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Constrained quantum dynamics is used to propose a nonlinear dynamical equation for pure states of a
generalized coarse-grained system. The relevant constraint is given either by the generalized purity or by
the generalized invariant fluctuation, and the coarse-grained pure states correspond to the generalized
coherent, i.e. generalized nonentangled states. Open system model of the coarse-graining is discussed. It
is shown that in this model and in the weak coupling limit the constrained dynamical equations coincide
with an equation for pointer states, based on Hilbert–Schmidt distance, that was previously suggested in
the context of the decoherence theory.
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1. Introduction

Coarse-grained description of a dynamical system is based on
a separation of observables into two classes: the class of distin-
guished, i.e. important observables and the class of observables
that are considered inaccessible. A new system, whose state can
be maximally determined by measuring the preferred observables,
is then defined. Evolution of the coarse-grained system should be
completely described in terms of the distinguished observables
only.

From an operational point of view, the choice of distinguished
observables is dictated in practice by what can be measured on
the given system. For example: (a) If all observables of a quan-
tum system with the Hilbert space with N complex dimensions
H N are considered experimentally accessible then every Hermitian
operator represents an observable of the system, i.e. all observables
are distinguished, and the pure states of the system are by defini-
tion rays in the Hilbert space H N ; (b) In the case of two spatially
separated qubits H4 = H2

1 ⊗ H2
2 one could consider experimentally

accessible only the local observables σ 1
i ⊗ 1 and 1 ⊗ σ 2

i . In this
case the coarse-grained states are the product states; (c) In a col-
lection of n spins H2n = H2 ⊗ H2 ⊗ · · · ⊗ H2 one might be able to
observe only the macroscopic magnetizations mi = ∑

σi/n, which
are then the coarse-grained distinguished observables.

The set of distinguished observables as a subalgebra of the
algebra U (N) is important in the definitions of notions such as
quantum degrees of freedom and quantum integrability [1], gen-
eralized coherent states [2,3] and generalized entanglement [4–7],
and provides a framework to study the relations between these no-
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tions [8]. In particular we shall be interested in the coarse-grained
states representing the generalized nonentangled (g-nonentangled)
states as introduced and studied in [4–6]. Our goal is to derive an
evolution equation for which the set of g-nonentangled states is
invariant for arbitrary Hamiltonian, and discuss its physical inter-
pretation.

In the next section we recapitulate the theory of generalized
entanglement and generalized purity. In Section 3 we treat a quan-
tum dynamical system on H N as a classical Hamiltonian system
on R2N , which enables us to discuss constrained quantum dy-
namics. This is used to derive an evolution equation of the states
which preserves the maximal generalized purity, that is of the g-
nonentangled states. This evolution equation is nonlinear and can
generate, depending on the Hamiltonian, chaotic dynamics of the
coarse-grained system. Open quantum system model of the evolu-
tion of the distinguished states is discussed in Section 4. In this
section we show that our constrained evolution equation coincides
in the weak coupling limit with the approximate evolution equa-
tion of the robust states derived in [9] by different means and in
the context of decoherence theory.

2. Generalized entanglement and generalized purity

A selected set of distinguished observables is used to define the
generalized notions of nonentangled and entangled states [4–6].
The coarse-graining by the distinguished observables, understood
in the traditional probabilistic sense as replacing probabilities by
conditional probabilities is crucial in this definition.

Consider a subset g ∈ u(N) of distinguished observables. A state
ρg is called g-reduced state of the state ρ if Tr[ρLl] = Tr[ρg Ll] for
any Ll ∈ g . The reduced state ρg is the projection of the state ρ on
the subspace determined by distinguished observables. Identifying
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the quantum states with probabilities the standard definition of
the conditional probability is recognized. Pure state ρ = |ψ〉〈ψ | is
generalized nonentangled if the corresponding reduced state ρg

is pure ρ2
g = ρg . Otherwise the pure state |ψ〉 is g-entangled. In

the case that the Hilbert space has the bipartite tensor product
structure and each distinguished observable act nontrivially only in
one of the components, the previous definition of g-entanglement
reduces to the standard definition of the bipartite entanglement
for pure states.

In a large class of situations of physical interest the set of dis-
tinguished observables forms a Lie algebra. In this case a measure
of the generalized entanglement of the pure state |ψ〉 is provided
by the generalized purity, which is the purity of the reduced state
ρg , and is given by:

P g(ψ) =
∑

l

〈ψ |Ll|ψ〉2, Ll ∈ g (1)

where Ll form a bases of the Lie algebra g . The state |ψ〉 is gener-
alized nonentangled if P g(ψ) is maximal. Pure states with P g(ψ)

less then maximal represent g-entangled states, i.e. the states in
which the coarse grained system g is entangled with the envi-
ronment, i.e. with the operators not in g . Obviously, whether a
pure state |ψ〉 ∈ H N is generalized entangled or not depends on
the choice of the distinguished observables. Once the distinguished
observables are chosen, the question if the future orbit of a g-
nonentangled |ψ〉 will remain in the set of g-nonentangled states
depends on the evolution equation satisfied by |ψ〉.

An equivalent measures of g-entanglement is given by the total
dispersion of the algebra of distinguished observables

Δg(ψ) =
∑

l

〈
L2

l

〉 − 〈Ll〉2 =
∑

l

(�Ll)
2. (2)

Δg(ψ) is minimal iff P g(ψ) is maximal. Expressions for the mini-
mal value of Δg(ψ) and the maximal value of P g(ψ) in terms of
the simple roots of g are known [10,7] and read

Δq(ψ) �
∑

l

kl〈αl,αl〉 ≡ min,

Pq(ψ) � 〈C2〉 − min ≡ max (3)

where the highest weight vector λ = ∑
l klαl in terms of simple

roots αl and C is the quadratic Casimir operator.
Generalized coherent states have been defined for an arbitrary

semi-simple Lie algebra [3]. If the algebra of distinguished observ-
ables g is semi-simple the minimum of Δq(ψ) and the maximum
of Pq(ψ) is achieved on the corresponding generalized coherent
states [11]. Thus, in this case the class of g-nonentangled and g-
coherent states coincide.

Recently, an algebraic geometric characterization of generalized
SU(N) coherent states for arbitrary N as algebraic varieties associ-
ated with generalized Veronesse embeddings was reported in [12].
These results could be used to provide an explicit parametrization
of the manifold of SU(N)-coherent states.

3. Evolution equation of the g-nonentangled pure states

In general, reduction of the pure state |ψ〉 results in a mixed
state ρg and the unitary Schroedinger evolution of |ψ〉 upon re-
duction becomes nonunitary, resulting in different forms (under
different approximations) of master equations for ρg(t). However,
if the g-nonentangled pure state |ψ〉 evolves in the subset of g-
nonentangled states the reduced state always remains pure. In
order for this to occur in general the Hamiltonian linear evolu-
tion of |ψ(t)〉 is not enough and a nonlinear constrain has to be
added to ensure the preservation of the g-purity P g(ψ(t)). In or-
der to formulate such constrained evolution we shall use geometric
Hamiltonian formulation of the quantum evolution.

It is well known (please see [13] or [14] and references therein)
that the evolution of a quantum pure state in H N as given by the
Schroedinger equation can be equivalently described by a Hamilto-
nian dynamical system on R2N with the evolution equations in the
Hamiltonian form:

ẋi = ωi j∇ j H, (4)

where xi = qi = (c∗
i + ci)/

√
2, i = 1,2, . . . , N; xi = pi = √−1(c∗

i −
ci)/

√
2, i = N + 1,2, . . . ,2N is the vector of coordinates qi and

momenta pi , and ci are complex expansion coefficients of the pure
state |ψ〉 in some basis. The Hamilton’s function H(x) is given by
the quantum expectation of the Hamiltonian H in the state |ψ〉:
H = 〈ψ |H|ψ〉, and the inverse of the symplectic form ωi j is given
by the imaginary part of the scalar product in H N . In the canonical
coordinates xi the symplectic form ωi j assumes the standard form
(

0 1
−1 0

)
, (5)

where 0 and 1 are N-dimensional zero and unit matrices.
We shall use the Hamiltonian geometric formulation of a quan-

tum dynamical system in order to derive an equation for the
quantum evolution constrained on a submanifold of R2N that cor-
responds to pure coarse-grained states.

Consider first the example of a pair of qubits. In this case the
subspace of product states |ψ1〉 ⊗ |ψ2〉 is characterized by the fol-
lowing condition: A vector |ψ〉 represented in the computational
basis by the expansion coefficients c1, c2, c3, c4 is separable iff
c1c4 = c2c3. In an other basis the separability condition assumes
different form. This condition characterizes the submanifold of R2N

of points corresponding to the product states. The characterization
of product, i.e. nonentangled, states is also given by the condition
of maximality of P g(ψ) where g is the algebra of local operators
generated by σ 1

x,y,z ⊗ 1, 1 ⊗ σ 2
x,y,z . In terms of the canonical coor-

dinates (q, p) introduced just after Eq. (4) we obtained the purity
function P g(q, p). In fact local purities 〈σ 1,2

x 〉2 + 〈σ 1,2
y 〉2 + 〈σ 1,2

z 〉2

as functions of the canonical coordinates are equal and are repre-
sented by half of the total purity function. It can be demonstrated
that the function P g(p,q) is maximized precisely when the sepa-
rability constraint c1c4 = c2c3 is satisfied.

Hamiltonian equations with the algebraic constraint c1c4 = c2c3
have been studied for the first time in [14] and in [15]. The formal-
ism of quantum constrained dynamics developed in [14] is based
on Dirac’s approach to classical constrained Hamiltonian systems
and requires the constraint to be given explicitly in terms of an
even number of independent real functions. In our present case
there is in general only one real constraint: Φ(x) ≡ P g(x) − max =
0, and the approach with symplectic constraints of [14,15] can-
not be applied. However, the formalism of the so-called metrical
constraints, developed in [16], with an arbitrary number of real
functions defining the constraint submanifold is applicable. For the
benefit of the reader we shall rederive the constrained dynamical
equations with only one real constraint which is of interest here.

The purity constraint

Φ(x) = P g(x) − max = 0 (6)

represents a single scalar condition that we want to impose on the
evolution. In order to achieve this the component of the Hamilto-
nian vector field ẋ (4) normal to the constraint submanifold has to
be removed, resulting in

ẋi = ωi j∇ j H − λgij∇ jΦ, (7)
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where gij is the unit metric on R2N and λ is a single Lagrange
multiplier to be determined. Substitution of (7) in Φ̇(x(t)) results
in

ωi j∇iΦ∇ j H = λgij∇iΦ∇ jΦ, (8)

from which

λ = ωi j∇iΦ∇ j H
gij∇iΦ∇ jΦ

. (9)

Substituting this λ in (7) results in the constrained dynamical
equations

ẋi = ωi j∇ j H − ωi j∇iΦ∇ j H
gij∇iΦ∇ jΦ

gij∇ jΦ. (10)

We propose the reduction of the constrained equation (10) on
the constrained manifold to represents dynamical equation of the
coarse-grained pure states.

Observe that the numerator in (10) represent the Poisson
bracket {Φ, H} = Φ̇ and the denominator is ‖∇Φ‖2. Using the
equalities

Li jq j = δi j
∂〈L〉
∂q j

, Li j p j = δi j
∂〈L〉
∂ p j

, (11)

where Li j are matrix elements of the operator L and in our case
Φ(ψ) = P (ψ) − max, given by (1), the denominator can be further
transformed as follows

gij
∑
l,k

∇i〈Ll〉2∇ j〈Lk〉2

= 4
∑
l,k

〈Ll Lk〉 − 〈Ll〉〈Lk〉 = 4
∑

l

(�Ll)
2 = 4Δ(ψ). (12)

Before presenting few examples we would like to make some
comments concerning the constrained equation (10).

1◦ In the open system picture of the distinguished system, to
be discussed in the next section, and in the usual weak coupling
approximation (WCA), with the distinguished observables identi-
fied with the Lindblad generators, the above equation is greatly
simplified. Namely, in the WCA the Hamiltonian and the system
operators Ll that couple with the environment operators satisfy

[H, Ll] = λl Ll (13)

and Φ̇ satisfies

Φ̇ = Ṗ (ψ) = 2
∑

(�Ll)
2 = 2Δ(ψ), (14)

so that Eq. (10) is reduced to

ẋi = ωi j∇ j H − 1

2
gij∇ jΦ. (15)

The open system interpretation of the constrained Eqs. (10) and
(15) will be discussed in more details later in the next section.

2◦ An equivalent constrained equations, of the same form as
(10) and in the special case (15), are obtained if instead of the
purity constraint P (ψ) = max the constraint Δ(ψ) = ∑

l(�Ll)
2 =

min is used. In particular, the special case (15), valid under the
same conditions, with the use of (11) can be written in the form

d|ψ〉
dt

= −i[H,ψ] +
∑

l

(
L2

l + 〈Ll〉2 − 2〈Ll〉L
)|ψ〉, (16)

to be discussed in the next section.
3◦ Combination of a symplectic and a gradient flows has also

been obtained as a classical approximation of a quantum evolu-
tion with non-Hermitian Hamiltonian [17]. However, the evolution
equation in [17] is an approximate equation on the space of (gen-
eralized) coherent states. In our case Eq. (10) is an equation on
the full Hilbert state space and the symplectic and Riemannian
structures are that of the Hilbert space and not of the manifold
of coherent states like in [17]. Furthermore, the classical approx-
imation employed in [17] consist in the common replacement of
the coherent state Q-symbols of combinations of the dynamical al-
gebra generators by the same combinations of the Q-symbols of
the algebra generators. This approximation is applied on the Her-
mitian and the non-Hermitian parts of the Hamiltonian resulting
in the symplectic and gradient flows on the coherent states phase
space respectively. This type of approximation is subject to the
same type of objections as in the unitary case, namely the set of
coherent states is not dynamically invariant unless the real and
imaginary parts of the Hamiltonian are linear in the algebra gen-
erators. A special choice of the dissipative part can improve the
approximations similarly as in the situation discussed in the next
section.

4◦ Number of variables and equations in (10), and in (15), can
be reduced if, prior to imposing the constraints, the normalization
of 〈ψ |ψ〉 and the global phase invariance of |ψ〉 are explicitly used.
The Hamiltonian Schroedinger equation (4) is then formulated on
S2N−1/S1 instead of R2N . The constrained equations have the same
form as in (10) with the appropriate symplectic ωi j and metric gij

forms. An example is provided in example (b) below.
5◦ The geometric Hamiltonian formulation and the constrained

equations can be generalized to an infinite-dimensional Hilbert
space.

Before we analyze an open system physical model of the
coarse-grained dynamics let us present few examples of the g-
constrained systems.

3.1. Examples

(a) The first example is trivial in the sense that all pure states
are g-coherent, and serves the purpose of illustrating the self-
consistency of the approach. Consider a single qubit with the
Hilbert space H2 and an arbitrary Hamiltonian H . As the alge-
bra of distinguished observables we take g = su(2). The g-purity
is P g(ψ) = 〈σ 2

x 〉 + 〈σ 2
y 〉 + 〈σ 2

z 〉 and is maximal for any pure state.
In this case all pure states are g-nonentangled and g-coherent.

The constraint Φ = P g(ψ)− max = 0 in the real canonical coor-
dinates assumes the following form

(
p2

1 + p2
2 + q2

1 + q2
2

)2 = 2. (17)

The gradient of the constrains is given by

∇q1Φ = q1
(

p2
1 + p2

2 + q2
1 + q2

2

)
,

∇q2Φ = q1
(

p2
1 + p2

2 + q2
1 + q2

2

)
,

∇p1Φ = q1
(

p2
1 + p2

2 + q2
1 + q2

2

)
,

∇p2Φ = p2
(

p2
1 + p2

2 + q2
1 + q2

2

)
, (18)

and the Poisson bracket {Φ, H} is zero for arbitrary Hamiltonian
H = 〈H〉. Thus, the constraints are trivially satisfied, and the con-
straint dynamics is reduced to the linear Schroedinger part: ẋi =
ωi j∇ j H. This example extends to the general case of H N with the
distinguished algebra g = u(N).

(b) As the second example we consider the system of two
qubits with the distinguished algebra of local observables g =
su(2)⊗ su(2). In this case g-entanglement is the standard bipartite
entanglement. g-nonentangled are the product states. Subsequent
formulas are simplified if the condition 〈ψ |ψ〉 = 1 and the phase
invariance are explicitly used. With this the system is reduced
on the projective space S7/S1. Purity P (ψ) = 〈(σ 1

x )〉2 + 〈(σ 1
y )〉2 +
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Fig. 1. Illustrated are segments of time series q1(t) for the system (24) in (a) and (25) in (b).
〈(σ 1
z )〉2 + 〈(σ 2

x )〉2 + 〈(σ 2
y )〉2 + 〈(σ 2

z )〉2 in the computational basis

and in canonical coordinates {q1,q2,q3, p1, p2, p3} of S7/S1 is rep-
resented by

P (q, p) = 1 + 4
(
2
√

2p1(p2q3 − p3q2) + 2q2
3 + p2

1

(
p2

2 + q2
2

))
+ 4

(
2
√

2q1(p2 p3 + q2q3) − q2
1

(
p2

2 + q2
2

) − 2p2
3

)
. (19)

P (ψ) = max is equivalent to c1c4 = c2c3 where c1, c2, c3, c4 are
coefficients of |ψ〉 in the computational basis, and the equation of
this constraint is equivalent to two real equations (please see [14])
√

2p3 = p2q1 + p1q2,
√

2q3 = q1q2 − p1 p2. (20)

As for the Hamiltonian we consider two typical examples

Hs = σ 1
z + σ 2

z + μσ 1
z σ 2

z , (21)

Hns = σ 1
z + σ 2

z + μσ 1
x σ 2

x . (22)

The reduced g-constrained dynamics in {q1,q2, p1, p2} coordi-
nates is equivalently described by Eqs. (10) and the metrical con-
straints (19), or by the symplectic constrained equations with the
constraints (20). The constrained equations with constraints (20)
turn out to be of a simpler form and are reproduced here. The de-
tails of the derivation have been presented in [14].

For the Hamiltonian Hs the constrained equations read

q̇1 = −4μp1q1q2 + 2ωp1
[
2 + (p2)

2 + (q2)
2
]

2 + (p2)2 + (q2)2
,

q̇2 = −4μp2q1q2 − 2ωp2
[
2 + (p1)

2 + (q1)
2
]

2 + (p1)2 + (q1)2
,

ṗ1 = 2μq2
[
(q1)

2 − (p1)
2 − 2

] + 2ωq1
[
2 + (p2)

2 + (q2)
2
]

2 + (p2)2 + (q2)2
,

ṗ2 = 2μq1
[
(q2)

2 − (p2)
2 − 2

] + 2ωq2
[
2 + (p1)

2 + (q1)
2
]

2 + (p1)2 + (q1)2
, (23)

and for the Hamiltonian Hns

q̇1 = 2μp1
[
(p2)

2 + (q2)
2 − 2)

] − 2ωp1
[
2 + (p2)

2 + (q2)
2
]

2 + (p2)2 + (q2)2
,

q̇2 = 2μp2
[
(p1)

2 + (q1)
2 − 2

] − 2ωp2
[
(2 + (p1)

2 + (q1)
2
]

2 + (p1)2 + (q1)2
,

ṗ1 = −2μq1
[
(q2)

2 + (p2)
2 − 2

] + 2ωq1
[
2 + (p2)

2 + (q2)
2
]

2 + (p2)2 + (q2)2
,

ṗ2 = −2μq2
[
(q1)

2 + (p1)
2 − 2

] + 2ωq2
[
2 + (p1)

2 + (q1)
2
]

2 + (p1)2 + (q1)2
.

(24)
There are also the equations expressing q̇3 and ṗ3 in terms of
q1,q2, p1, p2, but the solutions of these are already given by the
constraints.

The dynamics generated by (23) and (24) is illustrated in Figs. 1
and 2. In Fig. 1 we illustrate the time series q1(t) for single typ-
ical orbit of (23) (Fig. 1a) and of (24) (Fig. 1b). In Figs. 2a, b, c,
d the Poincare sections q2 = 0, p2 > 0 for Hns (24) are shown. It
should be observed that g-constrained dynamics of the symmet-
ric Hamiltonian Hs is regular, while that of the Hamiltonian Hns

with no such symmetry displays typical properties of the Hamilto-
nian chaos. Thus, although the linear Schroedinger equation always
generates an integrable Hamiltonian system, the coarse-grained
quantum system evolving according to the constrained equations
can display all complexities of typical chaotic dynamics.

(c) In this example we again consider a system with g = su(2)

distinguished algebra but with the spin s = 1, i.e. with H3 Hilbert
space. As for the Hamiltonian we take a nonlinear expression of
su(2) generators

H = J z − 2 J x + μ J 2
z . (25)

When μ �= 0 the Schroedinger evolution with the Hamiltonian
(25) does not preserve the su(2)-coherent states. The set of su(2)-
coherent states is preserved when μ = 0.

The g-constraint Φ(ψ) = Psu(2)(ψ) − 1 = 〈 J 2
x 〉 + 〈 J 2

y〉 + 〈 J 2
z 〉 − 1

in the eigenbases of J z and in the real canonical coordinates of R6

assumes the form

4Psu(2)(q, p) = −4 + p4
1 + p4

3 − 2p2
3q2

1 + q4
1 + 8p2 p3q1q2

+ 2p2
3q2

2 + 2q2
1q2

2 + 2p2
2

(
p2

3 + (q1 − q3)
2)

+ 4q1q2
2q3 + 2

(
p2

3 − q2
1 + q2

2

)
q2

3

+ q4
3 + 4p1

(
p2

2 p3 − p3q2
2 + 2p2q2q3

)
+ 2p2

1

(
p2

2 − p32 + q2
1 + q2

2 − q2
3

)
. (26)

The Poisson bracket of the constraint and the Hamiltonian, that
is needed for the constraint equations (10), reads

ωi j∇iΦ∇ j H = 2μ
[
(p3q1 + p1q3)

(
q2

2 − p2
2

)
+ 2p2q2(p1 p3 − q1q3)

]
. (27)

We see that, when μ = 0, the Poisson bracket (27) is zero and the
g-constrained equations reduce to the Schroedinger equation. The
squared norm of the gradient ∇Ψ is given by somewhat compli-
cated function of the canonical coordinates (q, p) and will not be
reproduced here. We illustrate the form of simplified constrained
equations (15) by the formula for ṗ1
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Fig. 2. Poincaré sections q2 = 0, p2 > 0 and H = 1.5 for the system (25). The parameters are (a) μ = 1.1, (b) μ = 1.3, (c) μ = 1.5 and (d) μ = 1.7.
ṗ1 = −√
2
[
(1 + μ)q1 − q2

] + p1
(

p2
2 − p2

3 + q2
1 + q2

2 − q2
3

)
− 2p2q2q3 + p3q2

2 − p2
2 p3 − p3

1, (28)

where the first line is the Hamiltonian term and the second line is
from the gradient of the constraint.

We shall come back to this example in the next section.

4. Open system model

The coarse-grained system specified by the distinguished vari-
ables can be considered as an open system with the larger closed
system characterized by the full algebra u(N). In the case when
the Hilbert space can be split into the tensor product with one
component corresponding to the distinguished reduced system the
standard open system model of decoherence applies. This theory
singles out a distinguished set of states, the pointer or the robust
states by one of the following two equivalent properties: (a) as
pure states of the reduced open system that remain pure under
evolution, or (b) as states in which the reduced open system is
not and does not get entangled with the environment during the
full system evolution. Reduced states of the general coarse-grained
system, with the evolution equation (10) satisfy the same proper-
ties as the robust states of an open system if the interaction of
the open system and the environment is mediated by all of the
distinguished observables. It has been demonstrated that the ro-
bust states in this case coincide with the g-coherent states [10]
in the weak coupling limit. Thus, the pointer states are identi-
fied with reduction of the g-nonentangled or g-coherent states.
One can conclude that the coarse-graining physically occurs due
to decoherence of the distinguished system induced by specific
interaction with the environment. The specific interaction in fact
models generalized simultaneous measurement of all distinguished
observables.

We would like to identify the distinguished observables with
observables that are simultaneously measured on the open system.
In the weak coupling limit (WCL) the Born–Markov and rotating
wave approximations result in the Lindblad master equation of the
open system dynamics [18]

ρ̇(t) = −i[H,ρ] + 1

2

∑
l

([
Llρ, L†

l

] + [
Ll,ρL†

l

])
, (29)

where H is the open system Hamiltonian and Ll are the so-called
Lindblad operators. Ll are the open system operators that are cou-
pled with the operators representing observables of an environ-
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ment. If Eq. (29) corresponds to the measurement of certain ob-
servables than Ll are the Hermitian operators that represent the
measured observables. In our open system model of the coarse-
graining we shall suppose that the distinguished algebra is pre-
cisely the algebra formed by the Hermitian Lindblad operators in
(29).

As pointed out, the pointer or robust states in the open system
model of decoherence are the pure states of the open system that
remain pure in the course of evolution. It has been suggested [9]
that an approximate evolution equation of the pure robust states
can be obtained by minimizing the Hilbert–Schmidt (HS) distance
from ρ(t) to the set of pure states. In the case ρ(t) is given by the
Lindblad equation with Hermitian Lindblad operators the equation
of the HS closest pure state is [9]

d|ψ〉
dt

= −i[H,ψ] +
∑

l

(
L2

l + 〈Ll〉2 − 2〈Ll〉Ll
)|ψ〉. (30)

This is precisely our constrained equation (15) when g-entangle-
ment measure P (ψ) = ∑

l〈Ll〉2 is replaced by the equivalent mea-
sure Δ(ψ) = ∑

l(�Ll)
2 in the WCL with the distingushed observ-

ables being the Lindblad generators.
Eq. (30) (or (15)) represent the deterministic part of the

stochastic Schroedinger equation derived in the quantum state
diffusion theory [19] for arbitrary random pure state, which we re-
produce here because it will be used for numerical computations
in the next example. The Ito form of the QSD equation correspond-
ing to (29) reads

|dψ〉 = −iH|ψ〉dt

+
[∑

l

2
〈
L†

l

〉
Ll − L†

l Ll −
〈
L†

l

〉〈Ll〉
]∣∣ψ(t)

〉
dt

+
∑

l

(
Ll − 〈Ll〉

)∣∣ψ(t)
〉
dWl (31)

where dWl are independent increments (indexed by l) of complex
Wiener c-number processes Wl(t) satisfying

E[dWl] = E[dWl dWl′ ] = 0,

dWl dW̄ l′ = δl,l′ dt,

l = 1,2, . . . ,m, (32)

where E[·] denotes the expectation with respect to the probability
distribution given by the (m-dimensional) process W , and W̄l is
the complex conjugate of Wl .

The random vector |ψ(t)〉 which satisfies (31) is related to the
density matrix ρ(t) which satisfies the Lindblad equation (29) by
averaging over the realizations of the process (31)

ρ(t) = E
[∣∣ψ(t)

〉〈
ψ(t)

∣∣]. (33)

Let us stress that the HS approximate robust state Eq. (30)
assumes validity of WCL and coincides with the constrained equa-
tion (15) simplified from (10) under this assumption. On the other
hand, the general constrained evolution given by (10) is valid, in
the sense that it preserves P (ψ) and Δ(ψ), with no assumption
about special evolution of Ṗ (ψ) obtained under the WCL.

4.1. An example

In the case of an open system that satisfies the conditions for
the weak coupling approximation (13) the dynamics of the system
is described well by the Lindblad equation and the pointer states
are exactly the g-coherent states [10]. Using particular examples, it
has been demonstrated [9] that Eq. (30), which coincides with the
simplified form of the constrained equation (15), describes well the
evolution of the pointer, i.e. g-coherent states. We shall analyze
here an example that does not satisfy the condition (13) of the
WCA.

Let us consider, as an example, the two mode Bose–Hubbard
model (see for example [20]), given by the following Hamiltonian
with h̄ = 1,

H = ε1a†
1a1 + ε2a†

2a2 + α
(
a†

1a2 + a†
2a1

)
+ μ

(
a†2

1 a2
1 + a† 2

2 a2
2

)
, (34)

where ai , a†
i , i = 1,2 are bosonic annihilation and creation op-

erators of the two modes. The dynamics preserves total particle
number N = a†

1a1 + a†
2a2. Introducing operators

q j = (
a†

j + a j
)/√

2, p j = i
(
a†

j − a j
)/√

2, j = 1,2, (35)

or the operators

J x = 1

2

(
a†

1a2 + a†
2a1

)
,

J y = i

2

(
a†

1a2 − a†
2a1

)
,

J z = 1

2

(
a†

2a2 − a†
1a1

)
, (36)

the Hamiltonian assumes the following forms respectively in coor-
dinates (35)

H = ε1
(

p2
1 + q2

1

)
/2 + μ

(
p2

1 + q2
1

)2
/4

+ ε2
(

p2
2 + q2

2

)
/2 + μ

(
p2

2 + q2
2

)2
/4

+ α(p1 p2 + q1q2) (37)

and in terms of (36)

H = −2α J x + 2(ε2 − ε1) J z + μ J 2
z . (38)

In what follows we shall always set α = 1, ε2 − ε1 = 1.
The preserved total number of particles is related to J 2 by

J 2 = N/2(N/2 + 1). Thus, the effective Hilbert space of the sys-
tem carries an irreducible representation of SU(2), which is the
dynamical group of the model. This suggest that the SU(2) coher-
ent states have a special status in the model (34). This however is
not true, because the nonlinear term μ J 2

z makes the set of SU(2)

coherent states noninvariant.
We would like to analyze system (35) interacting with an en-

vironment via operators (36) or (37). The Hamiltonian (34) and
operators (35) or (36) used as the Lindblad operators do not quite
satisfy condition (13) for the WCA. Nevertheless, we shall suppose
that the open system evolution is described by the Lindblad equa-
tion with Lindblad operators given either by (35) or by (36). Notice
that the result Δg(ψ) → min obtained in [10] does not apply nec-
essarily since the system does not satisfy the WCA condition. We
shall demonstrate that the asymptotic states of the Lindblad equa-
tion of an open BH system interacting with an environment via
the Lindblad operators Ll satisfy the corresponding constraint con-
dition Δg(ψ) = min almost exactly.

Let us first consider the open system evolution in terms of
random pure states |ψ(t)〉 and the QSD equation (31). We first
choose L1 = J x , L2 = J y , L3 = J z and compute Δsu(2)(ψ(t)) and
Psu(2)(ψ(t)) from an initial state equal to the number state given

by (a†
1)

2(a†
2)

2|0,0〉. The results are shown in Fig. 3. The state
quickly converges to those with a minimal Δsu(2)(ψ(t)), i.e. to the
su(2)-coherent states. On the other hand, ΔH4 = �2 p1 + �2 p2 +
�2q1 + �2q2 remains constant and large. su(2)-purity is less than
maximal at the beginning but quickly converges to the maximal



N. Burić / Physics Letters A 375 (2010) 105–112 111
Fig. 3. Illustrates the invariant fluctuation Δg (ψ) (2) in the cases g = su(2) (full
line) and g = H4 (dotted line) for the QSD evolution with the Hamiltonian (35) and
Lindblads L1 = J x , L2 = J y , L3 = J z . The initial state is the number state |2,2〉 =
(a†

1)2(a†
2)2|0,0〉. The parameters are μ = 0.1, α = 1, ε = 0, γ = 0.9.

Fig. 4. Illustrates the invariant fluctuation Δg (ψ) (2) in the cases g = su(2) (full
line) and g = H4 (dotted line) for the QSD evolution with the Hamiltonian (35) and
Lindblads L1 = q1, L2 = q2, L3 = p1, L4 = p2. The initial states is an su(2) coherent
state. The parameters are μ = 0.1, α = 1, ε = 0, γ = 0.9.

value. Although the state |ψ(t)〉 is always a pure state of the
Hilbert space, its su(2)-purity is maximal only when |ψ〉 is an
su(2)-coherent, i.e. an su(2)-nonentangled state. Analogously, as-
suming the Lindblad operators to be L1 = q1, L2 = q2, L3 = p1,
L4 = p2 implies an evolution such that Δsu(2) is far away from its
minimum, but ΔH4 converges to values close to the minimal and
remains such for almost all times (please see Fig. 4).

The equivalent conclusions are obtained when the evolution is
described in terms of ρ(t) = E(|ψ(t)〉〈ψ(t)|), i.e. by the Lindblad
equation. This is illustrated in Figs. 5 and 6, with Δg for g = su(2);
g = H4 and L1 = J x , L2 = J y , L3 = J z with the number initial state
(Fig. 5), and L1 = q1, L2 = q2, L3 = p1, L4 = p2 with an su(2) co-
herent initial state in Fig. 6. Only two hundred QSD sample paths
are use to compute ρ(t) and then the corresponding Δg(ρ).

Furthermore, consider evolution from an su(2) coherent ini-
tial state with J = 1 and with the Lindblads being J x,y,z . If the
WCL approximation is valid the Lindblad equation can be applied,
the asymptotic states satisfy Δsu(2) ≈ min, and the simplified con-
strained equation (15) also applies. Indeed, the Lindblad evolution
is well approximated by the simple form of the constrained equa-
tion (15), as is illustrated in Fig. 7a, b.
Fig. 5. Illustrates the invariant fluctuation Δg (ρ) (2) in the cases g = su(2) (full
line) and g = H4 (dotted line) for the evolution by the Lindblad equation with the
Hamiltonian (35) and Lindblads L1 = J x , L2 = J y , L3 = J z . The initial state is the

number state |2,2〉 = (a†
1)2(a†

2)2|0,0〉. The parameters are μ = 0.1, α = 1, ε = 0,
γ = 0.9.

Fig. 6. Illustrates the invariant fluctuation Δg (ρ) (2) in the cases g = su(2) (full
line) and g = H4 (dotted line) for the evolution by the Lindblad equation with the
Hamiltonian (35) and Lindblads L1 = q1, L2 = q2, L3 = p1, L4 = p2. The initial states
is an su(2) coherent state. The parameters are μ = 0.1, α = 1, ε = 0, γ = 0.9.

In summary, we see that an arbitrary initial state evolves very
quickly into a mixture of g-coherent states, and then each of these
evolves in a way that is well approximated by the nonlinear equa-
tion (10) or in the WCL by (15).

Let us stress that the coarse-graining by distinguished observ-
ables, discussed here, is specially appropriate in a description of
macroscopic features of a quantum system, with the distinguished
observables identified with the macroscopic quantities. In this case
the Hilbert space of the quantum system does not have the bipar-
tite tensor product structure, with one party being characterized
by the macroscopic observables and the other party being the en-
vironment. The usual models of decoherence [21] with the initial
separation |ψ〉 = |ψs〉⊗|ψenv〉 do not apply. However, the picture of
coarse-graining by distinguished observables with the correspond-
ing nonlinear evolution equations can be applied.

5. Summary

We have analyzed the coarse-graining introduced by a cho-
sen set of distinguished observables. The algebra of distinguished
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Fig. 7. Evolution of Tr[ρσz] according to the Lindblad equation (30) (full line) and of 〈σz〉 according to the simplified constrained equation (15) (dotted line) with the
Hamiltonian (35) and Lindblads L1 = J x , L2 = J y , L3 = J z . The initial states is su(2) coherent state | j, jz〉 = |1,−1〉. The parameters are μ = 0.1, α = 1, γ = 0.2 and (a) ε = 0
and (b) ε = 1.
observables defines the corresponding generalized nonentangled
states which coincide by definition with the generalized coher-
ent states. The states obtained by reduction on the distinguished
observables of the g-nonentangled states are pure. We have
propose to consider the coarse-grained evolution as constrained
Schroedinger dynamics, where the constraint guaranties that the
state is always pure g-nonentangled. In order to formulate the
constrained evolution equations we used Hamiltonian formulation
with the metrical form of the constrained dynamics as developed
in [16].

Further on we discussed an open system model of the coarse-
graining and of the reduced constrained equation. In the weak
coupling limit the open system dynamics is given by the Lind-
blad master equation. In this limit, and if the Lindblad operators
are taken to represent the distinguished observables then the con-
strained equations for the g-coherent states developed here co-
incide with previously suggested [9] evolution equation for the
pointer states of the open system.

Our simplified constrained evolution equation (15) for the g-
nonentangled states coincides with the deterministic part of the
Ito stochastic Schroedinger equation developed in the quantum
state diffusion theory (QSD) of open system dynamics. The stochas-
tic Schroedinger equation describes dynamics of any random pure
state. Our constrained equations describe dynamics of determin-
istic pure states which are in the subset of all pure states that
remain pure during the evolution. From a formal point of view, it
would be interesting to derive the QSD stochastic equations using
the formalism of constraints, where the constraint would be given
by random variables representing the obtained results of measure-
ments with Gaussian distribution.

The formalism of coarse-graining as the constrained evolution
can be used to study coarse-grained macroscopic observables of a
quantum system and derive their classical behavior.
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