
Chapter 3
Symmetries in Multiband Hamiltonians
for Semiconductor Quantum Dots

Stanko Tomić and Nenad Vukmirović

Abstract Our current understanding of the symmetries of multiband envelope
function Hamiltonians for semiconductor quantum dots and their signatures in the
energy level structure and wave function shapes is reviewed. We show how sym-
metry can be used to block-diagonalize the Hamiltonian matrix and consequently
strongly reduce the computational effort. A detailed analysis of symmetries of
several different model Hamiltonians reveals that the true symmetry of square-
based pyramidal quantum dots is captured if either the interface effects are taken
into account or additional higher energy bands are included in the multiband
Hamiltonian. This indicates that multiband envelope function methods are fully
capable of capturing the true atomistic symmetry of quantum dots in contrast to
some widespread beliefs. In addition, we show that translational symmetry can
be artificially introduced by the numerical method used, such as the plane wave
method. Plane wave method introduces artificial quantum dot replica whose charges
interact with charges in the real quantum dot and create an additional strain field in
the real dot. This issue can be circumvented by the introduction of proper corrections
in the procedure for calculation of Coulomb integrals and strain.
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3.1 Introduction

Quantum dots are nanostructures which provide confinement of carriers in all three
spatial directions. On the fundamental side, they enable studies of interactions
between electrons and photons at the single or few particle level [1,45,61,71,74,99].
Practical applications of semiconductor quantum dots include lasers [31], optical
amplifiers [8], single photon sources [45,71], photodetectors [42,50,51], fluorescent
biological labels [2] and solar cells [6, 11, 28, 48, 49, 67, 72].

For these reasons, there is a tremendous need to develop both accurate and
computationally efficient methods for the description of electronic states in quantum
dots. In other nanostructures, such as quantum wells or wires, one can exploit
the translational symmetry of the structure and consequently strongly reduce the
computational cost. Single quantum dots, where no translational symmetry of the
structure is present, are therefore most challenging structures for numerical studies.
Nevertheless, in most cases quantum dots exhibit certain symmetry which can be
exploited to reduce the computational cost. The main goal of this article is to provide
understanding when and how symmetry can be exploited in numerical calculations
of electronic states in quantum dots.

On the other hand, we also show that the numerical method used can introduce an
artificial symmetry. This is the case for the plane wave method that assumes periodic
boundary conditions which introduce an artificial translational symmetry. While
such method is very useful of one wants to study the quantum dot supercrystals
or quantum dot arrays [3, 34, 39, 80, 82], it needs to be modified for its applications
to single quantum dot structures. In such cases, one would naturally like to remove
the effects of such artefacts from the results. We show how this can be done in
Sect. 3.8.

The multiband k�p Hamiltonians [12, 14, 15, 23, 27, 33, 44, 53, 54, 59, 60, 62–
64, 68, 86, 98] are capable of reproducing the bulk bandstructure more accurately
than the standard 8-band Hamiltonian. Some of these, that include a large number
of bands (& 15 or 30 after incorporation of the spin degeneracies), are even
capable of reproducing the bulk bandstructure throughout the whole Brillouin
zone. Unfortunately, these Hamiltonians have been rarely applied to nanostructures
and have not been applied to QDs at all. The effect of interface band mixing
[17, 21, 32, 65, 96] has also so far been analyzed only for a single interface or a
quantum well structure. The goal of this work is to explore the effects of higher
bands and interfaces on the electronic structure of QDs.

In this work, we focus on self-assembled quantum dots that can be produced using
epitaxial techniques [9, 52]. These typically have lateral dimensions of the order of
15–30 nm and the height of the order 3–7 nm. While ab initio calculations based on
density functional theory have been performed for the clusters and nanocrystals of
the size up to 3 nm [18, 25, 58, 85, 97], much larger self-assembled quantum dots
are still out of the range of present day computational resources. These methods also
suffer from unreliability in predicting the energy gaps. Several methods that retain
the atomistic details of the system, but do not involve a self-consistent calculation,
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have therefore been developed and applied to self-assembled quantum dots, such as
the empirical pseudopotential method [30,93–95], the tight-binding method [35,69,
70, 73], and the charge patching method [36–38, 90–92].

These methods directly take into account the atomistic details of the system. This
leads to their high accuracy and reliability, which is however also accompanied by
a significant computational cost. In the envelope function methods (better known
as the k�p method), central quantities are the slowly varying envelope functions
which modulate the rapidly varying atomistic wave function. The fact that the
envelope functions are slowly varying implies that less memory is needed for
their representation and consequently less time is needed for their computation.
This makes the method very computationally efficient and therefore attractive for
the applications. We will show in this chapter that this doesn’t necessary causes
the lost in accuracy. We will describe the procedures for improving the envelope
methods in order to reach the same level of sophistication in terms of predicting the
correct symmetries of states in quantum dots as in more computationally demanding
atomistic methods.

3.2 Multiband Envelope Function Method

In this section, we show how one can derive the equations that envelope functions
satisfy. To simplify the derivation, we do not consider the effects of strain, piezo-
electricity and spin-orbit interaction. These effects have been treated on various
occasions and are well documented in the literature. Instead, we focus on the effect
that is less well known—the effect of interfaces.

The single-particle Hamiltonian of an electron in a semiconductor is given as

H D p2

2m0

C V0.r/; (3.1)

where p is the electron momentum operator, m0 the free electron mass and V0.r/
the crystal potential experienced by an electron. One can think of V0 as the self-
consistent potential obtained from density functional theory or as the empirical
pseudopotential. The envelope representation of the electronic wave function is
given as

�.r/ D
X

i

 i .r/ui .r/; (3.2)

where the functions ui .r/ are orthonormal and have the periodicity of the Bravais
lattice, while  i .r/ are slowly varying envelope functions. The most widely used
choice of the functions ui are bulk Bloch functions at the � point. However, there is
some ambiguity in the previous statement. If we consider a quantum dot of material
A embedded in material B, are ui the Bloch functions of material A or material B?
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In what follows, we will consider that ui are Bloch functions of some effective
material C which is in some sense the average of materials A and B. For example,
if materials A and B are described by pseudopotentials VA and VB , we will assume
that the pseudopotential of the average material C is VC D .VA C VB/=2.

After the replacement of Eq. (3.2) into the eigenvalue problem of the Hamiltonian
given by Eq. (3.1) and making an approximation that eliminates the non-local terms
that appear in the derivation, one arrives at the system of equations for the envelope
functions [13, 22]

� „
2

2m0

r2 m.r/C
X

n

�i„
m0

pmn � r n.r/C
X

n

Hmn.r/ n.r/ D E m.r/: (3.3)

The terms in Eq. (3.3) are defined as

pmn D 1

˝

Z
um.r0/�pun.r0/d3r0; (3.4)

where the integration goes over the volume of the crystal unit cell ˝ , and

Hmn D 1

˝

Z
um.r0/�Hun.r0/d3r0: (3.5)

Eq. (3.3) can be recast into the form

X

n

hmn.R/ n.R/ D E m.R/; (3.6)

where

hmn.R/ D „
2k2

2m0

ımn C „
m0

k�pmn C ŒumjH jun
R (3.7)

and k D �ir, while the square brackets denote the averaging over a unit cell
centered at R. The term ŒumjV jun
R in the Hamiltonian [Eq. (3.7)] is a constant
of a given material when R is far away from the interface—when the averaging
does not include the interface region. Since the second term in Eq. (3.7) is crucial in
the Hamiltonian matrix, the envelope function method is most frequently called the
k�p method. The hmn operator in Eq. (3.7) is referred to as the envelope Hamiltonian
or the k�p Hamiltonian.

In practical calculations, one has to restrict to a finite number of bands in the
representation in Eq. (3.2). Historically, the k�p method was first applied to valence
band (6-band Hamiltonian) [40, 41] and later on the conduction band was added
(8-band Hamiltonian) [55]. Recently, we have applied the 14-band and 16-band
Hamiltonians (that also include the effects of strain, spin-orbit interaction, crystal
field splitting and remote bands) to quantum dot structures [83]. However, these
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Hamiltonians consider the last term in Eq. (3.7) as a constant of a given material
and do not take into account its behavior at the interface of two materials. We will
show that this term is important if one wants to understand the symmetry of the
envelope function Hamiltonian and therefore devote the next section to the analysis
of this term.

3.3 The Effect of Interfaces

We define the “length” of the interface Lif as the length of the region of space that
consists of all R-vectors such that the average ŒumjV jun
R encompasses the interface
region. For example, in the case of the [001] interface in zincblende materialsLif D
a=2, where a is the bulk lattice constant.

Since the interface region is small and the envelope functions are slowly varying,
the details of the variations of the ŒumjV jun
R are not of primary importance—it is
only the integral of this term over the interface region that determines its role in the
envelope Hamiltonian. In the flat interface model, the pseudopotentials are modeled
to be equal to those of material A at one side of the interface and moving sharply to
those of material B at the other side of an interface. We then obtain:

Z CLif=2

�Lif=2

ŒumjH jun
z0dz0 D
Z CLif=2

�Lif=2

Œumj p
2

2m0

C V jun
z0dz0

�Œumj p
2

2m0

C VA C VB

2
jun
Lif C (3.8)

CŒumj p
2

2m0

C VAjun
Lif

2
C Œumj p

2

2m0

C VBjun
Lif

2
:

In Eq. (3.8), the last two terms on the right hand side represent the bulk contribution
to the Hamiltonian, while the first two terms are the interface contribution. This
implies that for each interface, the envelope function Hamiltonian contains an
additional term of the form˝mnı.z/ (assuming the plane of the interface is the z D 0
plane), with ˝mn given by the expression:

˝mn D
Z CLif=2

�Lif=2

Œumj p
2

2m0

C V jun
z0dz0 � Œumj p
2

2m0

C VA C VB

2
jun
Lif: (3.9)

When one chooses the bulk reference crystal as a virtual crystal being the “average”
of crystals A and B, the last expression reduces to

˝mn D
Z CLif=2

�Lif=2

Œumj p
2

2m0

C V jun
z0dz0 �EmımnLif; (3.10)



92 S. Tomić and N. Vukmirović

where Em is the energy of the band m at the � point, and um is the corresponding
Bloch functions. In the case of square-based pyramid with base width to height ratio
b=h D 2, the total interface contribution to the Hamiltonian is

Hif D ˝.Œ001
/ı�.z/

C ˝.Œ101
/ı�.r � n1 � l/C˝.Œ011
/ı�.r � n2 � l/ (3.11)

C ˝.Œ101
/ı�.r � n3 � l/C˝.Œ011
/ı�.r � n4 � l/:

In the above equation, ı�.z/ function represents the delta function at a given
interface, with an additional constraint that the function is nonzero only at the
face of the pyramid. The vectors ni are the unit vectors perpendicular to the faces
of the pyramid and are given as n1 D 1=

p
2 � .1; 0; 1/, n2 D 1=

p
2 � .0; 1; 1/,

n3 D 1=
p
2 � .�1; 0; 1/, n4 D 1=

p
2 � .0;�1; 1/ and l D b=.2

p
2/. The choice of

the coordinate system was made in such a way that the vertices of the pyramid are
at the points .b=2;�b=2; 0/, .b=2; b=2; 0/, .�b=2; b=2; 0/, .�b=2;�b=2; 0/ and
.0; 0; h/.

The explicit form of the matrices ˝ can be obtained from density functional
theory or empirical pseudopotential calculations. The reader is referred to [83]
for a detailed description of the extraction of the matrices ˝ from empirical
pseudopotentials, while the final results, in the basis jsai; jpx;bi; jpy;bi; jpz;bi (see
Sect. 3.5 for the meaning of this basis), are given as:

˝.Œ001
/ D

0

BB@

0 0 0 �a
0 b 0

0 0

0

1

CCA ; (3.12)

˝.Œ101
/ D

0

BB@

0 �c 0 �c
0 d 0

0 d

0

1

CCA ; (3.13)

˝.Œ011
/ D

0

BB@

0 0 �c �c
0 d d

0 0

0

1

CCA ; (3.14)

˝.Œ101
/ D

0

BB@

0 c 0 �c
0 d 0

0 �d
0

1

CCA ; (3.15)
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Table 3.1 Relevant material
parameters of the interfaces:
InAs/GaAs and
GaAs/Al0:35Ga0:65As

InAs/GaAs GaAs/Al0:35Ga0:65As

a [eVÅ] 0.61220 0.14899
b [eVÅ] �0:36633 0.02861
c [eVÅ] �0:32427 �0:07039
d [eVÅ] 0.02855 0.00008

˝.Œ011
/ D

0

BB@

0 0 c �c
0 d �d
0 0

0

1

CCA : (3.16)

The relevant parameters, a; b; c and d , for two representative interfaces
InAs/GaAs and GaAs/Al0:35Ga0:65As are given in Table 3.1.

3.4 Symmetry of the Interface Hamiltonian

Proper understanding of the Hamiltonian symmetry group is of great importance
for several reasons: (a) symmetry can be used to reduce the computational cost;
(b) symmetry induces selection rules for certain physical processes, such as for
example light absorption and emission. For this reason, we analyze the influence of
the interface Hamiltonians introduced in Sect. 3.3 on the symmetry of the system.
The Hamiltonian for the [001] interface in the basis jsai; jpx;bi; jpy;bi; jpz;bi reads:

HŒ001
 D

0
BB@

0 0 0 �a
0 b 0

0 0

0

1
CCA ı�.z/: (3.17)

To represent the actions of the rotation operators on the envelope function spinors,
it is more convenient to work in the basis of eigenstates of the z-component of the
orbital quasi-angular momentum

fu1; : : : ; u4g D fjsai; 1p
2

�jpx;bi C i jpy;bi
�
;
1p
2

�jpx;bi � i jpy;bi
�
; jpz;big:

(3.18)

In this basis, the same Hamiltonian,HŒ001
, reads

HŒ001
 D

0

BB@

0 0 0 �a
0 �ib 0

0 0

0

1

CCA ı�.z/: (3.19)
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The action of the representation of the rotationR' , where ' D n�=2 on the spinors
is given as

D.R'/

0

BB@

 1.r/
 2.r/
 3.r/
 4.r/

1

CCA D

0

BB@

 1.R'r/
e�i' 2.R'r/
ei' 3.R'r/
 4.R'r/

1

CCA : (3.20)

To prove that D.R'/ commutes with HŒ001
 it is sufficient to show that operators
HŒ001
D.R'/ and D.R'/HŒ001
 give the same result when acting on the basis states
.eik�r; 0; 0; 0/>, .0; eik�r; 0; 0/>, .0; 0; eik�r; 0/>, .0; 0; 0; eik�r/> that span the Hilbert
space of spinors. By explicitly performing the calculation one obtains:

HŒ001
D.R'/

0
BB@

0

eik�r
0

0

1
CCA D HŒ001


0

BBB@

0

e�i'ei.R�1
' k/�r

0

0

1

CCCA D

0
BB@

0

0

ibe�i'
0

1
CCA e

i.R�1
' k/�rı�.z/

(3.21)

and on the other hand

D.R'/HŒ001


0

BB@

0

eik�r
0

0

1

CCA D

0

BB@

0

0

ib
0

1

CCA e
ik�rı�.z/ D

0

BB@

0

0

ibei'

0

1

CCA e
i.R�1

' k/�rı�.z/: (3.22)

This implies that D.R'/ andHŒ001
 commute only if ' D n� .
Next, we proceed with the proof that HŒ001
 commutes with the operator D.�v/.

For this proof, it is convenient to work in the basis

fu1; : : : ; u4g D fjsai; 1p
2

�jpx;bi C jpy;bi
�
;
1p
2

�jpx;bi � jpy;bi
�
; jpz;big: (3.23)

In this basis HŒ001
 reads

HŒ001
 D

0
BB@

0 0 0 �a
b 0 0

�b 0

0

1
CCA ı�.z/; (3.24)

while the action of the operatorD.�v/ on the spinor is given as

D.�v/

0
BB@

 1.x; y; z/
 2.x; y; z/
 3.x; y; z/
 4.x; y; z/

1
CCA D

0
BB@

 1.y; x; z/
 2.y; x; z/
� 3.y; x; z/
 4.y; x; z/

1
CCA : (3.25)
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It follows

HŒ001
D.�v/

0

BB@

0

0

eik�r
0

1

CCA D HŒ001


0

BB@

0

0

�ei.kxyCkyxCkzz/

0

1

CCA D

0

BB@

0

0

b

0

1

CCA e
i.kxyCkyxCkzz/ı�.z/:

(3.26)

On the other hand

D.�v/HŒ001


0

BB@

0

0

eik�r
0

1

CCA D D.�v/

0

BB@

0

0

�b
0

1

CCA ı�.z/e
ik�r D

0

BB@

0

0

b

0

1

CCA e
i.kxyCkyxCkzz/ı�.z/:

(3.27)

In this way we proved that the symmetry of the interface Hamiltonian,HŒ001
, is C2v .
Similarly, it can be shown that the symmetry of HŒ110
 C HŒ110
 C HŒ110
 C HŒ110


term is C2v too. Consequently, if the interface effects are included, the symmetry of
the model will be reduced from an artificially high C4v to correct C2v.

3.5 The 14-Band k�p Hamiltonian

In the previous section, we have demonstrated that the inclusion of interface effects
leads to the correct symmetry of the model. In this section, we will analyze how
the inclusion of bands beyond the standard 8 bands affects the symmetry. For this
purpose, we will investigate the 14-band Hamiltonian which includes the second
conduction band �5c (see Fig. 3.1) in addition to the standard 8 bands.

The 14-band k�p Hamiltonian in the basis that consists of states that originate
from p bonding and antibonding (denoted as pb and pa) and s antibonding (denoted
as sa) states of the atoms in the bulk, see Fig. 3.1:

f jpx;a "i; jpy;a "i; jpz;a "i; jsa "i; jpx;b "i; jpy;b "i; jpz;b "i;
jpx;a #i; jpy;a #i; jpz;a #i; jsa #i; jpx;b #i; jpy;b #i; jpz;b #ig; (3.28)

where " and # denote spin-up and spin-down states respectively, reads

H D
0

@
j "i j #i
G 0

0 G

1

AC
0

@
j "i j #i
Gso �

�� � G�so

1

A ; (3.29)
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Γ
5v

Γ
1c

Γ
5c

P
2

P
0

p-bonding

s-anti-bonding

p-anti-bonding

P
1

Fig. 3.1 The scheme of the
band structure of the material
with zincblende crystal
structure around the � point
in the first Brillouin zone,
including the coupling
elements between the relevant
bands in the 14-band k�p
Hamiltonian

where

G D

0

BBBBBBBBBB@

jpx;ai jpy;ai jpz;ai jsai jpx;bi jpy;bi jpz;bi
Epa 0 0 iP1kx 0 �iP2kz �iP2ky

Epa 0 iP1ky �P iP2kz 0 �iP2kx
Epa iP1kz �iP2ky �iP2kx 0

Esa iP0kx iP0ky iP0kz

Epx;b W1 W2
Epy;b W3

Epz;b

1

CCCCCCCCCCA

; (3.30)

GsoD

0

BBBBBBBBBBB@

jpx;ai jpy;ai jpz;ai jsai jpx;bi jpy;bi jpz;bi
2
3�so.pa/ � i3�so.pa/ 0 0 0 i

3�cf 0
2
3�so.pa/ 0 0 � i3�cf 0 0

2
3�so.pa/ 0 0 0 0

0 0 0 0

� 13�so.pb/ � i3�so.pb/ 0

� 13�so.pb/ 0

� 13�so.pb/

1

CCCCCCCCCCCA

and

� D

0

BBBBBBBBBB@

jpx;ai jpy;ai jpz;ai jsai jpx;bi jpy;bi jpz;bi
0 0 1

3�so.pa/ 0 0 0 � 13�cf

0 0 � i3�so.pa/ 0 0 0 i
3�cf

� 13�so.pa/
i
3�so.pa/ 0 0 1

3�cf � i3�cf 0

0 0 0 0 0 0 0

0 0 � 13�cf 0 0 0 1
3�so.pb/

0 0 i
3�cf 0 0 0 � i3�so.pb/

1
3�cf � i3�cf 0 0 � 13�so.pb/

i
3�so.pb/ 0

1

CCCCCCCCCCA

:



3 Symmetries in Multiband Hamiltonians for Semiconductor Quantum Dots 97

The terms in the previous equations are given as:

Epa D E.�5c/; Esa D E.�1c/C
� „2
2m0

�
�ck

2

Epx;b D E.�5v/ � .P CQ/�
p
3

2
.R� CR/;

Epy;b D E.�5v/ � .P CQ/C
p
3

2
.R� CR/

Epz;b D E.�5v/ � .P � 2Q/; Eg0 D E.�1c/� E.�5v/;
Eg1 D E.�5c/� E.�5v/

W1 D �i
p
3

2
.R �R�/; W2 D �

p
3

2
.S C S�/; W3 D �i

p
3

2
.S � S�/

P D Pk C P�; Q D Qk CQ�; R D Rk CR�; S D Sk C S�

Pk D
� „2
2m0

�
�1.k

2
x C k2y C k2z /; Qk D

� „2
2m0

�
�2.k

2
x C k2y � 2k2z /

Rk D
� „2
2m0

�p
3Œ�2.k

2
x � k2y/� 2i�3kxky
; Sk D

� „2
2m0

�p
6�3.kx � iky/kz

P� D �av.�xx C �yy C �zz/; Q� D �bax
2
.�xx C �yy � 2�zz/

R� D �
p
3

2
bax.�xx � �yy/C idax�xy; S� D �daxp

2
.�zx � i�yz/

EP0 D 2m0P
2
0 =„2; EP1 D 2m0P

2
1 =„2; EP2 D 2m0P

2
2 =„2

�c D 1

m�
� EP0

3

�
2

Eg0
C 1

Eg0 C�so.pb/

�

C EP1

3

�
1

Eg1 �Eg0 C
2

Eg1 �Eg0 C�so.pa/

�
;

�1 D�L1 �
1

3

EP0

Eg0 C�so.pb/=3
� 2
3

EP2

Eg1 C�so.pb/=3C 2�so.pa/=3
;

�2 D�L2 �
1

6

EP0Eg0 C�so.pb/=3

C
1

6

EP2

Eg1 C�so.pb/=3C 2�so.pa/=3
;

�3 D�L3 �
1

6

EP0Eg0 C�so.pb/=3

�
1

6

EP2

Eg1 C�so.pb/=3C 2�so.pa/=3
:
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Fig. 3.2 Electronic structure of unstrained GaAs bulk material calculated using the 8-band k�p (a)
and 14-band k�p (b) Hamiltonian along K–� –X path in the first Brillouin zone

E.�5c/, E.�1c/, E.�5v/ are the bulk band energies at the � point, m0 the electron
mass, „ the reduced Planck’s constant, kx , ky , kz denote the components of the
wave vector along the crystallographic directions [100], [010], and [001] in the
vicinity of the � point, P0, P1, P2 are the momentum matrix elements between
�1c and �5v , �5c and �1c , and �5c and �5v states respectively, EP0, EP1, EP2
are the Kane energies related to P0, P1 and P2 respectively, �L1 ; �

L
2 ; �

L
3 are the

Luttinger parameters, m� is the effective mass in the conduction band, �SO.pb/ is
the spin-orbit splitting between p-bonding states in the valence band, �SO.pa/ is
the spin-orbit splitting between p-antibonding states in the conduction band, �cf

is the crystal field splitting, �ij are the strain tensor components, ac and av are the
conduction band and valence band hydrostatic deformation potentials respectively,
bax and dax are the shear deformation potentials along the [001] and [111] direction
respectively. The values of relevant material parameters are given in the Appendix.

In Fig. 3.2 we plot the electronic structure of unstrained GaAs calculated using
the 8-band k�p (a) and 14-band k�p (b) Hamiltonian along the K–� –X path in the
first Brillouin zone. It is visible that additional band couplings in the 14-band k�p
Hamiltonian prevent dangerous appearance of spurious solutions that might exist in
the 8-band k�p Hamiltonian. These spurious solutions in the 8-band k�p Hamiltonian
are related to appearance of the artificial folding points in the lowest conduction
band due to small basis size of such a Hamiltonian.
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3.6 Symmetry of the 14-Band k�p Hamiltonian

3.6.1 Symmetry of the 8-Band k�p Hamiltonian

To establish the symmetry of the kinetic part of the 14-band k�p Hamiltonian we
start with the analysis of the 8-band k�p Hamiltonian, which is a constituent part of
the 14-band Hamiltonian. The kinetic part of the 8-band k�p Hamiltonian consists
of two identical uncoupled 4 	 4 blocks. In the basis

fu1; : : : ; u4g D fjsai; jpx;bi; jpy;bi; jpz;big (3.31)

these blocks read:

H4 D

0

BB@

Ec.r/ ikxP0 ikyP0 ikzP0
Ev.r/ 0 0

Ev.r/ 0

Ev.r/

1

CCA ; (3.32)

where Ec.r/ D Esa.r/ and Ev.r/ D Epb .r/. In (3.32), the effect of remote bands
was not included as its inclusion does not affect the symmetry considerations. We
will show that this Hamiltonian applied to square-based pyramidal quantum dots
has C4v symmetry. To do this, it is sufficient to show that the blocks H4 commute
with the generators of the group—the rotation R�=2 and the reflection �v .

To represent the actions of the rotation operators on the envelope function spinors,
it is more convenient to work in the basis of eigenstates of the z-component of the
orbital quasi-angular momentum (3.18) where the blockH4 reads

H4 D

0
BB@

Ec.r/ ikCP0 ik�P0 ikzP0
Ev.r/ 0 0

Ev.r/ 0

Ev.r/

1
CCA ; (3.33)

where k˙ D 1p
2

�
kx ˙ iky

�
. The action of the representation of the rotation R' ,

where ' D n�=2 on the spinors is given by (3.20).
To prove that D.R'/ commutes with H4 it is sufficient to show that operators

H4D.R'/ and D.R'/H4 give the same result when acting on the basis states
.eik�r; 0; 0; 0/>, .0; eik�r; 0; 0/>, .0; 0; eik�r; 0/>, .0; 0; 0; eik�r/> that span the Hilbert
space of spinors. By explicitly performing the calculation one gets on the one hand

H4D.R'/

0

BB@

eik�r
0

0

0

1

CCA D H4

0

BBB@

ei.R
�1
' k/�r
0

0

0

1

CCCA D

0

BBB@

Ec.r/
�iP0.R�1' k/�
�iP0.R�1' k/C
�iP0.R�1' k/z

1

CCCA e
i.R�1

' k/�r (3.34)
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and on the other hand

D.R'/H4

0

BB@

eik�r
0

0

0

1

CCA D D.R'/

0

BB@

Ec.r/
�iP0k�
�iP0kC
�iP0kz

1

CCA e
ik�r D

0

BB@

Ec.R'r/
e�i'.�i/P0k�
ei'.�i/P0kC
�iP0kz

1

CCA e
i.R�1

' k/�r:

(3.35)

Due to the symmetry of the dot shape it follows that Ec.r/ D Ec.R'r/. Further-
more, one can straightforwardly show that .R�1' k/� D e�i'k� and .R�1' k/C D
ei'kC. From these identities, it follows that

�
D.R'/H4 �H4D.R'/

�

0

BB@

eik�r
0

0

0

1

CCA D 0: (3.36)

Using the same procedure, one can also show that D.R'/H4 and H4D.R'/

give the same result when acting on the other basis vectors .0; eik�r; 0; 0/>,
.0; 0; eik�r; 0/>, .0; 0; 0; eik�r/>, which completes the proof that D.R'/H4 and
H4D.R'/ commute.

Next, we proceed with the proof that H4 commutes with the operatorD.�v/. For
this proof, it is convenient to work in the basis (3.23). The Hamiltonian in this basis
reads

H4 D

0

BBB@

Ec.r/ i 1p
2
.kx C ky/P0 i 1p

2
.kx � ky/P0 ikzP0

Ev.r/ 0 0

Ev.r/ 0

Ev.r/

1

CCCA : (3.37)

In this basis, the action of the operator D.�v/ on the spinor is given by (3.25). It
follows

H4D.�v/

0

BB@

eik�r
0

0

0

1

CCADH4

0

BB@

ei.kxyCkyxCkzz/

0

0

0

1

CCAD

0

BBB@

Ec.r/
�iP0

1p
2
.kxCky/

�iP0
1p
2
.ky�kx/

�iP0kz

1

CCCA e
i.kxyCkyxCkzz/:

(3.38)

On the other hand
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D.�v/H4

0

BB@

eik�r
0

0

0

1

CCA D D.�v/

0

BBB@

Ec.r/
�iP0 1p

2
.kx C ky/

�iP0
1p
2
.kx � ky/

�iP0kz

1

CCCA e
ik�r

D

0

BBB@

Ec.y; x; z/
�iP0

1p
2
.kx C ky/

�iP0
1p
2
.kx � ky/ � .�1/
�iP0kz

1

CCCA e
i.kxyCkyxCkzz/

(3.39)

and consequently

ŒD.�v/H4 �H4D.�v/


0

BB@

eik�r
0

0

0

1

CCA D 0: (3.40)

One can straightforwardly check this equality for other basis vectors .0; eik�r; 0; 0/>,
.0; 0; eik�r; 0/>, .0; 0; 0; eik�r/>. That completes the proof that the kinetic part of the
8-band k�p Hamiltonian is of C4v symmetry.

3.6.2 Symmetry of the Whole 14-Band Hamiltonian

We proceed with the analysis of the kinetic part of the 14-band k�p Hamiltonian.
This Hamiltonian consists of two uncoupled 7	7 blocks that read (excluding the
remote band effects that do not affect the symmetry considerations):

H7 D

0

BBBBBBBBBBB@

jpx;ai jpy;ai jpz;ai jsai jpx;bi jpy;bi jpz;bi
Ec2.r/ 0 0 iP1kx 0 �iP2kz �iP2ky

Ec2.r/ 0 iP1ky �iP2kz 0 �iP2kx
Ec2.r/ iP1kz �iP2ky �iP2kx 0

Ec.r/ iP0kx iP0ky iP0kz

Ev.r/ 0 0

Ev.r/ 0

Ev.r/

1

CCCCCCCCCCCA

: (3.41)

whereEc2.r/ D Epa.r/. The 4	4 block that contains the elementsP1 is of the same
form as H4 and therefore commutes with the operators that represent the elements
of the C4v group. One needs therefore to understand the symmetry properties of the
block that contains the P2 elements only. This block reads:
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H7 D

0
BBBBBBBBBBB@

jpx;ai jpy;ai jpz;ai jsai jpx;bi jpy;bi jpz;bi
0 0 0 0 0 �iP2kz �iP2ky

0 0 0 �iP2kz 0 �iP2kx
0 0 �iP2ky �iP2kx 0

0 0 0 0

0 0 0

0 0

0

1
CCCCCCCCCCCA

: (3.42)

The most convenient basis to represent the action of the rotation operators is the
basis

fu1; : : : ; u7g D f 1p
2

�jpx;ai C i jpy;ai
�
; 1p

2

�jpx;ai � i jpy;ai
�
; jpz;ai; jsai;

1p
2

�jpx;bi C i jpy;bi
�
; 1p

2

�jpx;bi � i jpy;bi
�
; jpz;big: (3.43)

In this basis, the H7 block reads

H7 D

0

BBBBBBBBB@

0 0 0 0 0 �P2kz �P2kC
0 0 0 P2kz 0 P2k�
0 0 P2k� �P2kC 0

0 0 0 0

0 0 0

0 0

0

1

CCCCCCCCCA

: (3.44)

The action of the rotation operator on the spinor is given as

D.R'/

0

BBBBBBBBB@

 1.r/
 2.r/
 3.r/
 4.r/
 5.r/
 6.r/
 7.r/

1

CCCCCCCCCA

D

0

BBBBBBBBB@

e�i' 1.R'r/
ei' 2.R'r/
 3.R'r/
 4.R'r/

e�i' 5.R'r/
ei' 6.R'r/
 7.R'r/

1

CCCCCCCCCA

: (3.45)

One then gets on the one hand
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H7D.R'/

0

BBBBBBBBB@

eik�r
0

0

0

0

0

0

1

CCCCCCCCCA

D H7

0

BBBBBBBBB@

e�i'ei.R�1
' k/�r

0

0

0

0

0

0

1

CCCCCCCCCA

D

0

BBBBBBBBB@

0

0

0

0

0

�e�i'P2.R�1' k/z
e�i'.�P2/.R�1' k/�

1

CCCCCCCCCA

ei.R
�1
' k/�r

(3.46)

and on the other hand

D.R'/H7

0
BBBBBBBBB@

eik�r
0

0

0

0

0

0

1
CCCCCCCCCA

D D.R'/

0
BBBBBBBBB@

0

0

0

0

0

�P2kz

�P2k�

1
CCCCCCCCCA

eik�r D

0
BBBBBBBBB@

0

0

0

0

0

�ei'P2kz

�P2k�

1
CCCCCCCCCA

ei.R
�1
' k/�r: (3.47)

It then follows that

�
D.R'/H7 �H7D.R'/

�

0
BBBBBBBBB@

eik�r
0

0

0

0

0

0

1
CCCCCCCCCA

D 0 (3.48)

only if ei' D e�i' , which implies ' D n� . One can further straightforwardly
extend this result to other basis vectors.

The most convenient basis to represent the action of the D.�v/ operator is the
basis

fu1; : : : ; u7g D f 1p
2

�jpx;ai C jpy;ai
�
; 1p

2

�jpx;ai � jpy;ai
�
; jpz;ai; jsai;

1p
2

�jpx;bi C jpy;bi
�
; 1p

2

�jpx;bi � jpy;bi
�
; jpz;big: (3.49)
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In this basis, the H7 block reads

H7 D

0
BBBBBBBBBB@

0 0 0 0 �iP2kz 0 �ip
2
P2.kx C ky/

0 0 0 0 iP2kz
1p
2
.�i/P2.ky � kx/

0 0 �ip
2
P2.kx C ky/ �ip

2
P2.ky � kx/ 0

0 0 0 0

0 0 0

0 0

0

1
CCCCCCCCCCA

: (3.50)

In the basis (3.49), the action of the operatorD.�v/ on the spinor is given as

D.�v/

0
BBBBBBBBB@

 1.x; y; z/
 2.x; y; z/
 3.x; y; z/
 4.x; y; z/
 5.x; y; z/
 6.x; y; z/
 7.x; y; z/

1
CCCCCCCCCA

D

0
BBBBBBBBB@

 1.y; x; z/
� 2.y; x; z/
 3.y; x; z/
 4.y; x; z/
 5.y; x; z/
� 6.y; x; z/
 7.y; x; z/

1
CCCCCCCCCA

: (3.51)

It follows

H7D.�v/

0

BBBBBBBBB@

eik�r
0

0

0

0

0

0

1

CCCCCCCCCA

D H7

0

BBBBBBBBB@

ei.kxyCkyxCkzz/

0

0

0

0

0

0

1

CCCCCCCCCA

D

0
BBBBBBBBB@

0

0

0

0

iP2kz

0
1p
2
iP2.kx C ky/

1
CCCCCCCCCA

ei.kxyCkyxCkzz/: (3.52)

On the other hand
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D.�v/H7

0

BBBBBBBBB@

eik�r
0

0

0

0

0

0

1

CCCCCCCCCA

D D.�v/

0

BBBBBBBBB@

0

0

0

0

iP2kz

0
1p
2
iP2.kx C ky/

1

CCCCCCCCCA

eik�r

D

0

BBBBBBBBB@

0

0

0

0

iP2kz

0
1p
2
iP2.kx C ky/

1

CCCCCCCCCA

ei.kxyCkyxCkzz/ (3.53)

and consequently

ŒD.�v/H7 �H7D.�v/


0

BBBBBBBBB@

eik�r
0

0

0

0

0

0

1

CCCCCCCCCA

D 0: (3.54)

One can further show that this result is valid also for other basis vectors. This
completes the proof that the symmetry of the kinetic part of the 14-band k�p
Hamiltonian is C2v.

3.7 Plane Wave Representation

Within the plane wave method [5, 7, 16, 26, 39, 79, 81], the envelope functions are
expanded as a linear combination of plane waves ak.r/ D eik�r

 b.r/ D
X

k

Abkak.r/; (3.55)

with the goal of finding the coefficients Abk in the expansion. The index b takes the
integer values b 2 f1; : : : ; Nbg, where Nb is the number of bands in the multiband
Hamiltonian. The k-space is discretized by embedding the dot in a rectangular box
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of dimensions L.e/x , L.e/y , and L.e/z (and volume ˝.e/ D L
.e/
x L

.e/
y L

.e/
z ) and choosing

the k-vectors in the form k D 2�.nx=L
.e/
x ; ny=L

.e/
y ; nz=L

.e/
z /, where nx , ny and

nz are integers. A wave vector cutoff is typically made by imposing the conditions
jnx j � m.e/

x , jny j � m.e/
y , and jnzj � m.e/

z for all bands.
After making the substitution of (3.55) into the Hamiltonian eigenvalue problem

one gets

X

bk

Hib.q;k/Abk D EAiq ; (3.56)

where

Hib.q;k/ D 1

˝.e/

Z

�.e/
d3raq.r/

�hibak.r/: (3.57)

Several characteristics have contributed to the popularity of the plane wave
method: plane-wave representation of all operators in the envelope Hamiltonian is
analytical, strain distribution can be calculated analytically in Fourier space [4], and
a relatively small number of plane waves is sufficient for good accuracy.

The reader interested in other numerical methods for solving the eigenvalue
problem of multiband Hamiltonian, such as the finite difference method [29, 47,
56, 76] and other wave function expansion methods (where the eigenfunctions of
the particle in a cylinder with infinite walls [46,77] or eigenfunctions of a harmonic
oscillator [66] are used as basis set) is referred to relevant literature.

However, there is one serious shortcoming of the plane wave method when its
application to single quantum dot structures is concerned: it inherently assumes
periodic boundary conditions. In such a way, it artificially introduces translational
symmetry of the system. This leads to artificial physical interaction of a quantum
dot with its periodically replicated images through: (a) electronic coupling between
states of neighboring dots; (b) propagation of strain field of neighboring dots; (c)
Coulomb interaction between carrier in the dot with carriers in its artificial images.

Let the length scales where electronic coupling, strain field and Coulomb
interactions become negligible respectively be L.e/, L.s/ and L.c/, see Fig. 3.3 for
notation. The wave function decays exponentially away from the dot, the strain
field has a slower polynomial decay, while the long range Coulomb interaction has
the slowest decay. Therefore, the inequality L.e/ < L.s/ < L.c/ holds. In order
to eliminate the effects of the interaction with images one would have to choose
the embedding box of dimensions L.c/ which can be quite large. This leads to the
necessity of using a larger number of plane waves to accurately represent the wave
function in the quantum dot region, which is undesirable since a large matrix needs
to be diagonalized then.

We will show in the next section that the embedding box of the dimensions L.e/

can still be used provided that a proper modification in the calculation procedure is
performed.
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a

b

Fig. 3.3 Top view (a) and
side view (b), schematic
diagram of an InAs/GaAs
quantum dot in the shape of a
pyramid, embedded in three
“Russian doll” type nested
embedding boxes that are
used for electronic structure
[superscript .e/], strain
[superscript .s/] and
Coulomb integral calculations
[superscript .c/], as described
in the main text

3.8 Removal of Artificial Translational Symmetry Effects
in Plane Wave Calculations

The essential quantities needed for the description of few particle states (such
as excitons and multiexcitons) in quantum dots are the Coulomb integrals. The
Coulomb integral among the states i , j , k and l is defined as

Vijkl D
NbX

bD1

NbX

b0D1

Z .e/

�

d3r
Z .e/

�

d3r 0 .i/b .r/
� .j /b .r/V .jr � r 0j/ .k/b0 .r

0/� .l/b0 .r
0/

(3.58)

where

V.u/ D e2

4�"u
;
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with " being the static dielectric constant. The integral in Eq. (3.58) can be rewritten
as

Vijkl D
Z .e/

�

d3r
Z .e/

�

d3r 0Bij.r/V .jr � r 0j/Bkl.r
0/; (3.59)

where

Bij.r/ D
NbX

bD1
 
.i/

b .r/
� .j /b .r/: (3.60)

Next, we define the plane wave expansion of Bij.r/ as

Bij.r/ D
X

q2inv˝.e/

Bij.q/e
iq�r : (3.61)

Replacing the last expression into Eq. (3.59) one obtains

Vijkl D
X

q2inv˝.e/

Bij.q/
X

q02inv˝.e/

Bkl.q
0/
Z .e/

�

d3r
Z .e/

�

d3r 0eiq�rV.jr � r 0j/eiq0�r 0

:

(3.62)

The Bij.q/ term can be expressed in terms of the coefficients in the envelope
function plane wave expansion as

Bij.q/ D
NbX

bD1

X

q12inv˝.e/

A
.i/�
q1;b
A
.j /

q1Cq;b: (3.63)

Next, we introduce an approximation that changes the domain of integration in one
of the integrals in Eq. (3.62) from ˝.e/ to the whole space (which is valid when
˝.e/ is large enough) and make the replacement of variables from r and r 0, to r and
u D r � r 0

V
.a0/

ijkl D
X

q2inv˝.e/

Bij.q/
X

q02inv˝.e/

Bkl.q
0/
"Z .e/

�
d3reiq�reiq0�r

#�Z
d3uV.juj/e�iq0�u

�
:

(3.64)

Exploiting the relations

Z
d3ue�iq0uV.juj/ D e2

"q02
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and

1

˝.e/

Z .e/

�

d3rei.qCq0/r D ıqCq0;0

one gets

V
.a0/

ijkl D ˝.e/
X

q2inv˝.e/

q¤0

Bij.q/Bkl.�q/
e2

"q2
: (3.65)

As already pointed out, V .a0/
ijkl is only an approximation to Vijkl. It is therefore very

important to understand the nature of error introduced by using Eq. (3.65). One can
interpret the initial expression given by Eq. (3.58) as the energy of the electrostatic
interaction between the complex charges Bij.r/ and Bkl.r/, both being located in
volume ˝.e/. On the other hand, the expression given by Eq. (3.64) is the energy
of the electrostatic interaction between Bij.r/ located in volume ˝.e/ and Bkl.r/,
located in the whole space with periodicity of the box ˝.e/. As a consequence,
the error that is introduced by calculating Vijkl using Eq. (3.65) stems from the
interactions among the charge Bij.r/ of a single quantum dot and periodically
replicated charges Bkl.r/ of neighboring periodically replicated array of dots.

Now that we understand the nature of error in Eq. (3.65), we can develop a way
to systematically correct it. We define the functionsB 0ij.r/ equal to Bij.r/ inside the

box ˝.e/ and 0 in the region outside the box ˝.e/ and inside the box ˝.c/ (sides
L
.c/
x , L.c/y , L.c/z ) that is larger than˝.e/. Fourier transform of B 0ij.r/ on the box˝.c/

is then defined as

B 0ij.r/ D
X

Q2inv˝.c/

B 0ij.Q/eiQ�r : (3.66)

The relation between the Fourier transforms of Bij and B 0ij is given as

B 0ij.Q/ D
1

˝.c/

X

q2inv˝.e/

Bij.q/I0.�L.e/x =2; L.e/x =2;Qx � qx/ 	

	I0.�L.e/y =2; L.e/y =2;Qy � qy/I0.�L.e/z =2;L.e/z =2;Qz � qz/:

(3.67)

where

I0.a; b; k/ D
Z b

a

dxeikx D
(

eikb�eika

ik k ¤ 0
b � a k D 0 (3.68)
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Eq. (3.59) can be recast as

Vijkl D
Z .c/

�

d3r
Z .c/

�

d3r 0B 0ij.r/V .jr � r 0j/B 0kl.r
0/: (3.69)

Applying the same procedure as in the derivation of Eq. (3.65), one obtains

V
.a1/

ijkl D ˝.c/
X

q2inv˝.c/

q¤0

B 0ij.q/B 0kl.�q/
e2

"q2
: (3.70)

Eq. (3.70) differs from Eq. (3.65) since a different approximation was used in its
derivation. The integral over the region ˝.c/ was replaced by the integral over the
whole space, which is a better approximation than the replacement of the integral
over the region ˝.e/ in the derivation of Eq. (3.65), since the region ˝.c/ is larger
than ˝.e/. Consequently, the error introduced by calculating Vijkl using Eq. (3.70)
now originates from the interactions among the charge Bij.r/ of a single quantum
dot and periodically replicated charges Bkl.r/ with periodicity defined by the box
˝.c/ rather than ˝.e/. Therefore, Eq. (3.70) can be systematically improved by an
increase in ˝.c/, without increasing the number of plane waves needed to represent
the wave functions.

We note that a similar philosophy can be used to remove the effects of strain field
introduced by neighboring boxes. The reader interested in details of this procedure
is referred to [89].

Another way to correct the error introduced by Coulomb interactions is to
perform a multipole expansion of the difference between the Coulomb integral and
its approximation given by Eq. (3.70), i.e. to perform the Makov-Payne correction.
Such a procedure has been previously applied in ab initio [43] and empirical
pseudopotential[24] calculations of aperiodic systems. The calculated value of the
Coulomb integral can then be corrected by adding the first few terms (monopole,
dipole and quadrupole) in the multipole expansion as

V final
ijkl D V .a1/

ijkl �
e2

4�"

�
qijqklamad C 4�

3˝.c/
d ij � d kl � 2�

3˝.c/
.qijQkl C qklQij/

�
;

(3.71)

where

qij D
Z

˝.c/

B 0ij.r/d3r D ıij; (3.72)

d ij D
Z

˝.c/

B 0ij.r/rd3r ; (3.73)

Qij D
Z

˝.c/

B 0ij.r/r2d3r ; (3.74)
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are the monopole, dipole and quadrupole terms respectively. The Madelung term
amad is defined in terms of the Ewald sums and the self-interaction correction term
as

amad D
X

R2dir˝.c/
R¤0

erfc.R�/

R
C 4�

˝.c/

X

k2inv˝.c/
k¤0

exp.�k2=4�2/
k2

� 2 �p
�
� �

�2˝.c/
:

The Ewald parameter � controls the rate of convergence of the sums. A reliable

value that provides fast convergence is � D �=
q
L
.c/
x L

.c/
y .

Next, we illustrate the described methods for the correction of the Coulomb
integral calculation by analyzing the dependence of the Coulomb integrals
on ˝.c/ (dimensions .L.c/x ; L

.c/
y ; L

.c/
z /). A set of calculations was done where

.m
.c/
x ;m

.c/
y ;m

.c/
z / (used to determine the wave vector cutoff in Eq. (3.71)) was kept

at a sufficiently large value of .35; 35; 50/ and the box dimensions were changed.
Several direct Coulomb integrals Jab D Vaabb are shown in Fig. 3.4.

As seen from Fig. 3.4, the direct integrals without corrections calculated from
Eq. (3.70) converge very slowly towards the numerically exact value obtained by
performing the six dimensional integration in real space. For example, the box with
dimension .L.c/x ; L

.c/
y ; L

.c/
z / D .100; 100; 100/ nm is sufficient only for precision

of the order of 20 % and the box .L.c/x ; L
.c/
y ; L

.c/
z / D .200; 200; 200/ nm gives

a precision of the order of 10 %. Following this procedure, numerically exact
value can be approached within 3 % by reasonable systematical enlargement of
the V .c/ box. Further improvement in the accuracy of Jab appears to be very
difficult.

The results obtained by adding the monopole correction only in (3.71), are
sufficient for the degree of accuracy one is usually interested in. The box
.L

.c/
x ; L

.c/
y ; L

.c/
z / D .60; 60; 60/ nm is then sufficient for the precision of 1 %

or better for the direct Coulomb integrals. The results with the three corrections
involved are nearly indistinguishable from the numerically exact values for the
direct Coulomb integrals. The box .L.c/x ; L

.c/
y ; L

.c/
z / D .60; 60; 60/ nm then already

gives the precision better than 0.1 % for the values of direct integrals.
We illustrate the use of the methods developed by performing a full configuration

interaction calculation of exciton and biexciton states. The rank of the configuration
interaction matrix is

N CI
r D

 
Ne

ne

!
�
 
Nh

nh

!
(3.75)

where lowestNe and topmostNh states in conduction and valence band respectively
form a basis of single-particle states for configuration interaction, while ne and
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Fig. 3.4 The dependence of the values of Coulomb integrals in dot (a) of square-based truncated
pyramidal shape with the bottom base width bb D 22 nm, the top base width bt D 5:5 nm,
and the height h D 4:425 nm, quantum dot (b) of truncated conical shape with the bottom
base radius Rb D 11 nm, the top base radius Rt D 2:75 nm and the height of h D 4:425 nm,
and quantum dot (c) in the shape of a lens with the radius R D 15 nm and the height h D
4:425 nm on the size of the embedding box dimension L

.c/
x . The calculation was done with

.m
.c/
x ; m

.c/
y ; m

.c/
z / D .35; 35; 50/, .L.c/x ; L

.c/
y ; L

.c/
z / D .L

.c/
x ; L

.c/
x ; L

.c/
x /. Je0;h0 (squares), Je1;h0

(triangles), Je0;h1 (circles), and Je1;h1 (diamonds). The results without corrections (open symbols),
the results with the monopole correction only (open symbols with cross), and the results with
monopole, dipole and quadrupole correction (solid symbols) are shown. The results obtained
by real space integration are indistinguishable from the results obtained by including the three
corrections

nh are the number of electrons and holes that form the many-body complex. The
number of Coulomb integrals needed to construct the configuration Hamiltonian
is .Ne C Nh/

4. By exploiting the relations Vjilk D V �ijkl and Vlkji D V �ijkl, the
whole problem can be reduced to the calculation of Œ.Ne CNh/.Ne CNh C 1/=2
2
integrals. Additionally, symmetry considerations imply that only Coulomb integrals
Vijkl whose wave functions satisfy the conservation of the total quasi-angular
momentum:

fmj Cml � mi Cmk .mod2/g (3.76)
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are nonzero. This additionally reduces the number of integrals that need to be
calculated by a factor of 2. In our case, all 354,025 Coulomb integrals among
the states from the set including first Ne D 14 electron and first Nh D 20 states
were calculated. The calculation of such a big number of Coulomb integrals is
performed efficiently by exploiting the following two facts: (1) Bij.q/, (3.63), that
enters the expression for Coulomb integrals, (3.70), via (3.67) and the expressions
for multipole corrections (3.72), (3.73), (3.74), needs to be calculated just .Ne C
Nh/.Ne C Nh C 1/=2 times; (2) summation in (3.67) over vectors q, which should
be in principle done in the domain jnr j � 2m.e/

r , can be done in the reduced domain
jnr j � m.e/

r , since the relative error introduced in Vijkl by this truncation is < 10�5.
One should also note that when a particular set of Coulomb integrals is calculated,
it can be used for configuration interaction calculations with different values of ne
and nh, without the need of recalculating the integrals.

In order to determine the number of single-particle states sufficient for the use in
configuration interaction expansion, two sets of calculations were performed. In the
first set, the number of hole states was set to Nh D 20 and Ne was varied. In the
second set, the number of electron states was set toNe D 14 andNh was varied. The
results are shown in Fig. 3.5. One can estimate from the results presented in Fig. 3.5
that Ne D 10 is sufficient for convergence of exciton ground state of the order of
0.2 meV and biexciton ground state of the order of 0.5 meV. For the same degree of
precision, a larger number of hole states Nh D 14 is needed, as a consequence of
smaller energy difference among hole single particle states.

3.9 Symmetries of Single Particle States in Quantum Dots

In this section, we show first how one can exploit the symmetry to block diagonalize
the Hamiltonian matrix, which leads to a more efficient solution of its eigenvalue
problem. Then we show how one can identify the symmetry group of the Hamil-
tonian and analyze the symmetries of various Hamiltonians that describe the same
physical system.

Symmetry-based block diagonalization of the quantum dot k�p Hamiltonian
matrix was performed for the first time in [88] and [87], for the cases of fourfold
and sixfold symmetry respectively. The same approach can be extended to M -fold
symmetry. Block diagonalization is achieved by representing the Hamiltonian in the
so called symmetry adapted basis. If we denote the plane wave basis state where
the envelope function of band b is equal to ak.r/ and the other envelope functions
are zero as jk; bi, This is done by state where the envelope function of band b
is equal to ak.r/ and the other envelope functions are zero) to the basis of the
states characterized by a given value of the z-component of the total quasi-angular
momentum mf . In the case of M -fold symmetry, this basis is composed of the
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Fig. 3.5 The dependence of exciton and biexciton energy in quantum dot (a) from Fig. 3.4 on the
number of electron Ne states (when Nh D 20) and hole Nh (when Ne D 14) states used for
configuration interaction expansion

following elements the vectors of the symmetry adapted basis in the case of the
system with M -fold symmetry are given as

jAmf ;k; bi D
1p
M

M�1X

lD0
eil�.mf�Jz.b//jRl�k; bi (3.77)

with k-vectors satisfying k2x C k2y > 0 and 0 � ky < tan.�/kx ,

jAmf ;k; bi D jk; bi (3.78)

with k-vectors satisfying kx D ky D 0 and the band b satisfying .Jz.b/ �
mf /mod M D 0. In previous equations � D 2�=M , Jz.b/ is the z-component
of the total quasi-angular momentum of the Bloch function of band b, Rl�k D k0
is the vector obtained by rotation of the vector k by an angle l� around the z-axis

k0x C ik0y D eil�.kx C iky/;

k0z D kz: (3.79)
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Fig. 3.6 The scheme of the
Hamiltonian matrix in the
plane wave basis (left) and in
the symmetry adapted basis
(right)

The quasi-angular momentum of the basis state mf takes the values from the
interval [�.M � 1/=2; .M � 1/=2] with a step of 1. In the symmetry adapted basis,
the Hamiltonian matrix elements are nonzero between basis states with the samemf

only. As a consequence, the Hamiltonian matrix is block diagonal (see Fig. 3.6); it is
composed ofM smaller matrices of approximately equal size. Since diagonalization
cost of the Hamiltonian matrix is proportional to N3

r (where Nr is the rank of the
matrix), the total cost of the diagonalization is then /M 	 .Nr=M/3, which isM2

times faster than if symmetry were not used.
The symmetry of the Hamiltonian is not necessarily equal to the symmetry

of the system. In fact, there has been a belief that k � p Hamiltonians predict
a higher symmetry than the true symmetry of the system. In what follows, we
analyze the square based pyramidal quantum dot with base width to height ratio
b=h D 2 modeled with different k � p Hamiltonians. We consider the following
Hamiltonians:

(a) The 8-band k � p Hamiltonian consisting of kinetic part only [without spin-orbit
interaction and strain].

(b) The 8-band k � p Hamiltonian consisting of kinetic part with spin-orbit interac-
tion taken into account [but without strain].

(c) The 8-band k � p Hamiltonian consisting of kinetic part with interface band-
mixing effects taken into account [but without spin-orbit interaction and strain].

(d) The standard 8-band k � p Hamiltonian consisting of kinetic part with spin-orbit
interaction and strain, as well as the strain-induced piezoelectric potential. It
was assumed that piezoelectric polarization depends linearly on strain.

(e) The 8-band k � p Hamiltonian consisting of kinetic part with spin-orbit inter-
action and strain, as well as the strain-induced piezoelectric potential and the
interface Hamiltonian.

(f) The 14-band k � p Hamiltonian consisting of the kinetic part only [without spin-
orbit interaction and strain].

In what follows, we will refer to each of these Hamiltonians as models (a)-(f). We
show that the inclusion of additional bands in the Hamiltonian or the inclusion of
interface effects lead to the true symmetry of the system.

We start our considerations with model (a). The symmetry group of such a model
applied to a pyramidal square-based quantum dot is the C4v group, as demonstrated
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Table 3.2 Energies (in eV) of top six hole energy levels and bottom four electron levels, for a
square-based pyramidal InAs/GaAs quantum dot with base width b D 100 Å, and base to height
ratio b=h D 2 calculated using different models

State (a) (b) (c) (d) (e) (f)

e3 1:08163 1:06674 1:08878 1:30684 1:30772 1:03852

e2 0:99336 0:96795 1:00170 1:25044 1:25570 0:97301

e1 0:99336 0:96724 1:00074 1:23439 1:23943 0:97298

e0 0:84346 0:81808 0:85115 1:12013 1:12543 0:83509

h0 �0:06722 �0:03427 �0:06475 �0:05230 �0:05052 �0:06512
h1 �0:06722 �0:03680 �0:06698 �0:06827 �0:06699 �0:06517
h2 �0:07389 �0:03765 �0:07248 �0:07840 �0:07843 �0:07263
h3 �0:07883 �0:04244 �0:07708 �0:09115 �0:09046 �0:07700
h4 �0:08518 �0:04582 �0:08119 �0:10517 �0:10565 �0:08124
h5 �0:08518 �0:04614 �0:08360 �0:10888 �0:10859 �0:08270
The letters in the first row in the table specify the model used in the calculation

in Sect. 3.5. We discuss the signatures of symmetry of the model (a) in the energy
level structure [given in Table 3.2(a)] and the shape of the wavefunctions [presented
in Fig. 3.7(a)]. Several pairs of energy levels [(e1,e2), (h0,h1) and (h4,h5)] are
degenerate as a consequence of the fact that the C4v group has a two dimensional
representation E (the notation of [10]). The states that transform according to
this representation therefore come in pairs and are degenerate. The wave function
probability density isosurfaces also reflect the high symmetry of the system—they
all have a perfectly C4v symmetric shape.

Next, we include spin-orbit interaction in model (a) and get model (b). The eigen-
states of the Hamiltonian of such a model transform according to a representation of
the doubleC4v group which is a direct product of the representation of the singleC4v
group and the representation D1=2 according to which the spin functions transform
([10], p. 142). When the representation obtained from the direct product is reducible,
the inclusion of spin-orbit interaction leads to the removal of degeneracy of energy
levels. Indeed, the product E 	 D1=2 is equal to E 01 C E 02 (the notation of [10]).
While, it is well understood that the effect of spin-orbit interaction on the states in
the valence band is rather strong, we would like to point out a less known fact that
the spin-orbit interaction also causes the splitting of the e1 and e2 states [shown in
Table 3.2(b)]. The existence of this splitting was established in [88] for pyramidal
quantum dots and later on analyzed again in [20] for lens-shaped quantum dots. It
is important to note here that symmetry reduction is not the cause of this energy
level splitting effect. Indeed, one can see in Fig. 3.7b that the probability density
isosurfaces exhibit a perfect C4v symmetry.

To understand the effect of interface terms in the Hamiltonian on the symmetry of
the model, we analyze model (c). One can derive analytically that the [001] interface
term leads to the reduction of symmetry from C4v to C2v (see Sect. 3.4). Similar
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Fig. 3.7 The wavefunctions squared for top six hole states and bottom five electron states for a
square-based pyramidal InAs/GaAs quantum dot with base width b D 100 Å, and base to height
ratio b=h D 2 calculated using different models. The letters (a)–(c), (e)–(f) specify the model
used in the calculation. The isosurfaces are plotted at 25 % (transparent) and 75 % of the maximal
charge density
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derivations also show that the joint effect of other four interfaces leads to the same
symmetry reduction. Since the C2v group has one dimensional irreducible repre-
sentations only, no double degenerate eigenstates can be present. Consequently, the
effect of interfaces leads to splitting of degenerate states by typically 1–3 meV, as
shown in Table 3.2(c). The shapes of the wave function moduli isosurfaces also
reduce their symmetry from C4v [Fig. 3.7(a)] to C2v [Fig. 3.7(c)].

Model (f) that also includes the second conduction band is considered next.
Analytical derivations (Sect. 3.5) show that the inclusion of the additional bands
also leads to reduction of symmetry to C2v . The terms that contain the P2 element
which couples the top of the valence band, �5v, [that originates from the p bonding
states (denoted as pb) of atoms in the bulk] with the second conduction band, �5c ,
[that originates from the p antibonding states (denoted as pa) of atoms in the bulk]
are the only terms that prevent the C4v symmetry. Therefore the P2 element can
be identified as the symmetry breaking term in model (f). This term introduces
the splittings, Table 3.2(f), which are less pronounced than these of the interface
terms—for example the splitting of e1 and e2 is less than 0.1 meV. The effect of this
symmetry breaking on the wave functions is generally similar [see Fig. 3.7(f)] as in
the case of interface-induced symmetry breaking.

Analytical derivations and the numerical results presented therefore indicate that
the inclusion of bands beyond the standard 8 bands, as well as the inclusion of
interface effects within the k � p approach both lead to a correct description of
the symmetry of the system. As a consequence, a widespread belief that k � p
Hamiltonians are not capable to capture the correct symmetry of the system appears
not to be correct.

It has been previously well known [88] that the piezoelectric effect also reduces
the symmetry from C4v to C2v. The results shown in Table 3.2 (d), (e) indicate that
splitting of e1 and e2 states induced by the piezoelectric effect is stronger than the
splittings induced by other effects. One should also stress that in the absence of
piezoelectric effect, the strain would also give rise to symmetry reduction if it were
modeled using the Valence force field model [9, 57, 75, 76, 78]

3.10 Symmetries of Exciton States in Quantum Dots

In this section, we discuss the signatures of symmetry in the exciton spectra and
in the optical properties of excitons. We identify the changes in the spectrum when
spin-orbit interaction is taken into account and when symmetry group of the model
is lowered from C4v to C2v .

We start by considering model (a) of the previous section. In such a model, the
single particle states transform according to single valued irreducible representa-
tions (IRs) of the C4v group. We find that the h0 state transforms according to two
dimensional representation E , while the e0 state transforms as A1 representation
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(the notation of [19]). Therefore, h0 is fourfold degenerate (including the twofold
spin degeneracy), while e0 is twofold degenerate.

Exciton states transform according to single values IRs of the symmetry group
[84]. The IRs of the exciton states in the ground exciton manifold can be obtained
from the direct product of the IR of the e0 state and complex conjugated IR of the
h0 state. In model (a) this gives A1 	 E D E . Therefore, the orbital part of the
exciton state transform as E . In addition, the spins of an electron and a hole that
form an exciton can form either the singlet or the triplet state. As a consequence,
the ground eight-dimensional manifold consists of the doubly degenerate ground
state (that originates from the E symmetry of the orbital part and the singlet of the
spin part) and sixfold degenerate excited state (stemming from the E symmetry of
the orbital part and the triplet of the spin part). An E exciton is allowed to emit
xy-polarized radiation, while it is not allowed to emit z-polarized radiation. On the
other hand, due to conservation of spin in the optical transition, the singlet state is
dark, while in the triplet two states are bright and one is dark. This implies that the
twofold-degenerate ground exciton state is dark while the sixfold degenerate excited
state consists of four bright and two dark states.

Next, we discuss the changes in the spectrum when spin-orbit interaction is
included as in model (b) of the previous section. In model (b) the single particle
states transform according to double valued IRs of the C4v group. We find that
the h0 state transforms as E2, while the e0 state transforms as E1. Both of them
are twofold degenerate. The IRs of states in the four dimensional exciton manifold
are then obtained from E1 	 E2 D E C B1 C B2. Therefore, the ground exciton
manifold consists of a doubly degenerate E exciton and non-degenerateB1 and B2
excitons. The E exciton is allowed to emit xy-polarized radiation, while B1 and B2
excitons are dark. Among higher excited exciton states, the states that transforms
as B1, B2 and A2 are non-degenerate and dark, the states that transform as A1 are
non-degenerate and emit z-polarized radiation, while the states that transform as E
are double-degenerate and emit xy-polarized radiation.

The effects that arise when the symmetry is lowered from C4v to C2v , as for
example in models (c) and (f) (that exclude spin-orbit interaction) in the previous
section, are discussed next. The subduction of the IR E of the C4v group to the IRs
of the C2v group yields E ! B1 C B2. Therefore, the h0 state that transformed
as E in model (a), transforms now as either B1 or B2. The e0 state still transforms
as A1. As a consequence, both e0 and h0 are two fold degenerate (including the
twofold spin degeneracy). The ground exciton manifold is now four dimensional.
The orbital part of the exciton states in ground exciton manifold transforms as B1 or
B2 (depending whether h0 transforms as B1 or B2). As a consequence, the ground
exciton manifold consists of the non-degenerate ground state (that originates from
the singlet of the spin part and is dark) and the threefold degenerate excited states
(that originate from the triplet of the spin part). Two of these excited states are bright
and can emit xy-polarized radiation, while one is dark.

Finally we discuss the symmetry lowering effects in models (c) or (d) (that
include spin-orbit interaction). The subductions of the IRs E1 and E2 of the C4v
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group to the C2v group yield E1 ! E and E2 ! E. As a consequence, both h0
and e0 now transform as E . The IRs of the states in the four dimensional ground
exciton manifold then stem from E 	 E D A1 C A2 C B1 C B2. The B1 and
B2 states originate from the E state in the model with C4v symmetry. Therefore,
lowering of symmetry from C4v to C2v splits the E exciton into two non-degenerate
B1 and B2 excitons. B1 and B2 inherit the brightness from the E exciton. The A2
state originates from the B2 state in the model with C4v symmetry. It remains non-
degenerate and dark. On the other hand, the A1 state originates from the dark B1
state in the model with C4v symmetry. It remains non-degenerate but the A1 state is
bright and is allowed to emit z-polarized radiation. However, one should note that
the bright state that originates from the dark state of the higher symmetry group
is typically only weakly bright as we have verified by numerical calculations of the
dipole matrix elements that correspond to such states. Among higher excited exciton
states, the states that transforms as A2 are dark, the states that transform as A1 emit
z-polarized radiation, while the states that transform as B1 or B2 emit xy-polarized
radiation.

3.11 Conclusion

In this chapter, we have demonstrated the importance of understanding the sym-
metry of the k � p Hamiltonians used in electronic structure calculations. On this
route, the interface term which is rarely considered was derived first, as it is
essential for capturing the proper symmetry of the system. The plane wave method
introduces an artificial translational symmetry accompanied by artificial Coulomb
interaction between the carrier in the dot and its periodic replicas. Artifacts of
this interaction can be removed by a careful modification of the procedure for
calculation of Coulomb integrals. We show how one can identify the symmetry
group of a certain k � p Hamiltonian. An example of a square-based pyramidal
quantum dot is then used to show how the symmetry changes with the change in
the level of sophistication of the model. The standard 8-band k � p Hamiltonian
exhibits an artificially high C4v symmetry. However, both the inclusion of the effect
of interfaces and the inclusion of additional bands in the model lead to correct C2v
symmetry. Once the symmetry of the Hamiltonian is understood, it can be used
to choose the basis in which the Hamiltonian is block diagonal and consequently
largely reduce the computational effort.
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Appendix

The values of the relevant material parameters appearing in the kp-Hamiltonians are
given in Table 3.3.

Table 3.3 Relevant material parameters of binary compound semiconductors GaAs, InAs, and
AlAs

GaAs InAs AlAs

a0 [Å] 5.6503 6.0553 5.661
˛ [meV/K] 0.5405 0.276 0.885
ˇ [K] 204 93 530
Eg0 D E.�1c/� E.�5v/ [eV] 1.518 0.405 3.099
Eg1 D E.�5c/�E.�5v/ [eV] 4.488 4.38 4.54
Eg2 D E.�5v/� E.�1v/ [eV] 12.50 12.64 11.95
EP0 [eV] 25.7 21.846 21.1
EP1 [eV] 0.19 0.03 0.16
EP2 [eV] 14.79 19.0 16.8
EP3 [eV] 2.3 0.6 0.1
EP4 [eV] 0.2 2.55 0.0 (n/a)
Ev;av [eV] �6:920 �6:747 �7:49
m�

c 0.0667 0.02226 0.15
�so.pa/[eV] 0.340 0.380 0.280
�so.pb/[eV] 0.170 0.190 0.150
�cf[eV] 0.085 0.085 0.085
c11 [GPa] 118.8 83.3 125.0
c12 [GPa] 53.8 45.3 53.4
c44 [GPa] 59.4 39.6 54.2
ac [eV] �8:013 �5:08 �5:64
av [eV] 0.220 1.00 2.47
bax [eV] �1:824 �1:800 �2:3
dax [eV] �5:062 �3:600 �3:4
e14 [C m�2] 0.160 0.045 0.225
�L1 ; �

L
2 ; �

L
3 7.10, 2.02, 2.91 19.67, 8.40, 9.30 3.76, 0.82, 1.42

�r 13.18 14.6 10.1

a0 are the lattice constants, ˛ and ˇ are the Varshni parameters that describe the temperature
dependence of the band gap (a temperature of 4K was assumed in all calculations), Egi are the
band gaps, EPi are the energies related to interband matrix elements of the velocity operator Pi
as EPi D 2m0P

2
i =„2 , Ev;av is the average valence band edge energy at the � point, m�

c is the
conduction band effective mass. �so.pa/ is the spin-orbit splitting in the second conduction band,
�so.pb/ is the spin-orbit splitting in the valence band and �cf the crystal field splitting. cij are the
elastic constants. ac , av , bax , dax are the deformation potentials, e14 is the piezoelectric constant.
�L1 ; �

L
2 ; �

L
3 are the Luttinger parameters in the 6-band model. �r is the static dielectric constant
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