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In this  paper  we investigate the chaotic behaviour of the Bianchi IX cos- 
mological models using techniques developed in the study of dynamical 
systems and  chaotic behaviour. We numerically calculate the Lyapunov 
exponent,  )~, and show tha t  instead of converging to a constant value, it 
decreases steadily. We study this effect further  by studying the Lyapunov 
exponent  using short- t ime averages. We show tha t  the usual method  of 
calculating )~ is invalid in the case of a cosmological model. 

1. INTRODUCTION 

There has long been interest in the behaviour of cosmological models near 
the initial singularity [1-4]. These studies reveal that  most  anisotropic, 
homogeneous vacuum models tend asymptotical ly to a Kasner vacuum 
model. An exception to this is the so-called Mixmaster  model which con- 
tinually changes f rom one Kasner model to another as one goes back in 
t ime towards the initial singularity. The evolution of these models can be 
approximately  described in terms of a return map: a sequence of Kasner 
models, each characterised by a Kasner parameter  u, occuring in Kasner 
epochs made up of successive Kasner eras. During a Kasner epoch, two 
of the scale factors oscillate as the universe alternates between different 
Kasner models while the third decreases and the parameter  u decreases by 
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one through successive oscillations. When u < 1, the next Kasner param- 
eter is given by 1/u and a new Kasner era is started. The transformation 
between various Kasner eras, given by the return map, can be shown to 
be chaotic [4] with a value of the Lyapunov number given by 

7r 2 

= 6(ln2)---- ~ .  (1) 

The system of equations for the Mixmaster model were integrated nu- 
merically by Zardecki [5]. It has been noted by Ma [6] that  some of 
Zardecki's results appear to be incompatible with the results of Belinski 
et al. Zardecki also plots the Lyapunov exponents and finds them to be 
positive for the perfect fluid Bianchi IX and VIII models but  negative for 
the VII0 model. This is consistent with the fact that  the vacuum Bianchi 
IX and VIII models exhibit chaotic behaviour but  the Bianchi VII0 model 
does not. Recently, Halpern [7] has examined the occurrence of chaos in 
Bianchi VIII models with matter .  He has observed that  the energy of the 
mat ter  can act as a parameter  heralding the onset of chaos. Very recently, 
Francisco and Matsas [8] have calculated the Lyapunov exponents numer- 
ically for the vacuum Bianchi IX models. Their  calculations show that 
)~ declines steadily rather  than converging to a constant, non-zero, value. 
These results are confirmed in our calculations presented here. 

In this paper we shall use a numerical approach to the study of chaotic 
behaviour in the Bianchi IX model. In Section 1 we shall describe the 
dynamical system derived by Wainwright [9] and discuss the behaviour 
of the variables. In Section 2 we shall proceed to calculate the principal 
Lyapunov exponent in the usual way and in Section 4 we shall employ 
the short-time-average approximation. In Section 5 we shall give some 
discussion of the results and suggestions for further work. 

2. THE D Y N A M I C A L  SYSTEM 

We have found it convenient to follow Wainwright [9] and write the 
field equations for Class A orthogonal Bianchi models with a perfect fluid 
mat ter  source as a dynamical system involving variables which are dimen- 
sionless. The reason for doing this is that  such variables do not blow up 
near the singularity. The system can be derived starting from the following 
equations [10] 

t 

= - 2 - �89 - ( 2 )  
3 
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where S(~ is the trace free Ricci tensor, 0 is the trace of the expansion 
tensor and a~Z is the symmetric and trace-free shear tensor. There is a 
first integral of the system given by 

i t _  10~ +002= 21_R(3), (4) 

where it is the matter  density and 002 = 1/2(00~t~00~). The curvature of the 
group orbits is determined by the quantity n~p which obeys an equation 
of the form 

t 

h,~t~ = - 3 0 n , ~  + 200"~ (~,np)v (5) 

and lastly, the contracted Bianchi identities yield an equation for the evo- 
lution of the matter  density it, 

/~ = -Ti t  0 (6) 

where we have assumed the matter  takes the form of a perfect fluid with 
an equation of state of the form p = (7 - 1)it and 2/3 < 7 -< 2. The 
system of equations is invariant under scaling transformations which allow 
the following dimensionless variables to be defined, 

0 
NaB - -  nap 

0 
r 

S ~  - ~ '~  
8 2 

3R (3) 

282 
3 d  

(7) 

g _ _  

d 
dr 0 dt 

The new time-variable r is defined such that  r --* oc as t ~ 0 which 
is suitable to study the approach to the singularity. We can rewrite the 
equations for 00aZ and nap by defining the deceleration parameter q by 

i'l 
q = - . -  ( s )  

12 

where l(t) is an average length scale defined such that  1/l -- 8/3. Then, 
defining the quantities 

E = 3E~f~E~ 
0~ 

2 = 3~-  (9) 
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and 
g~ = 3~- 

we can write 
1 

q =  ~ ( 3 7 - 2 ) ~ + 2 S  

and the constraint equation (4) becomes 

(10) 

( i i )  

~ + K + ~  = 1 (12) 

The evolution equations for Na# and ~a# are thus 

~'~# = (2 - q)~]a# + 3Sc,# 

N~# = - qN,~# - 6 ~ N x #  

where t signifies differentiation with respect to r. In the shear eigenframe 
the shear tensor Ea# has only two independent components. This allows 
us to define two new shear variables 

3 S  ~+ = ~(  22 + ~ )  

so that  E = E~ + E2_. Since in the shear eigenframe N~# is diagonal [10], 
the dynamical system can be written in the form 

N~ = - (q - 4E+)Ni 

N~ = - (q + 2~+ + 2 v ~ _ ) g 2  

g~  = - (q + 2~+ - 2 V ~ _ ) N 3  

~]' = ( 2 - q ) Y ] + + 3 S +  + 

~ = ( 2 -  q)~_ + 3S_ 

(i3) 

where 
S+ ---- 1 [(N2 - N3) 2 -  NI (2N1-  N 2 -  N3)] } 

S-  =--~--~(N3 - N2)(Na - N2 - N3) 
2 
1 

q = ~ ( 3 7 - 2 )  a + 2 S  

(i4) 
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Figure 1 
Plot  of E+ for a Bianchi IX model with initial conditions given by (16) 
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F i g u r e  2 
Plot of ~._ for a Bianchi IX model with initial conditions given by (16) 

We know that  for a particular model the signs of the variables Ni cannot 
change. To ensure this is true in the numerical treatment, we follow Ma 
[6] and redefine the Ni using 

Zi = ln(Ni2). (15) 
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For the Bianchi IX models, all Ni are of the same sign and non-zero 
whereas for the Bianchi VIII models they are nonzero and one has different 
sign; for the Bianchi I model, we have Ni = 0. Plots of these variables for 
the Bianchi IX model are shown in Figs. 1-5. The plots were made for a 
model with initial conditions given by 

N1 = 0.2 ] 

/ N2 = 3.1 

N3 = 2.9 

E+ = 0.74 

E_ = 1.005 

(16) 

Figs. 1 and 2 show the behaviour of the two shear variables E+ and E_ .  
Both variables behave in qualitatively the same way and the rapid changes 
in the variables occur together. The sudden changes in E+ and E_ corre- 
spond to the bounces from the potential wall in the Hamiltonian picture of 
the Mixmaster model [11]. The horizontal periods are where the model is 
close to a particular Kasner solution and the jumps occur when the model 
flips between one Kasner state and another. 

The behaviour of the variables N1, N2 and N3 is qualitatively different 
from that  of the others.Spikes in the variables occur only when there is a 
corresponding change in the shear variables. At each jump, only one Ni 
changes, the others remaining close to zero. Away from the bounces, the 
Ni's remain close to zero so that  the model is close to the Kasner model. 

The important  thing to notice is that  there are long periods of a steady 
solution interspersed with suddden changes in some of the variables. The 
time for one of these sudden changes is much shorter than the time between 
them, which seems to be increasing. This behaviour is what one would of 
course expect from a billiards-type problem where the walls of the billiard 
table are expanding. 

This system of equations has been used by Ma [6] to study the Class 
A Bianchi Models from a dynamical systems point of view. The results of 
the programs used in this paper agree with those that  Ma uses. This is 
comforting, as will be discussed later. 

3. THE LYAPUNOV E X P O N E N T  

In this section we shall investigate the principal Lyapunov exponent 
for the Bianchi IX model using the equations given above. The numerical 
computations were carried out on an Orion 1/05 computer and the codes 
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Plot of NI for a Bianchi IX model with init ial  conditions given by (16) 
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F i g u r e  4 
Plot of N2 for a Bianchi IX model with initial conditions given by (16) 

were written in the C programming language. The numerical integrations 
were performed using a Bulirsch-Stoer algorithm [12]. 
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Plot of N3 for a Bianchi IX model with initial conditions given by (16) 

The Lyapunov exponents characterise the rate of divergence of neigh- 
bouring trajectories in the phase space of the system and are therefore a 
measure of the amount of information lost as the system becomes chaotic 
[13]. For an n-dimensional system, there will be n Lyapunov exponents 
giving information about the rate of divergence of trajectories in n or- 
thogonal directions. The principal Lyapunov exponent is the hi with the 
greatest value. In this paper we shall concern ourselves only with the prin- 
cipal exponent. A positive Lyapunov exponent indicates that trajectories 
are diverging and that system has become chaotic; the principal Lyapunov 
exponent is the largest of the individual Lyapunov exponents. The method 
we use to calculate the Lyapunov exponents follows closely that described 
by Benettin and Galgani [14]. The code was checked using the Lorenz 
attractor as well as the Rossler 3-dimensional attractor; in both cases the 
code gave Lyapunov exponents which converged to previously obtained 
results [15] 1 . For a system of ordinary differential equations which can be 
written in the form 

xi = Fi(x) (17) 

1 The results given by Wolf [16] do not seem to agree with those of Shimada and Na- 
gashlma. This is because Wolf et al. define the Lyapunov exponent using a logarithm 
of base two. 
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the Lyapunov exponent can be defined by 

A= lim llnllw(OII (18) 

where w(t) is a solution of the variational equation 

~b = A[x( t ) ]w (19) 

where x(t) is a solution of the original equations and A is a matrix Jacobian 
of F.  When numerically integrating these expressions it is found that  there 
is a computer overflow as t ---* c~ if ~ > 0 along the trajectory. This is 
overcome by renormalising the vector w to unity. Details of this can be 
found in [15,17]. 

3.1 THE BIANCHI IX MODELS 

The Bianchi IX models have been known to admit chaotic solutions 
for a long time. Using arbitrary intial conditions we can see the presence 
of chaos occurring in these models from the positive value of • as shown 
in Fig. 6. 
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F i g u r e  6. 
The Lyapunov exponent against In r for a Bianchi IX model with initial conditions 
given by (16) 
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The initial conditions for the Bianchi IX models were chosen such that  

1.183 (20) 

1.557 (21) 

K = - 1.740 (22) 

and are given by (16). There is also an interesting feature in that  the value 
of ~ does not converge to a constant value but  decreases very gradually 
to zero. This has also been noticed in a recent paper by Francisco and 
Matsas [8] and they argue that  the reason for this is that  the time between 
successive Kasner eras increases exponentially. This can also be thought of 
in terms of the Hamiltonian formalism used by Misner and others [18]. In 
this formalism, the evolution of the cosmological model is represented as 
a point bouncing in an expanding potential well. Here successive bounces 
occur after longer periods leading to the decrease in the Lyapunov expo- 
nent. These effects were not noted by Zardecki [5]. A further point to note 
is that  the Lyapunov exponents calculated for the return map 

: - ( 2 3 )  

where [...] denotes the integer part,  is a constant. This seems to indicate 
that  the above map does not contain all of the information concerning the 
chaotic behaviour of the system. 

One should take care in studying chaotic systems using numerical 
methods that  the noise created by round-off errors in the  numerical calcu- 
lations do not come to dominate the numerical solution. For certain simple 
systems it can be shown that  the numerically cja~ulated orbits do follow 
the actual orbits very closely, and so the numerical results can be trusted 
[19]. It is known however that  the Einstein equations for a homogeneous 
cosmological model do not satisfy these requirements [4] and so one may 
be worried by the accuracy of these results. To a t tempt  to see if the noise 
was dominating these calculations, we repeated all calculations using a 
range of tolerance values and found no discernable change in the observed 
results. Whilst this is by no means a convincing argument, it does suggest 
that  the noise introduced by the round-off errors in the numerical compu- 
tation is not dominating the calculation [19]. It should also be noted that 
the system (13) was integrated by Ma [6] using a Runge-Kutta-Fehlberg 
algorithm and his results for the evolution of the system agree with ours. 
We are thus confident that  the numerical results can be relied upon. It 
appears that  the slow decline in the value of ~ is real and is probably due 
to the effect discussed in [8]. 
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4. THE SHORT TIME AVERAGE 

In the study of turbulence in fluid flows, one often works with av- 
eraged features of the attractors.  However, one finds that  real turbulent 
flows are characterised by transient, non-stationary features such as fluid 
intermittency [20]. This appears as bursts in the time series of the fluid 
after it has been passed through a high frequency filter. One suggested 
way to s tudy this behaviour is to use short-time-averages (STA) of the 
Lyapunov exponent [21]. This involves averaging over times which are in- 
termediate between the numerical integration time and the width of the 
burst. 

In the case of the cosmological model it is instructive to use a similar 
technique. Since all the variables only ever change at a bounce against the 
potential wall, we use an STA timescale which is of the order of the bounce- 
time. What  we expect to find is periods when the Lyapunov exponent 
is zero with regions of non-zero A appearing when the bounces occur. 
A similar result would hold in an analysis of the standard billiard table 
problem except there the wall of the billiard table is hard whereas for the 
cosmological case, the wall has an exponential profile. 

The results of the numerical calculations are shown in Fig. 7. 

3. 

1[ j 
0 0 0  

- T  

Figure 7. 
The Lyaptmov exponent against v for a Bianchi IX model with initial conditions given 
by (16) using the short-time average. 

As can be seen, )~ is non-zero during the periods of the bounces and 
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zero in between the bounces as expected. The plots also show that  there 
is considerable structure in the bounces. This is particularly noticeable as 
v ~ oo. Although A goes negative during the bounce, the contribution to 
A averaged over the whole bounce is positive. Francisco and Mastas argue 
that  as one approaches the singularity, the structure of the bounce can- 
not be neglected when considering the continuous evolution of the model. 
This is borne out by the structure mentioned above. The behaviour of 
the Lyapunov exponent calculated using the STA reveals why we were ob- 
taining the results presented in Section 3.1. Usually when calculating the 
Lyapunov exponent numerically, one averages over the whole integration 
time. However, since there are only small periods when A ~ 0, this average 
will decrease. 

When studying the onset of chaotic behaviour, it is usual to consider 
families of equations. For example, when examining the onset of turbulent 
fluid flow, the Reynolds number is the parameter which is varied. In 
the case we consider here, the eqution of state paprameter 7 may play a 
similar role. To see if this was the case, we performed some calculations 
with different values of 7 and found that  for 7 < 2, the motion was chaotic 
but  for 3' > 2, the motion was regular; Fig. 8 shows the behaviour of the 
principal Lyapunov exponent for this case. 

0 

-1 

I000 2000 

Figure 8. 
The Lyaptmov exponent against r for a Bianchi IX model with 7 = 3.0. 

T h e  case with A > 2 corresponds to a fluid which is unphysical in the 
sense that  the sound speed in the fluid is greater than the speed of light. 
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The Lyapunov exponent is sensitive to the initial conditions of the 
trajectory and to investigate the phase space a little further we examined 
trajectories which satisfy current constraints on the values of ~2 and ~. 
Limits on the amount shear that  is admissible today can be derived from 
limits on the microwave background anisotropy [22] 

< 2.6 • 10 . 5  (24) 

for closed cosmological models with f~0 -~ 1. For initial conditions satisfy- 
ing this constraint and taking r = 0 to be the present day we find that  A 
is positive from a very early time (Fig. 9). 

1 4  i i i i 
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20 40 60 80 

Figure 9. 
The Lyapunov exponent  against  r for a Bianchl IX model  wi th  3' = 1.0 and  initial 
condit ions constra ined by  observed limits on the shear  and  density. 

This leads one to suspect that  chaos could have been a quite recent 
feature of the universe and may have had effects upon baryosynthesis and 
nucleosynthesis. 

5. CONCLUSIONS 

In this paper we have investigated the behaviour of the Lyapunov ex- 
ponents for one of the class A Bianchi models with a perfect fluid. The 
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results of these investigations show that  there is a lot of structure in the 
chaotic behaviour of these solutions. These results warrant further inves- 
tigation and in particular we are investigating how the approximate map- 
pings used by Belinskii and Khalatnikov [2] and Barrow [4] represent the 
chaotic behaviour and whether other mappings can be constructed. Our 
results show that  there is considerable structure in the bounce which may 
be due to the complex shape of the potential surface, which is evolving with 
time. The contributions of the bounce as r ~ ~ appears to become more 
prominent and we are investigating the nature of these bounces futher. 

The chaotic behaviour comes in bursts, similar to the intermittent 
behaviour observed in turbulent fluid flow. This would presumably have 
important  consequences for an observer living in one of these models. If 
he happened to exist during one of the calm periods, our friend would not 
observe anything unusual. If, however, he lived in a time just prior to a 
burst of chaotic behaviour, then he would indeed be living in an interesting 
epoch. These sudden changes indicate a sudden change in the underlying 
at t ractor  of the dynamical system. 

There still remains the question of the reliability of the numerical 
calculations and this is a question that  remains unanswered even amongst 
those working in the field of chaotic dynamics. A further check that  can be 
made is to do more calculations with greater tolerances. It may be possible 
to write an integrator for this purpose using LISP which allows for infinite 
precision integer arithmetic [23] and the feasibility of such a system is 
currently being investigated. Until a definite answer to this question can 
be given, numerical results must still be taken with due care. 
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