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Abstract. Natural hazards are significant problem that every year cause
important loses. We report on both theoretical models and simulations
aimed at better understanding of disaster spreading in various networks.
The structure of the networks in this work is obtained either through
neighbor analysis in real space or using models which reproduce generic
features of real networks (i.e., power, telecommunication, or road net-
works). Our investigations are focused on the understanding of interac-
tion between network structure and disaster spreading mechanism. The
probability that fire will propagate through fire protection strip is in-
vestigated and a model is introduced based on finite-size considerations
in percolation theory. Also, the uncertainty in prediction of fire propa-
gation rate due to the local inhomogeneities of the vegetation cover is
investigated. Finally, uncertainty in cascade failures of network infras-
tructure is analyzed for a model where edges have limited capacity. The
importance of the results for disaster prevention and control is discussed
as well.

1 Introduction

The design of prevention measures and distribution of resources needed for ef-
ficient response to disaster event is a challenging problem. Examples include
control of fire propagation [1], power transmission grid failure [2], information
loss in communication systems [3, 4], and traffic congestions [5]. Development of
new strategies for infrastructure failure prevention and damage control, such as
emergency response and recovery call for external resources, which are limited,
is important topic with many practical implications in real systems. A consid-
erable research effort is underway to improve understanding of interaction of
the structure and disaster propagation which considerably contributes to the
understanding of processes going on in these networks. Experimental studies of
disasters under real conditions are performed but understandably at scales much
smaller then real disasters [7]. it is not realistic to expect allocation of resources
for systematic data gathering during the disasters. Therefore mathematical and
computer models are often very helpful tools to extend human knowledge beyond
limited input data. However, the complexity of systems struck by disasters does
not allow one to model the interactions of all involved entities and processes in
detail and especially not in real time. Therefore, we have to capture them by an
appropriate generic model. During 80’s a line of research was initiated in which
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model were used that reproduce and explain vegetation recovery and fire spread
distribution in quite abstract way [8, 10]. These lattice models were used to
describe fire size distributions which have a power law form [9, 10].

In this proceeding we report on our recent efforts to develop both theoreti-
cal models and simulations aimed on better understanding of disaster spreading
and control in various networks. The structure of the networks is obtained ei-
ther through neighbor analysis in real space or using models which reproduce
generic features of real networks (i.e., power, telecommunication, or road net-
works) [3, 11–13]. The percolation and transport models on networks can be used
to evaluate the disaster probability and impact. This information is important
in practice for deciding how to effectively distribute resources in order to fight
disasters the best. For example, finite size scaling considerations in percolation
theory can be directly applied to design fire spreading prevention routes. In case
of the fire behavior predictions uncertainty comes from variability in weather
and fuel (vegetal) state inputs. Commonly model assumptions, such as fuel ho-
mogeneity and steady-state spread, limit the capability of the fire propagation
models to provide reliable results, possibly leading to uncertainties of unknown
magnitude [14]. We introduce a simple off-lattice deterministic reaction-thermal
diffusion model in order to describe the dynamical evolution of the fire. In-
troduced model is not so specific as those employed by the ecologists but still
introduces fire activation energy and heat dissipation. The model has an advan-
tage that it can be applied in real time. We demonstrate how this simple model
can provide interesting information about dynamics of the forest fire propaga-
tion. In the final part of proceeding we present a model of cascading failure.
Cascading failure can happen in many infrastructure networks, including the
electrical power grid, the Internet, road systems, and so on. The phenomenon is
refereed to us an avalanching type of process, where the failure of a single or of
a few network components can result in a large-scale breakdown of the network.
In recent years cascading breakdown in complex networks has received consid-
erable attention [2, 15–21]. Most previous existing works on cascading failures
only focused on attacks on nodes rather than on edges. Attacks on edges are as
important for the network security as those on nodes, and therefore deserve a
careful investigation. In this proceeding, we analyze the cascade of overload fail-
ures in complex networks, where a edge failure and a subsequent network-wide
redistribution of loads might trigger further cascading failures.

The proceeding is organized as follows: in Sec.2 we investigate the fire perco-
lation probability dependence on density and shape of fire control paths. Based
on finite size considerations in percolation theory we derive a simple model
for assessment of fire propagation risk through corridor. In Sec.3, determin-
istic reaction-thermal diffusion model is introduced and simulation results for
different vegetal phase densities are presented. Cascade of overload failures in
complex networks are analyzed in Sec.4. Conclusion is given in Sec.5.
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Fig. 1. The snapshots of evolution of two dimensional (2D) system as new circles
representing tree crowns or bush are added and overall number density increases n.
Two tree crowns or bush lie in the same cluster if the representing circles intersect.
At lower densities (a) n = 0.86 and (b) n = 1.15 there is no percolating cluster in y
direction. Circles that will form percolating cluster are blue while others are green. As
density increases percolating cluster (red) is created, cf. (c) n = 1.44.

2 Percolation Probability Density

Monte Carlo simulations, coupled with an efficient cluster analysis algorithm and
implemented on grid platform, are used to investigate the fire percolation prob-
ability dependence on density of a vegetation phase, and the surface geometry
(shape) [22–25]. We consider two dimensional (2D) systems with isotropically
placed circles representing tree crowns or bushes. Circles have all same unit ra-
dius and are randomly positioned and oriented inside the rectangular field of
width Lx and height Ly. Two tree crowns or bushes lie in the same cluster if the
representing circles intersect. System percolates if two opposite boundaries are
connected with the same cluster, see Figure 1. The aspect ratio r is defined as the
length of the rectangular system in percolating direction divided with the length
in perpendicular direction. We define the normalized system size as a square root
of the rectangular area L =

√
LxLy (geometric average), which represent the

length of the square system with the same area. The percolation behavior, i.e.,
the probability that will be able to find path to propagate, is studied in terms
of the vegetation density n = N/L2 where N is total number of trees/bushes.

From Fig. 2, one can see that average percolation density 〈n〉L,r for aspect
ratio higher than one is monotonically decreasing function of the system size L.
Somewhat surprising, for aspect ratios lower than one, 〈n〉L,r is not monotonic
function and has local minimum. For small systems 〈n〉L,r is a decreasing func-
tion, which passes through nc, reaches a minimum and after that converges to nc

from below. From general scaling arguments one would expect that for all finite
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Fig. 2. The average percolation density 〈n〉L,r dependence on the system size L and
aspect ratio r. The values are obtained from Monte Carlo simulations and calculated
using Eq. (1). The values are given for aspect ratios r = 0.7, 0.8, 0.9, 0.95, 0.98, 1 (solid
lines) and their inverse values r = 1/0.7, 1/0.8, 1/0.9, 1/0.95, 1/0.98 (dashed lines). The
bold line denotes the expected values for the percolation threshold nc. Inset: The same
data is shown in logarithmic scale to demonstrate the same power law convergence of
the r and 1/r pairs.

systems their convergence is governed by an exponent−1/ν. For two-dimensional
(2D) systems ν = 4/3 [26].

Further it was showed that for lattice percolation on the square system leading
exponent of the average concentration at which percolation first occurs is −1/ν−
θ, where θ ≈ 0.9 [27]. These studies were performed for symmetric systems. In
inset of Fig. 2, one can see that for large system sizes all the curves show power
law convergence to percolation threshold nc with exponent −1/ν, except in the
symmetric case, i.e., r = 1, where exponent is −1/ν− θ1. Absolute values of the
leading-order prefactors are the same for aspect ratios r and 1/r.

The scaling behavior of the 〈n〉L,r can be described with generalized moment
scaling function with aspect ratio dependent coefficients

〈n〉L,r = nc + L−1/ν
∞∑
i=1

ai(r)L
−θi , (1)

where θi are generalized corrections to scaling exponents [31]. The coefficients
of the first two order terms have form a1(r) ≈ a1,1ln(r) + a1,2ln

3(r) and a2(r) ≈
a2,1 + a2,2ln

2(r) (for detailed derivation of expression see Ref. [13]). The pre-
vious expansion implies a faster then L−1/ν convergence of average percolation
density 〈n〉L,r of symmetric system to its infinite-system value, characterized by
an exponents θ1. The standard deviation ΔL,r can be described with expansion
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Fig. 3. Prefactors are shown for the two leading-order terms of generalized scaling
function for average percolation density 〈n〉L,r (upper graph) and standard deviation
ΔL,r (lower graph). The first order prefactor of average percolation density is odd
function on logarithmic scale, i.e., a1(r) = −a1(1/r) and the first order prefactor of
standard deviation is even function, i.e., b1(r) = b1(1/r).

ΔL,r = L−1/ν
∞∑
i=1

bi(r)L
−θi . (2)

As one would expect, standard deviation is monotonically decreasing function
of the system size L. The coefficients of the first two order terms have form
b1(r) ≈ b1,1 + b1,2ln

2(r) and b2(r) ≈ b2,1ln(r) + b2,2ln
3(r), cf. Ref. [13].

FromMonte Carlo simulation data we have obtained the first and second order
terms of 〈n〉L,r in Eq. (1) by interpolation. Results of the analysis are shown in
Fig. 3(a) and coefficients are given in Table 1. The influence of higher order
terms were comparable or smaller then simulation data error and we could not
extract them with sufficient precision. We obtain that the first order correction
θ1 is equal zero, as predicted by general scaling arguments in Ref. [26]. For the
second order correction, we obtain θ2 = 0.83(2) for r = 1. The residual aspect
ratio dependence of θ2 cannot be further analyzed without provision of retaining
the first two terms in Eq. (1). The variance prefactors for two leading terms are
shown in Fig. 3(b). The fitting coefficients bi,j are given in Table 1.

To illustrate impact of previous conclusions, we calculate safe (maximal) veg-
etation density nmax in fire protection strips. The results are given in Figure 4
for percolation probability tolerances p = 15.73% and 0.01%, i.e., probabili-
ties that fire will find a passage. The curves are calculated using average value
and standard deviation given in Eq. (1) and (2). Probability density function is
approximated with normal distribution. It is helpful to understand that the max-
imal vegetation density depends on logarithm of strip length. This means that
even for Lx = 100Ly there is a high tolerance for vegetation density nmax ≈ 0.45
for which probability of fire finding path through the strip is less then 0.01%.
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Fig. 4. Safe (maximal) vegetation density nmax in fire protection strips for which
percolation probability is p = 15.73% (red) and 0.01% (blue). The curves are calculated
using average value and standard deviation given in Eq. (1) and (2).

Table 1. Results for coefficients ai,j and bi,j , where i, j ∈ 0, 1. The results are obtained
using the least-square method.

1,1 1,2 2,1 2,2
ai,j 2.5(1) 0.11(3) 2.2(7) 1.0(3)
bi,j 1.61(3) 0.14(1) 1.35(8) 0.11(2)

3 Fire Spreading on Percolating Networks

In this section we further extend percolation model to include combustion ef-
fects, where the whole forest/bush (i.e., vegetation and gases) is described with
an equivalent point values at positions of its constituting parts. The assump-
tions for introducing this simple model are the following: The forest at the
macroscopic scale can be considered as a random medium, with density n. This
random medium, called vegetal phase, is composed of fuel (e.g., trees, trunks,
bushes, etc.). One can consider that one of the main process in forest fire is heat
transfer by radiation and convection. We consider that heat transfer is only pos-
sible between neighboring trees/bushes, all of the same unit radius. The main
effects of the heat transfer are drying of the vegetation and vegetation pyrolysis
that produce heat. We assume that hydrodynamics of gas which allows to bring
the oxygen necessary to the combustion is fast and homogeneous. The energy
released in pyrolysis leads to forest fire propagation.
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Fig. 5. Snapshots visualizing the propagation of fire through vegetal phase at t = 2, 5,
and 10. System has initial vegetal phase density n = 1.4 and fire is initiated at its
lower boundary. Upper plot represents local temperature distribution and lower local
vegetal phase density.

Fig. 6. Snapshots visualizing the propagation of fire through vegetal phase at t = 2, 4,
and 6. System has initial vegetal phase density n = 1.7 and fire is initiated at its lower
boundary. Upper plot represents local temperature distribution and lower local vegetal
phase density.

We have simplified the general model introduced elsewhere, cf. Ref. [28–30],
in order to obtain the following system of equations. The balance of energy or
thermal equation is

∂T j
f

∂t
= λf�T j

f +Rj + λi(T
j
f − Ti), (3)

where Tf is temperature of vegetal phase at mass point j, λf equivalent heat con-
ductivity between vegetal phase, λi equivalent heat conductivity to environment
and Ti environment temperature. We assume for simplicity parabolic tempera-
ture distribution between neighboring points. The pyrolytic heat source is given
by Rj = (k(T j

f )/Cp)Y
j
f where Y j

f is fraction of vegetation phase in mass point,

Cp effective heat capacity and k is reaction rate. In the present model Y j
f = 1

is corresponding to the vegetation phase green at the mass point and Y j
f = 0

burned. Reaction rate k(T ) is defined by the standard Arrhenius expression,
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i.e., k(T ) = Be−EA/kBT , where B is prefactor, kB Boltzmann constant and EA

activation energy. The balance of mass at point j is written generically

∂Y j
f

∂t
= −k(T j

f )Y
j
f . (4)

Comparison of fire propagation between two simulations is given in Figures 5
and 6. The two simulations have identical inputs EA/kB = 0.1, B = 1000,
λi = 1.2, λf = 1. and Cp = 10. but different spatial densities n = 1.4 and 1.7.
The fire is initiated at its lower boundary. As one could expect, at lower density
n = 1.4 not whole surface can be visited by the fire. Still, we observe that in
both cases fire propagation is not homogeneous and it depends on local structure
of the vegetation phase. We also observe a local auto-extinction events. The fire
is spreading faster through the clusters of vegetation phase, and it slows down
when vegetation becomes rate. Therefore differences in propagation are not large
inside clusters; differences in variance in spread rate is only significant between
vegetation clusters. Therefore, at higher densities where connections between
vegetation clusters are abundant fire spread rate is less variable, cf. Figure 7.
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Fig. 7. Evolution of the fire front in time for two vegetation densities n = 1.4 and
n = 1.7. Bold line represents mean value of fire front position yfront and dashed lines
are delimiting 68% confidence band (yfront ± σ).

4 Cascade Failures

In the present proceeding we adopt the model of cascading failures caused by
overload presented in [2] to investigate the overload breakdown problem when
edges (rather than nodes) are sensitive to overloading. Within this model, it is
assumed that, at each time step, every node provides (receives) flow to (from)
every other node of the network with an equal share and the flow is forwarded
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along the shortest path. The edge’s initial load L is defined by means of the
betweenness centrality, which describes the number of all shortest paths through
the edge. The capacity Ci of edge i, which defines the maximum load that the
edge can handle at each time step, is set to be proportional to the edge initial
load Ci = (1+α)Li, where the constant α ≥ 0 is a tolerance parameter. An edge
is overloaded and fails if Li > Ci. When for any reason an edge fails, the traffic
which used to go through this edge is redistributed to a new shortest path. This
results in a network-wide redistribution of traffic load. As a consequence of this
redistribution, some edges have to carry a larger load than before. If this new
load exceeds the capacity of these edges, then the respective edges will also fail,
triggering a new load redistribution with possible, subsequent overload failures
of other edges. This eventually leads to a cascade of failures, after which only a
fraction of the nodes is still functioning. This fraction does not necessarily form
a connected network. The largest of these subnetworks, i.e., the one containing
the largest number of nodes, is called the giant component G.
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Fig. 8. The average giant component GN vs tolerance parameter α

Here we consider the cascading failures triggered by removing a single edge. To
measure the network functionality we consider the size of the giant componentG.
We illustrate how this model works in practice by considering random network
and scale-free network. Random network can be generated by the Erdős-Rényi
model [11], where each pair of nodes is linked with probability p. To generate
scale-free network we use standard Barabàsi-Albert model [12]. In both cases
we have constructed networks with N=1000 nodes. For random network, edge
probalility has been set to p = 0.005. In scale-free model, starting from N0 = 3
nodes, one node with m = 2 edges is attached iteratively.

To measure the robustness degree of the whole networks against cascading
failures, we remove every edge in a network one by one and calculate the cor-
responding results, e.g., removing edge i and calculating Gi after the cascading
process is over. To quantify the robustness of the whole network, we adopt the
average giant component, i.e., GN = 1

|E|
∑

i∈E Gi. The set of edges in the net-

work is denoted with E. The results in function of the tolerance parameter α
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Fig. 9. The giant component size distribution after the system has relaxed to a sta-
tionary state for (a) random network and (b) scale-free network
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Fig. 10. Probability distributions for the total number of step n of the cascade failure
for (a) random network and (b) scale-free network

are summarized in Fig. 8. Clearly, a higher value of α results in a larger giant
component after cascade failures finished. One can also observe that for small
tolerance, i.e., α < 0.1, the random network is more sensitive to cascade fail-
ures. This changes for larger tolerances, and scale-free network becomes more
sensitive due to more heterogeneous distribution of node degrees and capacities
in the scale-free network. Fig. 9 plots size of the giant component from all the
possible scenarios of removing a single edge in one network. Simulation results
for random network show that giant component discontinuously changes value.
We can observe that in random network for α = 0.05, removal of a single edge
will lead to the collapse of the system under overload failures in more than 80%
cases. For α = 0.1, percentage of critical edges in network is higher than 30%,
and for α = 0.15 it is about 10%. For the scale-free network, for the same values
of α, we obtain continuous change.
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To get another insight into the mechanism of the breakdown, we consider
histograms of the total number of step n of the cascade failure in which the
size of the giant component is reduced by more than 50%, Fig 10. The average
number of cascading failure steps n increases with tolerance parameter α. It is
interesting to note that both random and scale-free networks will disintegrate
in roughly the same time. The main difference is width of the distribution. In
case of random network the distribution is very sharp and more then 70% of
networks will disintegrate after 8 steps when α = 0.05.

5 Conclusion

In this proceeding we demonstrate how theory of complex systems and the statis-
tical physics of networks may provide us with methods for disaster propagation
prediction. These methods allow one to gain a better understanding of the dy-
namics of disaster spreading and to derive results indicating how to fight them
best. We have specifically presented three combinations of networks and specific
disaster processes on them. These processes interact with given network struc-
ture in different ways yet have a generic thread between them - a variability in
outcome due to the local properties of the network structure.

As the main parameters, we have considered the overall density of vegetal
phase in fire spreading models and tolerance of the edge to increase of the load.
By means of simulations and theoretical model, we have examined probability
that fire will propagate through fire protection strip. We have also compared un-
certainty in prediction of fire propagation rate due to the local inhomogeneities of
the vegetation cover. Important conclusion is that uncertainty in fire propagation
rate is especially high for less dense vegetation cover and close to fire percolation
point. We have also measured uncertainty in cascade failures of network infras-
tructure. A model where edges have limited capacity is studied. The behavior
of random-network was found to be ambiguous. In comparison to scale-free net-
work, with high and medium values of the tolerance parameter (i.e., α > 0.1)
most the network is prone to failure of the most edges. On the other hand, failure
of one of the critical edges, the network will disintegrate completely.
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Jakimovski, B., Savić, M.: J. Grid. Comput. 9, 135 (2011)
25. Li, J., Zhang, S.-L.: Phys. Rev. E 80, 040104 (2009)
26. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd revised edn.

Taylor and Francis, London (2003)
27. Ziff, R.M., Newman, M.E.J.: Phys. Rev. E 66, 016129 (2002)
28. Margerit, J., Séro-Guillaume, O.: Int. J. Heat Mass Transf. 45, 1723 (2002)
29. Kuittu, M.-P., Haataja, M., Provatas, N., Ala-Nissila, T.: Phys. Rev. E 58, 1514

(1998)
30. Méndez, V., Llebot, J.E.: Phys. Rev. E 56, 6557 (1997)
31. Hovi, J.-P., Aharony, A.: Phys. Rev. E 53, 235 (1996)


