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Abstract

Exact synchronization of a pair of stochastically perturbed Hindmarsh–Rose bursting neurons with delayed electri-
cal coupling is studied. Possibility of stochastically stable exact synchronization with sufficiently strong coupling is
proved for arbitrary time-lags and sufficiently small noise. Various effects of the interplay and influence of noise and
time-delay on the exact synchrony are studied by numerical computations.
� 2009 Published by Elsevier Ltd.
1. Introduction

Synchronized neuronal dynamics has been observed at all levels of the nervous system and was suggested as
particularly important in information processing [1–3]. There are two different broad types of oscillatory dynamics
of a single neuron [4]: (a) Bursting is a neuronal activity such that a neuron fires two or more spikes followed by a per-
iod of quiescence, which is again followed by similar periods of spikeing and quiescence; (b) spikeing is the dynamical
regime when a sequence of spikes continues, more or less regularly, for a relatively large period of time uninterrupted by
periods of quiescent state. It is believed that burst of spikes is more reliable than single spike in producing responses in
postsynaptic neurons. On the other hand, the synchronization between the bursting neurons has been much less studied
than the synchronization between simple or chaotic oscillators. In this paper we shall analyze the synchronization of
bursting neurons under realistic conditions that include time-delays and noise.

It has recently become clear (please see later for a selection of relevant references) that mathematical modelling of
synchronization of realistic neurons must take into the account two important effects: (a) finite transmission times, and
(b) stochastic perturbation of each neuron. It is well known that the explicit time-lag of physically reasonable duration
can have profound effects on the dynamics of coupled neurons [5,8,7], (and [6] and the references there in). For example,
an important effect, that has been recently demonstrated [9,10], is that the time-lag facilitates exact synchronization
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among bursting electrically coupled neurons. Another important effect is the time-delay induced oscillation death [11,6],
which can lead to synchronization onto a quiescent state instead of the synchronous bursting or spikeing. Response of
real neurons to synaptic or external stimuli is always influenced by many processes that are commonly modelled by
different types of noise [12]. It is well known that the noise can induce qualitatively new and important effects, like noise
induced neuronal bursting [13] or coherence and stochastic resonances [14–16], (see also the collection of articles in
[17]).

We shall investigate the interplay of effects induced by time-delay and noise on the exact synchronization among
bursting neurons. For example, we shall see that an arbitrary small white noise can wash out completely the construc-
tive effects of time-delay on the exact synchronization, but induces only proportionally small perturbation of the exact
synchronization achieved by sufficiently strong coupling.

Mathematically, the problem of stable exact synchronization of noisy systems with delayed coupling is equivalent to
the problem of stochastic stability of a stationary state of a system of stochastic delay-differential equations (SDDE).
Most of the methods employed by physicists in the analyzes of the noisy systems relay on the Markov property of the
stochastic process modelling the systems dynamics [18]. However, delay-differential equations with noise do not satisfy
the Markov assumption [19–21]. Stability of such SDDE’s has been studied using extensions of the Lapunov method by
Russian mathematicians long time ago [19]. More recently, stability of synchronization in systems with noise involving
DDE was studied analytically in the context of coupled realistic and formal neural networks. Liao and Mao [22] (see
also [20]) have initiated the study of stability in stochastic neural networks, and this was extended to stochastic neural
networks with discrete time-delays in references [23,24]. An interesting method to study stability of SDDE has been
developed recently and applied on large collections of neurons in [21]. Some analytical techniques relevant for delayed
systems with noise have also been used in the study of coupled bistable systems with delays [25], and in noisy oscillators
with delayed feedback [26–30].

The paper is organized as follows. After the description of the model of two delayed coupled noisy bursting neurons
in Section 2, we prove, in Section 3, a theorem that claims existence of stable exactly synchronous dynamics in the sys-
tem of noisy bursters with sufficiently strong instantaneous and time-delayed coupling for arbitrary time-lags. The suf-
ficiency conditions are illustrated by numerical computation in Section 4. There we also present results of our extended
numerical study of the interplay between the noise and time-lag on the exact synchrony in the studied model. Our
results are summarized and discussed in Section 5.
2. The model

In this paper we shall analyze the exact synchronization of bursting in delayed coupled pair of Hidmarsh–Rose (HR)
neurons [31] influenced by white noise. The model is given by the following system of stochastic delay-differential equa-
tions (SDDE)
dx1 ¼ ½F xðx1; y1; z1Þ þ c1ðx2 � x1Þ þ c2ðx2ðt � sÞ � x1Þ�dt þ x1

ffiffiffiffiffiffi
2D
p

dW

dx2 ¼ ½F xðx2; y2; z2Þ þ c1ðx1 � x2Þ þ c2ðx1ðt � sÞ � x2Þ�dt þ x2

ffiffiffiffiffiffi
2D
p

dW

dyi ¼ F yðxi; yi; ziÞdt; i ¼ 1; 2

dzi ¼ F zðxi; yi; ziÞdt; i ¼ 1; 2

ð1Þ
where Fx, Fy, Fz are the components of the HR fast–slow neuronal model [31]
F x ¼ y þ 3x2 � x3 � zþ I ; F y ¼ 1� bx2 � y

F z ¼ �rzþ rSðx� CxÞ
ð2Þ
and the terms c1(xj(t) � xi(t)) + c2(xj(t � s) � xi(t)), i = 1, 2; j = 2, 1 represent mixtures of instantaneous and delayed
electrical coupling. We shall suppose that the dynamical regime displayed by the two isolated neurons is the same,
which is the case for example if the internal parameters and the external stimulus have the same values for both neurons.
Stochastic perturbations are modelled by the multiplicative white noise xi

ffiffiffiffiffiffi
2D
p

dW ; i ¼ 1; 2 in the equations for the
membrane potentials of the ith neuron, where dW is the stochastic increment of the Wiener process. The intensity
of the noise D and the stochastic properties of the noise are assumed to be the same for both neurons, but, of course,
single realizations of the Wiener processes in the equations for x1 and x2 need not be the same functions of t.

The HR equation (2) describe the dynamics of the single neuron subject to external stimulus I. Depending on the
values of the parameters r, S, Cx and the external current I the model can have qualitatively different attractors corre-
sponding to quiescent state, periodic firing and bursting with regular or chaotic sequences of bursts [32–35]. The
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bursting dynamics is driven by the oscillations of the slow z variable, and occurs when the oscillations of z have suf-
ficiently large amplitude. The beginning of a bursts of spikes corresponds to a minimum of the oscillating z(t), endures
during the period when z is increasing and the termination of the burst coincides with the change of the sign of dz/dt.
Quiescent state endures while dz/dt < 0, and terminates at the next minimum.

In our numerical study we shall concentrate on two set of values of the parameters in (2) corresponding to different
regimes of isolated neurons and different origin of bursting dynamics in the coupled pair
Fig. 1.
s = 20
ðcase aÞ : I ¼ 3:2; b ¼ 5; Cx ¼ 1:6; r ¼ 0:006; S ¼ 4 ð3Þ
that correspond to situations when each of the isolated neurons displays bursting due to non-zero external current, and
ðcase bÞ : I ¼ 0; b ¼ 5; Cx ¼ 1:6; r ¼ 0:0021; S ¼ 4 ð4Þ
when the isolated neurons are in the quiescent state but the bursting occurs for sufficiently strong coupling, i.e. suffi-
ciently large c1 + c2 in Eq. (1). Nonsynchronized bursting in x1(t) and x2(t) is illustrated in Fig. 1a (case a) and
Fig. 3a (case b).
3. Stochastic stability of exact synchronization

In this section we prove that the exact synchronization between stochastically perturbed HR systems in the general
form (1) and (2) is globally stable in the mean, for sufficiently large instantaneous coupling constant. To study the
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Case a: (a) c1 = 0.1, c2 = 0, D = 0; (b) c1 = 0.5, c2 = 0, D = 0; (c) c1 = 0.2, c2 = 0.5, s = 20, D = 0; (d) c1 = 0.5, c2 = 0.45,
, D = 0.001.
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stability of the exact synchronization between the 1st and the 2nd unit it is convenient to analyze the dynamics of the
difference
D1ðtÞ ¼ x1ðtÞ � x2ðtÞ; D2ðtÞ ¼ y1ðtÞ � y2ðtÞ; D3ðtÞ ¼ z1ðtÞ � z2ðtÞ ð5Þ
Globally stable stationary state of the evolution equations for the differences corresponds to globally stable exact syn-
chronization. The Ito stochastic equations governing the evolution of the differences are
dD1ðtÞ ¼ ½D2ðtÞ þ 3D1ðtÞðx1ðtÞ þ x2ðtÞÞ � D1ðtÞðx2
1ðtÞ þ x1ðtÞx2ðtÞ þ x2

2ðtÞÞ � D3ðtÞ � ð2c1 þ c2ÞD1ðtÞ
� c2D1ðt � sÞ�dt þ D1ðtÞ

ffiffiffiffiffiffi
2D
p

dW

dD2ðtÞ ¼ �bD1ðtÞðx1ðtÞ þ x2ðtÞÞ � D2ðtÞ½ �dt

dD3ðtÞ ¼ �rD3ðtÞ þ rSD1ðtÞ½ �dt

ð6Þ
Notice that the equations for the differences process explicitly contain unknown solutions x1(t) and x2(t). Our strategy
will be to show that these solutions are bounded and then to use this fact for the analyzes of the stability of the trivial
stationary state Di(t) = 0, i = 1,2,3. To this end we shall utilize a stochastic extension of the Lyapunov method for
DDE’s [5,36,37].

In order to prove that xi(t) are bounded we consider the following functional:
U ¼
X
l¼1;2

x2
l=2þ y2

l=2b2 þ z2
l=2rS: ð7Þ
After some calculations, using Eðx2
l ðtÞ

ffiffiffiffiffiffi
2D
p

dW Þ ¼ 0, x1(t)x2(t � s) 6 x1(t)/2 + x2(t � s)/2 and similarly for 1 M 2 inter-
changed, we obtain
EðdUðtÞÞ 6 SC2
x

4
dt � c1ðx1ðtÞ � x2ðtÞÞ2

þ
X
l¼1;2

�ð2zlðtÞ þ CxSÞ2

4S
� ð2ylðtÞ � 1� b2xlðtÞ þ bx2

l ðtÞÞ
2

4b2
þ F 1ðxlðtÞ; xlðt � sÞÞ

" #
dt ð8Þ
where
F 1ðxlðtÞ; xlðt � sÞÞ ¼ �3x4
l ðtÞ=4þ 2b2ð6� bÞx3

l ðtÞ þ bðb3 þ 4bD� 2bc2 � 2Þx2
l ðtÞ þ 2b2xlðtÞ þ 1

4b2
þ c2x2

l ðt � sÞ=2

ð9Þ
Now, we see that due to term �3x4
l ðtÞ=4, there is a positive M such that the previous expression for F1(x(t), x(t � s)) is

bounded when jx(t)j is bounded by positive M : jx(t)j < M and has negative values for jx(t)jP M. It follows from (8)
that in region remote enough from the origin the expectation E(dU(t)) is negative and, therefore, almost all trajectories
beginning is this region are attracted into a bounded domain around the origin.

We shall now use the boundedness of x1(t), x2(t) to study the sufficient conditions for the exact synchronization, i.e.
for the stability of the trivial stationary state of the difference equations (6). To that end we consider the following can-
didate for the Lyapunov functional for (6):
L ¼ D2
1ðtÞ=2þ 2D2

2ðtÞ=b2 þ D2
3ðtÞ=2rS þ e

Z 0

�s
D1ðt þ hÞdh ð10Þ
where e is a free parameter. If we can show that there are such values of the parameters c1 and c2 such that for some
value of e the expectation of the Ito derivative is never positive along the solutions of (6), i.e. E(dL(t)) 6 0 than the
stationary state Di = 0, i = 1,2,3 is stochastically stable [19,20].

Using Ito formula, the equations of the process (6),and the equations for the differences we obtain
dLðtÞ ¼ �½8D2ðtÞ � b2D1ðtÞ þ 4bD1ðtÞðx1ðtÞ þ x2ðtÞÞ�2 dt=16b2 � D2
1ðtÞ½�x1ðtÞx2ðtÞ þ ðb=2� 3Þðx1ðtÞ þ x2ðtÞÞ

� b2=16� Dþ c1�dt � ðc1 þ c2ÞD2
1ðtÞdt � c2D1ðtÞD1ðt � sÞdt þ eðD2

1ðtÞ � D2
1ðt � sÞÞdt � D2

3ðtÞdt=S

þ D2
1ðtÞ

ffiffiffiffiffiffi
2D
p

dW ð11Þ
The stochastic analog of the Lyapunov condition for deterministic equations dL(t)/dt is that the expectation of the Ito
derivative E(dL(t)) 6 0. The expectation of (11), using EðD2

1ðtÞ
ffiffiffiffiffiffi
2D
p

dW Þ ¼ 0, is given by
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EðdLðtÞÞ ¼ �½8D2ðtÞ � b2D1ðtÞ þ 4bD1ðtÞðx1ðtÞ þ x2ðtÞÞ�2 dt=16b2 � D2
1ðtÞ½�x1ðtÞx2ðtÞ þ ðb=2� 3Þðx1ðtÞ

þ x2ðtÞÞ � b2=16� Dþ c1�dt � ðc1 þ c2ÞD2
1ðtÞdt � c2D1ðtÞD1ðt � sÞdt þ eðD2

1ðtÞ � D2
1ðt � sÞÞdt

� D2
3ðtÞdt=S ð12Þ
The first line is obviously negative and the second line can be made negative with sufficiently large c1. Consider the qua-
dratic form given by the last two lines of (12). The Silvester conditions for its negative definiteness are satisfied if c1 > 0;
c2 > 0; c1 > c2 and e is chosen to be e = (c1 + c2)/2. The second line in (15) is negative definite if c1 is large enough, i.e.
c1 > max x1ðtÞx2ðtÞ � ðb=2� 3Þðx1ðtÞ þ x2ðtÞÞ þ b2=16þ D
� �

ð13Þ
Thus, we conclude that with c1 sufficiently large and c2 < c1 the trivial stationary state Di(t) = 0, i = 1,2,3 will be stable
with unit probability [19,20], i.e. the state of exact synchronization can be made globally stable with unit probability
with large enough c1 and for any D, s and c2 < c1.

We would like to make few remarks concerning the obtained sufficient condition for the stability of exact synchrony.
Obviously there is very little practical use of the obtained sufficiency condition for predicting values of the coupling
constant that imply exact synchronization of bursting. The sufficiency condition should be understood as a qualitative
result that the exact synchrony can be achieved with certainty despite the noise and arbitrary time-lag, provided that the
coupling is sufficiently strong. The condition does not say anything about possibility of stable exact synchrony for weak
coupling and particular values of the time-lag, neither it says anything about the exact synchronization for each par-
ticular realization of the process described by (1). However, one might expect that with sufficiently strong instantaneous
coupling and for arbitrary time-delays and for small noise each sample path will only slightly fluctuate around the
exactly synchronous motion. On the other hand, the obtained condition does not prevent the situation when the exact
synchrony is achieved by particular time-lag and weak coupling with c2 > c1, but fluctuations due to very small noise
completely destroy the exact synchronization. This indeed occurs, as will be illustrated in the next section.
4. Numerical illustrations

As was pointed out, the bursting regime of the HR pair of neurons could be achieved by an external stimulus (case a)
or by the coupling between the neurons which are in the quiescent state when isolated (case b). The sufficiency condi-
tions apply to both situations but the exact synchronization in the two situations displays different properties and will
be discussed separately.

Let us first discuss the exact synchronization when the bursting is induced by the external stimulus. In Figs. 1 and 2
we show segments of the time series x1(t) and x2(t) for some illustrative values of the coupling parameters c1, c2, the
time-lag s and the intensity of the noise D in this case. In Fig. 1b we illustrate that, as claimed in Section 3, sufficiently
strong instantaneous coupling c1 implies exact synchronization for arbitrary time-lags and the delayed coupling c2 < c1.
If the instantaneous coupling is weaker than the delayed one, for example c1 = 0.2 < c2 = 0.5 there is no exact synchro-
nization for most values of the time-lag s (in Fig. 1c s = 20). As will be discussed, there could be some exceptional val-
ues of the time-lag s such that the dynamics of the two neurons is exactly synchronous even with c1 = 0, but such a state
is highly unstable with respect to the noise and/or variations of the time-lag. The point here is that if the instantaneous
coupling is not strong enough than the exact synchronization cannot be guaranteed. On the other hand, as is illustrated
in Fig. 1d sufficiently large c1 guaranties the exact synchrony for arbitrary values of the time-lag (for example, in Fig. 1d
s = 20 and D = 0.001). The stochastic fluctuations around the exactly synchronous state are proportional to the small
noise intensity, contrary to the case when the exact synchrony is achieved by a particular choice of c2 and s but with
small c1, illustrated in Fig. 2c.

In Fig. 2a–d we would like to illustrate the fact that if the instantaneous coupling is not strong enough than small
variation of the time-lag or quite small noise radically destroys the exact synchronization that might occur for some
particular c2 and s. Fig. 2a illustrates the exact synchrony for such particular values c1 = 0, c2 = 0.1 and s = 8 and
no noise. However, the synchrony is achieved for s in a small interval, and for example is lost with the time-lag
s = 9 as shown in Fig. 2b. Similarly the exact synchrony is completely destroyed by rather small noise D = 0.001 as
shown in Fig. 2c. Smaller or larger values of D induce qualitatively the same destruction of the exact synchrony. Obvi-
ously, small noise has completely destroyed what has been achieved by the time-delay, so that the dynamics in Fig. 3c is
as asynchronous as that in Fig. 1a. On the other hand, if the instantaneous coupling is strong enough neither the time-
lag nor a small noise cannot qualitatively change the state of exact synchronization, as is illustrated in Fig. 2d.

We suggest the following qualitative explanation of the destabilization by small noise of exactly synchronous burst-
ing. The beginning of a burst in xi(t) corresponds to the minimum of zi(t) and the end of the burst occurs at the
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Fig. 2. Case a: (a) c1 = 0, c2 = 0.1, s = 8, D = 0; (b) c1 = 0, c2 = 0.1, s = 9, D = 0; (c) c1 = 0, c2 = 0.1, s = 8, D = 0.001; (d) c1 = 0.45,
c2 = 0.1, s = 9, D = 0.001.
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following maxima. The time that corresponds to minima in zi is a random variable, with not necessarily equal realiza-
tions for i = 1 and i = 2, i.e. for the two neurons. This leads to a small time difference between the timing of the initi-
ation of bursts in the two neurons, but the large difference in x1 and x2 variables.

Let us now discuss the stability of the exact synchronization of bursting when the isolated neurons are in the qui-
escent state and the bursting dynamics is induced by instantaneous coupling. Bifurcations behind such bursting were
analyzed in [7]. In this case the globally stable stationary solution, corresponding to quiescent state, is destabilized only
if c1 and c2 are both less or equal to zero and at least one of them has large modulus. For positive c1 and c2 or if both
have small absolute values the stationary state is stable for any s and stochastically stable for small noise intensities.
This situation includes the sufficiency conditions from Section 2. Thus the exact synchrony that is guarantied by the
analytic argument for sufficiently large c1 and c2 < c1 is somewhat trivial, i.e. the exactly synchronous state is the glob-
ally stable stationary state. However, synchronization for those negative values of the coupling when the bursting
occurs can be studied numerically. We have illustrated in Fig. 1b the coupling induced non-synchronous bursting
for particular negative values of the coupling c1 and c2. Numerical evidence shows that if c2 = 0, i.e. with the instan-
taneous coupling the exact synchronization of bursting does not occur for any c1. As mentioned, the only synchronous
dynamics is that of the stable stationary state for large positive c1. However, time-delay can lead to synchronization of
bursting induced by coupling (with negative c1 and c2) if the time-lag s is in a specific interval. This is illustrated in
Fig. 3b. Similarly to the case of externally induced bursting, small noise is sufficient to destroy the exact synchrony
induced by the time-delay. This is illustrated in Fig. 3c. Fig. 3d illustrates better the asynchronous spikeing of x1

and x2 within the bursts. However, it should be noticed that although the spikes within the burst are desynchronized
by the small noise since the initiation times of the burst in one or the other neuron are perturbed by different realizations
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of the stochastic process, the occurrence of bursts is still much more synchronous than when s = 0. Thus, there is a kind
of synchronization induced by time-delay which is persistent under small noise. This is different from the previously
discussed case of delay-facilitated exact synchronization of bursting, illustrated in Fig. 3, where very small noise is
enough to completely undo the effects of time-delay.
5. Summary and discussion

We have studied the exact synchronization of bursting dynamics in a pair of realistic neurons. Hindmarsh–Rose neu-
ron was used as the model of each of the bursting units, and we analyzed the coupling model corresponding to the elec-
trical synapses. Two important aspects of the real systems have been included explicitly in the model: (a) Fluctuations of
factors that could influence the state of each of the neurons was modelled by adding a stochastic term in the equation of
the membrane potential; (b) transmission and synaptic delays are included in the form of the coupling terms. We have
considered the coupling that represent a mixture with different strengths of instantaneous and delayed coupling. Thus,
the mathematical model consisted of the set of stochastic delay-differential equations.

The possibility of stable exact synchronization was first analyzed analytically. We have shown that provided the
instantaneous coupling constant is large enough and larger than the delayed one the exact synchronization will be stable
with unit probability for any time-lag and small noise. This result represent a sufficient condition for the stable exact
synchrony and cannot be used to actually predict realistic values of the coupling for which the synchronization occurs.
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In our numerical calculations we have separately analyzed the synchronization that occurs among bursting induced by
an external stimulus or by coupling between the neurons. We have concentrated on showing that the exact synchroni-
zation that might occur with weak instantaneous coupling and for properly chosen time-lags and the strength of the
delayed coupling is unstable under small noise and variation of time-lags. On the other hand if the exact synchroniza-
tion is achieved by strong instantaneous coupling then it is stable under variation of time-delay and only slightly per-
turbed by small noise. We should conclude that if the exact synchronization is to be observed in real neuronal systems
than it is likely to involve strong coupling, rather then to relay on some finely tuned weak coupling with time-delays.

Explicitly included time-delay should be more important in models of neurons coupled by chemical synapses. Meth-
ods of Section 3 could be used to prove possibility of stochastically stable exact synchronization for some models of
delayed chemical synapse, such as fast threshold modulation. We are currently pursuing numerical investigations of
synchronization with similar models of chemical synapses. We have concentrated on the exact synchronization of burst-
ing neurons. Other types of synchronization, i.e. synchronization of bursts without synchronization of spikes within a
burst, are also important and behave differently with respect to time-delays and stochastic perturbations. It would also
be interesting to study the relative importance of time-delayed and instantaneous coupling on the synchronization in
more complicated networks of noisy bursting neurons.
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