
well approximated by the dynamics of the classical model. Typi-
cal convergence to a fixed values of 〈 J z〉 in the cases of regular
environmental dynamics is well approximated by the dynamics of
the classical model, as is illustrated in Figs. 8(a), (b). Chaotic dy-
namics of the environment induces large end fast variations of
the quantum 〈 J z〉, and this behavior occurs also in the classical
model (please see Fig. 8(c)). On the other hand, dynamics of jx , j y

generated by the classical model is completely different from the
corresponding quantum dynamics of 〈 J x〉, 〈 J y〉.

5. Summary and discussion

Decoherence and dynamics of the pointer observable under the
influence of dynamically different macroscopic environments were
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Fig. 6. Illustrated are: mixed state average (a) Tr[ρ(t) J z]; (b) total dispersion 	|ρ(t) J z ; (c) pure state average 〈 J z〉 and (d) the pure state dispersion 	|ψ(t)〉 J z for g = 0.001
(full black) g = 0.15 (full light gray) g = 0.3 (dotted gray). The parameter values are J = 6; β = 0.025; μ = 0.5.
Fig. 7. Illustrated are time averages of the total dispersion Tr[ρ(t) J z] for g = 0.001
(full black) g = 0.15 (full light gray) g = 0.3 (dotted gray). The parameter values are
J = 6; β = 0.025; μ = 0.5.

analyzed. The environment is modeled by a dissipative nonlin-
ear quantum oscillator in a macroscopic regime and the quantum
system in interaction with this environment was represented by
angular momentum variables J x,y,z with nonlinear Hamiltonian
which preserved the size of the angular momentum J 2

x + J 2
y + J 2

z .
The interaction between the system and the environment was
taken to be linear in J z and the coordinate Q of the macroscopic
environment: Hint = μ J z Q . Our main interest was in the depen-
dence of dynamics of the dispersion of the pointer observable J z

on the classically qualitatively different types of the environmental
dynamics.
In order to be able to represent different types of dynamics and
in particular the classically chaotic motion of the macroscopic en-
vironment we employed the quantum state diffusion description
of an open quantum system dynamics. It is well known that in
this description the evolution of 〈ψ(t)|Q |ψ(t)〉 and 〈ψ(t)|P |ψ(t)〉
during the stochastic process |ψ(t)〉 in the macroscopic limit re-
sembles well the chaotic attractor of the classical Duffing oscillator
for the appropriate parameter values. In fact, we used QSD ap-
proach to open system dynamics in several ways: (a) to represent
classically chaotic or regular dynamics of the quantum but macro-
scopic nonlinear dissipative environment; (b) as the numerical tool
to efficiently compute the dispersion in the system’s mixed state
ρ(t); and (c) to gain further insight by analyzes of the dynamics
of the dispersion in the random pure states |ψ(t)〉 that constitute
the QSD unraveling of ρ(t) = E[|ψ(t)〉〈ψ(t)|].

Our numerical results clearly show that the total dispersion in
the mixed state 	ρ(t) J z = Tr[ρ(t) J 2

z ]−Tr[ρ(t) J z]2 approaches zero
and remains very small all the time when the attractor of the envi-
ronmental dynamics is regular, i.e. the stationary state or the limit
cycle. On the other hand, 	ρ(t) J z is significantly larger then zero
when the environment has classically chaotic dynamics. Proper
understanding of this result was made possible by studying the
dynamics of the purely quantum dispersion in the random state
	|ψ(t)〉 J z = 〈ψ(t)| J 2

z |ψ(t)〉 − 〈ψ(t)| J z|ψ(t)〉2. In the cases of regu-
lar environmental dynamics this quantity quickly approaches and
stays near zero for all the time. On the other hand, when the en-
vironment is classically chaotic 	|ψ(t)〉 J z quickly approaches zero
but than experiences large variations away from zero, followed by
quick convergence to zero and novel large variations. Large vari-
ations of 	|ψ(t)〉 J z occur simultaneously with large chaotic varia-
tions of the environmental variable 〈Q (t)〉. Averaging over the en-
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Fig. 8. Illustrates the evolution of the classical model. Presented are: jz ≡ 〈 J z〉 for (a) g = 0.001; (b) g = 0.15 and (c) g = 0.3. The parameter values are J = 6; β = 0.01;
μ = 0.5.
semble of random pure states |ψ(t)〉 to obtain the mixed state ρ(t)
produces constantly large values of the total dispersion 	ρ(t) J z ,
and masks the dynamical origin of large dispersion values. It is im-
portant to stress that in the macroscopic limit treated here other
types of unraveling of the master equation for ρ(t) would produce
similar quantum trajectories and similar dynamics of the quantum
dispersion 	|ψ(t)〉 J z . In this sense the dynamical explanation of the
large dispersion of the pointer variable when the environment is
classically chaotic is independent of the particular unraveling (in
our case QSD approach) and thus represent a true property of the
quantum system.

Dependence of 〈 J z〉 and its dispersion on the other parame-
ters characterizing the system or the environment is as one would
expect. Larger J implies faster approach to zero of the disper-
sion, but also larger variations of 〈 J z〉 in the case of the chaotic
environment. We have not studied the role of the parameter c
characterizing the nonlinearity of the system. In fact, the qualita-
tive properties of the system’s dynamics in the macroscopic limit,
characterized by large values of J , can be altered by introducing a
periodic dependence on time of the parameter α, which was set to
constant value in our computations. In this way one would be able
to study the interplay of the chaotic environment with complicated
system’s dynamics. The role of the magnitude of the coupling pa-
rameter is qualitatively clear. As far as the environment is consid-
ered the role of the bifurcation parameter g was the main theme
of our work. The classicality parameter β was in our work always
fixed to small values so that the environment behaved as a macro-
scopic system. In the case of β = 1, corresponding to the purely
quantum environment, no qualitative difference was observed be-
tween the behavior of the pointer observable and other observ-
ables that do not commute with the interaction Hamiltonian.

In summary, our work shows that decoherence is faster with
the chaotic macroscopic environment but such conclusion can be
obtained and properly understood only if the macroscopic limit of
a single quantum system instead of an ensemble of systems is an-
alyzed.
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