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Abstract Representation of quantum states by statistical ensembles on the quantum
phase space in the Hamiltonian form of quantum mechanics is analyzed. Various
mathematical properties and some physical interpretations of the equivalence classes
of ensembles representing a mixed quantum state in the Hamiltonian formulation are
examined. In particular, non-uniqueness of the quantum phase space probability den-
sity associated with the quantum mixed state, Liouville dynamics of the probability
densities and the possibility to represent the reduced states of bipartite systems by
marginal distributions are discussed in detail. These considerations are used to study
ensembles of hybrid quantum-classical systems. In particular, nonlinear evolution of
a single hybrid system in a pure state and unequal evolutions of initially equivalent
ensembles are discussed in the context of coupled hybrid systems.

Keywords Statistical ensembles · Hybrid systems

1 Introduction

Schrödinger equation of quantum mechanics (QM) on a Hilbert space H can be writ-
ten as a Hamiltonian dynamical system on the corresponding phase space [1–5].
This fact enables elegant treatment of quantum dynamical problems, like for ex-
ample analysis of quantum dynamics with nonlinear constraints [6, 7] and related
issues of classical limit [8, 9]. One hopes that full geometrical formulation of QM
analogous to that of classical Hamiltonian systems, besides its usefulness in the
dynamical issues and its mathematical elegance, will also provide better intuitive
understanding of typically quantum phenomena [4, 5]. Furthermore, the Hamil-
tonian formulation is specially convenient for the treatment of coupling between
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classical and quantum systems, called hybrid systems, [10–13], because it pro-
vides a unified mathematical framework for both theories. However, the formal
similarity between the Hamiltonian formulation of QM and that of classical sys-
tems is only partial, and there are differences in some crucial aspects. The pur-
pose of this paper is to analyze the relation of quantum mixed states with the cor-
responding statistical ensembles of quantum systems in the Hamiltonian formula-
tion, and to utilize such considerations for an analysis of ensembles of hybrid sys-
tems.

The fundamental difference between the Hamiltonian formulation of QM and of
classical mechanics (CM) is in the classes of phase space functions which are con-
sidered as representing dynamical variables in the two theories. In the Hamiltonian
formulation of QM only the quadratic functions on the phase space are interpreted
as observables. Functions of more general types generate nonlinear evolution of the
quantum states. However, non-quadratic functions and nonlinear evolution of the
quantum degrees of freedom appear naturally in the theory of hybrid systems. This
fact has profound physical significance, and is reflected in the interpretation of the
results of the hybrid theory. Another, but related, type of striking differences and
incomplete analogies between Hamiltonian formulations of QM and CM are intro-
duced when states more general than pure are considered. Such considerations re-
veal, from a new perspective, some well known deep features of quantum mixtures,
represented by density operators ρ̂, but also point out to some less known differ-
ences between quantum and classical ensembles represented by density functions
ρ on the quantum phase space. Consequences of these differences in the Hamilto-
nian formulation of hybrid systems is the main topic of this paper. Thus, our main
motivation for the discussion of differences between quantum mixed states and gen-
eral statistical ensembles in the Hamiltonian formulation of QM, given in Sect. 3,
is to better understand the behavior of ensembles of hybrid systems, presented in
Sect. 4. In particular, we analyze, in Sect. 3.1, relations between classes of equiva-
lent discrete convex combinations of pure quantum states on one side, and classes of
equivalent statistical ensembles in the Hamiltonian formulation of QM on the other
side. The well known result of Hughston, Josza and Wooters [14], about the rela-
tion between different finite convex representations of a mixed state is generalized
to Hamiltonian ensembles represented by general densities. Typical representatives
of the equivalence classes of densities representing the same mixed state, such as
Gaussian densities, are discussed. Correct interpretation of the phase space function
〈ψ |ρ̂|ψ〉, where ρ̂ is a density matrix, versus a density ρ corresponding to that den-
sity matrix ρ̂ is stressed. In Sect. 3.2 we briefly describe the formulation of Liou-
ville equation as a Hamiltonian dynamical system. We then analyze, in Sect. 3.3,
the relation between the statistical operator obtained by tracing out a subsystem of
a quantum system in a pure state on one side, and the statistical ensembles given
by marginal distributions in the Hamiltonian formulation on the other side. These
considerations are important for proper interpretation of some recently obtained re-
sults in the Hamiltonian formulation of hybrid systems [10, 13], which we discuss in
Sect. 4.
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2 Hamiltonian Formulation

Quantum and classical mechanics might be formulated using the same mathematical
framework. Relevant references for the CM case are [15, 16] and for the QM case are
[1–5]. This fact suggests to formulate the hybrid theory using the same mathemati-
cal framework of Hamiltonian dynamical systems. All three theories will be consid-
ered here as dynamical systems (M,ω,g,H) on a differentiable manifold M with
a symplectic and Riemannian structures ω and g respectively, with some preferred
function, the Hamiltonian, H . The manifold is also assumed to posses a complex
structure J 2 = −I such that: g(x, y) = ω(x,Jy). All problems that we would like
to discuss appear already in quantum systems with finite-dimensional Hilbert space,
implying a finite-dimensional manifold M. Therefore we shall assume that M is
finite-dimensional.

Formulation of the classical mechanics of isolated conservative systems using
(M,ω,H) is standard [15, 16]. The formulation of quantum mechanics in terms
of (M,ω,g,H) is perhaps less well known, but shall not be presented here in any
detail since there exist excellent reviews [4, 5]. Very briefly, the basic observation
beyond the Hamiltonian formulation of quantum mechanics is that the evolution of a
pure quantum state in a Hilbert space H, as given by the Schrödinger equation, can
be equivalently described by a Hamiltonian dynamical system on an Euclidean mani-
fold M. The manifold is just the Hilbert space considered as a real manifold, with the
symplectic and Riemannian structures given by the real and the imaginary parts of
the Hilbert scalar product. Representing a normalized vector |ψ〉 ∈ H in a basis, one
can introduce the canonical coordinates xj = (c∗

j + cj )/
√

2, yj = i(c∗
j − cj )/

√
2,

j = 1,2 . . .N . Generic point from M will also be denoted by X or Xa , where
a = 1,2 . . .2N is an abstract index. The dimension of the quantum phase space is
2N where N is the complex dimension of the system’s Hilbert space. It should be
stressed, perhaps, that the canonical coordinates xj , yj have nothing to do with the
canonical coordinates of the classical system that after quantization gives the con-
sidered quantum system with the Hilbert space H. The Hamilton’s function H(X)

is given by the quantum expectation of the Hamiltonian Ĥ in the state |ψX〉 ↔ X:
H(X) = 〈ψX|Ĥ |ψX〉. The Schrödinger dynamical law is that of Hamiltonian me-
chanics

Ẋa = ωab∇bH. (1)

In the Hilbert space QM and in the Hamiltonian classical mechanics the dynam-
ical variables can be introduced formally as generators of the isomorphisms of the
respective relevant structures. In QM these are self-adjoined operators generating
unitary transformations that preserve the Hilbert scalar product. In the Hamiltonian
formulation of QM the Hilbert scalar product generates the symplectic and Rieman-
nian structure. The symplectic structure is preserved by Hamiltonian vector fields
of arbitrary smooth functions, but the metric is preserved only by the Killing vector
fields, i.e., by the Hamiltonian vector fields generated by quadratic functions of the
canonical variables. In the Hamiltonian formulation of classical systems, the metric
of the phase space has no physical relevance and thus all smooth functions gener-
ate isomorphic i.e., canonical transformations, and are interpreted as dynamical vari-
ables. In the Hamiltonian formulation of QM, only the quadratic functions generate
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the automorphisms, and only such functions are related to dynamical variables or ob-
servables. In fact, all observables are represented by quadratic functions A(X) on M
and are the quantum mechanical expectations of the corresponding quantum observ-
ables A(X) = 〈ψX|Â|ψX〉. In particular, the canonical coordinates of the quantum
phase space do not have physical interpretation. It is important to observe that the
Poisson bracket between two quadratic functions is also a quadratic function and sat-
isfies

{
A1(X),A2(X)

} = 1

i�

〈
ψX

∣∣[Â1, Â2
]∣∣ψX

〉
. (2)

If one considers the Hilbert space vectors of arbitrary norm, then two vectors |ψ1〉
and |ψ2〉 from H are representing the same physical pure state if there is a com-
plex scalar a 	= 0 such that |ψ2〉 = a|ψ1〉. The set of equivalence classes defines the
complex projective space CP N−1 ≡ (CN − {0})/∼. The pure state space CP N−1 is
isomorphic with the real manifold S2N−1/S1 which has compatible complex, Rie-
mannian and symplectic structures. These structures are used to formulate geometric
Hamiltonian framework of QM based on the pure state space CP N−1. Almost all
formulas that we shall present for the Hamiltonian formulation based on H are of
the same form in the formulation based on CP N−1, with the corresponding under-
standing of the symbols representing the phase space M, the symplectic structure
ω and the Riemannian metric g, and renormalization of the functions representing
observables, i.e., A(X) = 〈ψX|Â|ψX〉/‖ψX‖2. In particular, the transition probabil-
ity |〈ψ1|ψ2〉|2/(‖ψ1‖‖ψ2‖)2 is expressed as cos2 θ(X1,X2) of the geodesic distance
θ(X1,X2) between the points X1,X2 ∈ CP N−1. Also the eigenstates ψa of an ob-
servable Â are represented by the critical points of the Hamiltonian vector field gen-
erated by A(X). In the discussion that follows we shall not need to distinguish explic-
itly between the formulations based on H and the one based on CP N−1. Rare cases
when a statement is applicable only in one of the formulations, with the non-trivial
transcription, will be clearly stated.

The Hamiltonian formulation of QM suggests natural formal generalizations [4].
The most obvious one is to consider a theory where the evolution can be generated by
functions which are not quadratic [4, 17, 18]. This would correspond to a nonlinear
Schrödinger evolution equation. We shall see that such generalizations are dictated
quite naturally in the Hamiltonian framework for a theory of hybrid systems. It has
been argued, using particular generalization of the nonlinear evolution with all other
aspects of QM unaltered, that such nonlinear evolution would enable superluminal
communication between distant systems [19, 20], or violate the second law of ther-
modynamics [21]. However, other aspects of QM could be altered appropriately, and
conveniently using the Hamiltonian framework, as is required in a consistent theory
of hybrid systems [10, 12, 13], so that such objections do not apply. These issues
will be analyzed after a discussion of ensembles of quantum systems and composite
quantum systems in the Hamiltonian framework.
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3 Hamiltonian Ensembles and Quantum Mixtures

3.1 Statistical Ensembles of Quantum Systems

Ensembles of quantum Hamiltonian systems are in general described by probability
distributions ρ(X) on the phase space M. Average value of a quantum observable
A(X) over an ensemble ρ(X) is given by

Ā =
∫

M
ρ(X)A(X)dM, (3)

where dM represents the appropriate volume element on M. This expression can be
interpreted as unconditional expectation of the conditional expectation of Â in pure
states |ψX〉, the later being distributed according to the probability distribution ρ(X).
For a function A(X) = 〈ψX|Â|ψX〉/‖ψX‖2, representing an observable, one has

∫

M
ρ(X)A(X)dM = Tr(ρ̂Â), (4)

where the quantum mixed state ρ̂ associated with the probability distribution ρ(X) is
given by

ρ̂ =
∫

M
ρ(X)Π̂(X)dM, (5)

with Π̂(X) = |ψX〉〈ψX|/‖ψX‖2 being the projector corresponding to the pure state
represented by the point X. In general, the state vectors |ψX〉 can have arbitrary norm.

Special cases of the above formula are provided by densities with the support on
a finite set of points from M, giving finite convex combinations of atomic measures

ρ̂ =
M∑

i=1

ρ(Xi)Π̂(Xi), (6)

where M ≥ Rank(ρ̂). Incidentally, this special case of (5) is the most often discussed
in the standard Hilbert space QM.

The densities ρ(X) satisfy Liouville equation on M

∂

∂t
ρ(X; t) = {

H(X),ρ(X; t)}M, (7)

which differs in sign from the evolution equation of functions on M representing
observables.

One observes that all probability densities with the same second moments give
the same values for the expectations (4) of quadratic functions, i.e., quantum ob-
servables. Consequently all such densities generate the same statistical operator ρ̂

via (5). Furthermore, Liouville evolution of all the densities ρ(X; t0), yielding the
same ρ̂(t0), generates the same von Neumann evolution ρ̂(t). Indeed, the evolution
equation satisfied by ρ̂(t), related by (5) to a solution ρ(X; t) of the Liouville equa-
tion, is the von-Neumann equation i� ∂ρ̂/∂t = −[ρ̂, Ĥ ]. This fact is easily obtained
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from the definition (5) and Eq. (7) by using partial integration. Therefore, a quantum
mechanical (mixed) state, described by ρ̂, is identified with the equivalence class
{ρ}ρ̂ of densities with the same second moments and generating the same ρ̂ via (5).
Equivalence of densities with the same second moments is seen as a generalization
of standard quantum mechanical statement about the non-uniqueness of the convex
decomposition of a statistical operator ρ̂.

The most known physical consequence of the equivalence {ρ}ρ̂ is no-signaling by
distant steering (see for example [19] and the references therein). We shall discuss
some related issues later in the context of hybrid quantum-classical systems.

A pure state ρ̂0 = |ψX0〉〈ψX0 |, where X0 ∈ S2N−1/S1, is uniquely represented
by the corresponding delta function δ(X − X0) on S2N−1/S1. The equivalence class
{ρ}ρ̂0 indeed contains a single element, i.e., δ(X −X0), as can be seen by the follow-
ing reasoning. Let ρ0(X) belong to {ρ}ρ̂0 , i.e.,

ρ̂0 =
∫

M
ρ0(X)Π̂(X)dM. (8)

Choose an arbitrary state |ψ⊥〉 orthogonal to the state |ψX0〉. Now, one has

0 = 〈
ψ⊥∣∣ρ̂0

∣∣ψ⊥〉 =
∫

M
ρ0(X)

∣∣〈ψX

∣∣ ψ⊥〉∣∣2
dM. (9)

This means that ρ0(X) is nonzero only when 〈ψX|ψ⊥〉 = 0. Because of the arbi-
trariness of |ψ⊥〉, the density ρ0(X) is nonzero only at X = X0 leading to ρ0(X) =
δ(X − X0). Thus, a pure state is uniquely represented by single δ-density, i.e., by a
single trivial convex combination on S2N−1/S1.

Each equivalence class {ρ}ρ̂ of densities over M = R
2N based on the Hilbert

space H, corresponding to a mixed state ρ̂, contains a distribution of a unique form
and with fixed normalized second moments. Indeed, consider a statistical operator ρ̂

which matrix elements in the abstract (arbitrary) basis satisfy

Re(ρ̂ij ) =
∫

M
ρ(X)

xixj + yiyj

‖X‖2
dM,

Im(ρ̂ij ) =
∫

M
ρ(X)

yixj − xiyj

‖X‖2
dM,

(10)

where (xi, yi) (i, j = 1,2 . . .N ) i.e., Xa (a = 1,2 . . .2N ) are the components of the
Hilbert space vector in the same abstract basis, while ‖X‖2 = 2‖ψX‖2 holds. All den-
sities from the equivalence class {ρ}ρ̂ give the same ρ̂ij by definition. The form of ρ̂ij

implies that the expectation of any normalized quadratic function AabX
aXb/‖X‖2

(a, b = 1,2 . . .2N) on M = R
2N is computable once one finds the normalized co-

variance matrix of the density ρ

σab
ρ =

∫

M
ρ(X)

XaXb

‖X‖2
dM ≡ σab

ρ̂
, (11)

which is the same for any density from the equivalence class {ρ}ρ̂ , and is thus equiva-
lently denoted by σab

ρ̂
. Next we observe that the following distribution, fixed by (11),



Found Phys (2013) 43:1459–1477 1465

over M = R
2N

ρ̃(X) = ‖X‖2

(2π)N(detσρ̂)1/2
exp

[
−1

2

(
σ−1

ρ̂

)
ab

XaXb

]
, (12)

is a member of the equivalence class {ρ}ρ̂ because it reproduces the matrix elements
(10). Therefore, the only distributions on M = R

2N that are needed to represent all
possible mixed quantum states are of the form (12).

Each equivalence class corresponding to a mixed state could also be represented
by other types of distributions. In fact, the distribution given by finite discrete convex
combination of delta functions

ρ(X) =
N∑

i=1

ρiδ(X − Xi), (13)

where ρi are the eigenvalues and Xi correspond to the eigenvectors of the density
matrix ρ̂, also satisfies (5).

Assume now that the state vectors are normalized, as is customary in the Hamil-
tonian form of QM. One should be careful with the interpretation of distributions
ρ(X) satisfying (5), the function 〈ψX|ρ̂|ψX〉 and the quantum mechanical expression
|〈ψ |ψ ′〉|2. A statistical operator ρ̂ is Hermitian and therefore can be formally consid-
ered as an observable. The later are represented by the general rule as 〈ψX|ρ̂|ψX〉,
which we shall denote by 〈ρ̂〉(X) in order to distinguish it from the function ρ(X)

defined as to satisfy (5). The relation between the two functions is given by

〈ρ̂〉(X) =
∫

M
ρ
(
X′)|〈ψX′ |ψX〉|2dM ′. (14)

In case of the pure state ensemble |ψX0〉〈ψX0 | uniquely represented by the density
δ(X − X0), the function 〈ρ̂〉(X) is everywhere nonzero except at X corresponding
to vectors orthogonal to |ψX0〉. Note that the function 〈ρ̂〉(X) cannot be considered
as a density on M, representing the quantum ensemble ρ̂, because when substituted
in (5) it does not give the correct result (4), Tr(ρ̂Â). In the case M = CP N−1, the
substitution gives [22]

∫

M
〈ρ̂〉(X)A(X)dM = VN

N(N + 1)

(
Tr(ρ̂Â) + Tr(Â)

)
, (15)

where VN is the volume of CP N−1. However, modified function P(X) = (〈ρ̂〉(X) −
1/(N + 1))N(N + 1)/VN , gives the correct averages [22]. Nevertheless, P(X) is
not non-negative for all X even though 〈ρ̂〉(X) is. Therefore, P(X) can be used to
compute the quantum expectation Tr(ρ̂Â), but it cannot be considered as a probability
density on CP N−1.

Fallacy of the interpretation of the function 〈ρ̂〉(X) as a probability distribution
for given ρ̂ is best seen in the case of a pure state ρ̂. Let us be permitted to stress the
basic postulate of quantum mechanics concerning the interpretation of the expression
|〈ψ |ψ ′〉|2. This gives a probability that a system prepared in the state |ψ〉 with cer-
tainty, will transform during measurement of an observable with an eigenvector |ψ ′〉
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precisely into the state |ψ ′〉. It is a probability distribution over the eigenbasis of the
measured observable and is not a probability distribution over the space of all pure
states. Therefore a pure state |ψX0〉 is not represented by function |〈ψX|ψX0〉|2, but
by the probability distribution δ(X −X0). Similarly the ensemble ρ̂ is represented by
some ρ(X) satisfying (5) and not by 〈ρ̂〉(X) or P(X).

For further comparison with the Hilbert space formulation one should observe
that the set of combinations of delta functions centered at discrete set of points is
dense in the space of functionals on the space of continuous functions on M. In
other words, any density ρ(X) can be arbitrary well approximated by a finite discrete
convex combination of δ-functions

ρ(X) =
∫

M
ρ
(
X′)δ

(
X − X′)dM ′

�

∑

i

ρXi
δ(X − Xi). (16)

Approximation of ρ(X) by finite discrete convex combination of delta functions cor-
responds to a well known ensemble decomposition {ρXi

, |ψXi
〉} of a density matrix in

terms of finite convex combination of pure state projectors. We will call such density
discrete. ρ(X) and ρ′(X) from the same equivalence class {ρ}ρ̂ correspond to equiv-
alent ensemble decompositions {ρXi

, |ψXi
〉} and {ρ′

X′
i

, |ψX′
i
〉} of the density matrix ρ̂.

They are related by the Hughston-Jozsa-Wooters formula [14]

(ρXi
)1/2|ψXi

〉 =
∑

j

uij

(
ρ′

X′
j

)1/2|ψX′
j
〉, (17)

where [uij ] is unitary matrix of appropriate (not necessary equal) dimensions.
The preceding analysis implies the following generalization of (17) to the case of

arbitrary equivalent continuous densities ρ(X) and ρ′(X) from the same equivalence
class {ρ}ρ̂

(
ρ(X)

)1/2|ψX〉 =
∫

M
u
(
X|X′) (

ρ′(X′))1/2|ψX′ 〉dM ′, (18)

where u(X|X′) is a complex integral kernel satisfying
∫

M
u
(
X|X′)u∗(X|X′′)dM = δ

(
X′ − X′′), (19)

and ∗ denotes complex conjugation.

3.2 Hamiltonian Dynamics of Densities

Since this paper is about applications of the theory of Hamiltonian dynamical sys-
tems in QM and in hybrid theories, let us mention in passing that von-Neumann and
Liouville equations themselves can be presented in the form of appropriate Hamil-
tonian dynamical systems [16]. Considerations of these issues reveal from another
perspective the importance and the consequences of the QM restriction on the class
of functions generating the structure isomorphisms.
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The Lie algebra g of the infinite Lie group G of canonical transformations on
some finite dimensional symplectic phase space M consists of the Hamiltonian vec-
tor fields on M, and is isomorphic with the Lie algebra of smooth functions C∞(M).
The dual of C∞(M) is the coadjoint algebra g∗ isomorphic with the space of den-
sities ρ ∈ S(M). The paring is given by

∫
M ρ(X)H(X)dM . In order to present the

Liouville equation ρ̇ = −{ρ,H }M as a Hamiltonian dynamical system one follows
the standard construction of the symplectic structure on a coadjoint orbit Oρ of the
Lie group G [16]. First, a Poisson structure is defined on S as

{
H1(ρ),H2(ρ)

}
S

=
∫

M
ρ

{
δH1

δρ
,
δH2

δρ

}

M
dM =

∫

M
ρ{H1,H2}MdM, (20)

where Hi (ρ) = ∫
M ρHidM . Hamiltonian vector fields on S are given by XH(ρ) =

−{ρ, δH
δρ

}S . The Poisson structure (20) on S is degenerate, but its restriction on an
orbit of G in S

Oρ = {ρ ◦ λ |λ ∈ G} (21)

gives the desired symplectic structure on Oρ .
The Liouville equation appears as a Hamiltonian system on Oρ with the corre-

sponding Hamiltonian H(ρ) = ∫
M ρHdM and the Hamiltonian equations

ρ̇ = −{ρ,H}Oρ = {H,ρ}M. (22)

The Hamiltonian system (22) is linear and therefore integrable.
Consider now the above formalism appropriate for QM, where the preservation of

the Riemannian structure of M introduces the corresponding restrictions on G, g and
g∗. The structure isomorphism group Gq is the finite subgroup of canonical transfor-
mations generated by quadratic functions on M. This is isomorphic to the unitary
group U(N). The group Lie algebra gq is the Lie algebra of quadratic functions, and
the coadjoint algebra g∗

q is formed by the equivalence classes ρρ̂ . The coadjoint orbit
through ρ̂ is isomorphic with finite-dimensional manifold

U(N)/U(k1) ⊗ U(k2) ⊗ · · · ⊗ U(km), k1 + k2 + · · · + km = N, (23)

where k1, k2, . . . , km are dimensions of the eigenspaces of ρ̂. The orbit Oρ̂ , given by
(23), is a finite-dimensional symplectic manifold, whose dimension depends on the
spectrum of ρ̂. The symplectic structure on Oρ̂ may be introduced as in the general
case, and the von Neumann equation for ρ̂ is seen as the Hamilton dynamical equation
(22).

3.3 Mixtures as States of Subsystems

Consider a quantum system composed of two subsystems, with Hilbert spaces H1 and
H2 of the components and H12 = H1 ⊗ H2 of the total system. Partial trace Tr2(ρ̂)

of a pure ρ̂ = |ψ12〉〈ψ12| over the space H2 gives a density operator ρ̂1 on H1. The
operator ρ̂1 is a projector corresponding to a pure state |ψ1〉 ∈ H1 if an only if the pure
state of the total system ρ̂ = |ψ12〉〈ψ12| is separable, i.e., of the form |ψ1〉 ⊗ |ψ2〉 for
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some |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. In this case ρ̂1 = |ψ1〉〈ψ1| does not depend on the
particular |ψ2〉 in |ψ12〉〈ψ12|. In the case of a more general non-entangled state, i.e.,
for a convex mixture of separable states of the form ρ̂ = ∑

i pi ρ̂
i
1 ⊗ ρ̂i

2, the partial
trace Tr2(ρ̂) gives a convex mixture of the first subsystem states ρ̂i

1 with the same
coefficients pi .

We now consider statistical ensembles in the Hamiltonian formulation of compos-
ite systems. The phase space M12 of a bipartite quantum system with the Hilbert
space H12 is constructed directly from H12 (or PH12) without any reference to
the components H1 and H2 with the corresponding phase spaces M1 and M2. Of
course, the dimensionality of M12 is much larger than that of M1 × M2. In fact,
M1 ×M2 is an embedded submanifold of M12. In the case M1 = CP N−1,M2 =
CP M−1 and M12 = CP MN−1 the embedding CP N−1 × CP M−1 → CP MN−1 is
known as Segre embedding [5, 23]. We shall denoted the coordinates {Xa} adapted
to the Segre embedding by (X1,X2,X3) where X1 and X2 are the sets of coordinates
on M1 ×M2. The set of coordinates denoted by X3 assume zero values iff the state
is separable.

A statistical ensemble of bipartite systems is described by a probability density
ρ(X) ∈ S(M12). A density on M12 gives a statistical operator on H12 according to
the general prescription:

ρ̂12 =
∫

M12

ρ12(X12) Π̂(X12) dM12. (24)

Mixed state ρ̂12 is separable if there exists a convex mixture representation (24) of
ρ̂12 in terms of separable pure states. If each of the equivalent convex representations
contains at least one entangled pure state then ρ̂12 is entangled. Therefore, it makes
sense to call a density ρ12 separable if ρ12(X1,X2,X3) is zero when X3 	= 0, that
is when it’s support is contained in M1 × M2. Such densities will be denoted by
ρ(X1,X2). If any of the densities in the equivalence class {ρ12}ρ̂12 is separable then
ρ̂12 is by definition separable. On the other hand, if ρ̂12 is entangled then none of the
densities in the equivalence class {ρ12}ρ̂12 is separable, and each must have an en-
tangled state in its support. However, notice that some of the densities from a single
equivalence class, corresponding to a separable mixed state ρ̂12, might be separable
and some might not. In one word, it is misleading to talk about entangled densities,
but the notion of a separable density is perfectly consistent with the standard termi-
nology.

Let us demonstrate the standard relations between the state of a compound system
and the state of the first subsystem using the representation (24). We perform a partial
trace over the second subsystem

ρ̂1 = Tr2(ρ̂12) =
∫

M12

ρ12(X12)Tr2
(
Π̂(X12)

)
dM12. (25)

Let D1 denotes the manifold of the density matrices σ̂1 of the first subsystem and
let δ

(1)
σ and dM

(1)
σ be delta function and Lebesgue measure on D1. By inserting the
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identity1

∫

D1

δ(1)
σ

(
σ̂1 − Tr2

(
Π̂(X12)

))
dM(1)

σ = 1, (26)

into (25) we express ρ̂1 as a convex combination of density matrices of the first sub-
system

ρ̂1 =
∫

D1

ρ1(σ̂1)σ̂1dM(1)
σ , (27)

where the distribution ρ1 over D1 is normalized to unity and obeys

ρ1(σ̂1) =
∫

M12

ρ12(X12)δ
(1)
σ

(
σ̂1 − Tr2

(
Π̂(X12)

))
dM12. (28)

In the case of a pure state ρ̂12 = Π̂(X̄12) which is represented by the delta density
ρ12(X12) = δ(X12 − X̄12), one obtains

ρ1(σ̂1) = δ(1)
σ

(
σ̂1 − Tr2(ρ̂12)

)
, (29)

which is expected.
The result (28) can be further analyzed. Let Π̂(X12) = |ψX12〉〈ψX12 | in terms of

normalized state vectors. Using the Schmidt decomposition |ψX12〉 =
∑R12

i=1
√

pi |φ(1)
i 〉 ⊗ |χ(2)

i 〉, with pi > 0, one obtains mixed state Tr2(Π̂(X12)) =
∑R12

i=1 pi |φ(1)
i 〉〈φ(1)

i |, where R12 = Rank(Tr2(Π̂(X12))). Any other state |ψXλ
12

〉 such

that Tr2(Π̂(Xλ
12)) = Tr2(Π̂(X12)) has the form |ψXλ

12
〉 = ∑R12

i=1
√

pi |φ(1)
i 〉 ⊗ |χ(2)

i,λ 〉,
and can be obtained as a result of unitary transformation acting non-trivially on the
second subsystem |ψXλ

12
〉 = Ûλ|ψX12〉. Such transformation induces the correspond-

ing action Xλ
12 = UλX12 on M12 and yields the following equivalent form of (28)

ρ1(σ̂1) =
∫

Λ(σ̂1)

ρ12(UλX̃12)dλ, (30)

where λ parameterizes the space Λ(σ̂1) ∼= U(M)/U(M −Rank(σ̂1)) and X̃12 ∈ M12

is an arbitrary state satisfying Tr2(Π̂(X̃12)) = σ̂1.
We now want to consider a possible analog of the partial trace formulated en-

tirely in terms of the Hamiltonian densities and marginal distributions. We shall first
consider the cases when the total quantum state ρ̂12 is separable pure or mixed. Gen-
eral ensembles are represented by densities on M12 denoted by ρ12(X). In the co-
ordinates X1,X2,X3 adapted to the Segre embedding the densities are written as
ρ12(X) = ρ12(X1,X2,X3). In order to treat the separable states it is enough to con-
sider probability densities with the support on M1 × M2 i.e., densities dependent
only on X1,X2. This is obvious if the state is pure, and if the state is mixed then there

1We are grateful to the referee for this observation and its consequences.
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is at least one convex representation of it with the density having the stated prop-
erty. Ensemble of pure states X0, corresponding to the pure ρ̂12 = Π̂(X0), is repre-
sented by the delta function centered at X0. In the coordinates X1,X2,X3 adapted
to the Segre embedding, the ensemble of pure separable states X0 is represented by
ρ12(X1,X2) = δ(X1 − X01)δ(X2 − X02). If the state is mixed separable then it can
be represented by a density of the form ρ(X) = ρ(X1,X2). Integration over X2 in
the pure separable case gives

∫

M2

δ(X1 − X01)δ(X2 − X02)dM2 = δ(X1 − X01),

separable pure ρ̂12 = Π̂(X0). (31)

The result is a delta density on M1 which reproduces, via the general formula (5),
the reduced matrix Tr2(Π̂(X0)). Similarly, in the mixed separable case the integration
over X2 gives a density on M1

ρ1(X1) =
∫

M2

ρ(X1,X2)dM2, separable mixed ρ̂12, (32)

which reproduces Tr2(ρ̂12) if ρ(X1,X2) reproduces ρ̂12. We see that the analog of
the partial trace in the case of separable state, pure or mixed, is provided by taking
the marginal distribution of the appropriate distribution on the total phase space.

However, the analogy does not work for entangled states. In fact, consider a pure
entangled state, represented by the delta density ρ12(X;X0) = δ(X1 − X01)δ(X2 −
X02)δ(X3 − X03). Integration over X2,X3 gives, up to a function dependent on X0,
the delta function of X1 − X01

ρ1(X1;X0) =
∫

X2,X3

ρ12(X1,X2,X3;X0)dX2dX3 = δ(X1 − X01)g(X0)

entangled pure ρ̂12 = Π̂(X0), (33)

which is proportional to the density that represents a pure state in H1, and not the
reduced mixed state.

The general conclusion of this analysis is that if the state of the total system is sep-
arable then the marginal distribution of a specific probability distribution reproducing
the state of the total system, reproduces the reduced density matrix of the subsystem.
Evolution of such reduced density will preserve this property if the Hamiltonian does
not entangle the two subsystems. In this case, arbitrary transformations or approxima-
tions of the second subsystem density do not effect the evolution of the first subsys-
tem. The case of separable bipartite states is specially important for hybrid systems,
when one of the parts is treated as a classical system, since in the Hamiltonian hybrid
theory, presented in the next Section, there can be no entanglement between the clas-
sical and the quantum parts. On the other hand, if the initial total state of a bipartite
quantum system is entangled, or becomes entangled due to the evolution, then the
states of the subsystems are not given simply in terms of the marginal distributions.
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4 Ensembles of Hybrid Systems

There is no unique generally accepted theory of interaction between micro and macro
degrees of freedom, where the former are described by quantum and the later by clas-
sical theory. The reason is primarily because each of the suggested theories has some
unexpected or controversial features (see [10] for an informative review). Partial se-
lection of hybrid theories can be found in [24–29]. Some of the suggested hybrid
theories are mathematically inconsistent, and “no go” type theorems have been for-
mulated [30], suggesting that no consistent hybrid theory can be formulated. Nev-
ertheless, mathematically consistent but inequivalent hybrid theories exist [10, 28,
29]. Even the proper conceptual status and putative domains of application of hybrid
theories need not be unique and are not generally agreed upon. Hybrid theories that
attempt to describe the quantum measurement process or serve as approximate but
consistent models in quantum chemistry or model the interaction between classical
gravity and quantized matter might be fundamentally different or differ only in some
additional details. Usually, it is not claimed that macroscopic systems are composed
of something other that microscopic parts well described by quantum theory. How-
ever it is legitimate to assume that dynamics of at least some of the observable degrees
of freedom of a macroscopic system are correctly described by classical mechanics,
and that the classical mechanical description need not be reduced or derived from
quantum description of all the microscopic components. Neither quantum nor classi-
cal theory is designed to describe the dynamics of systems consisting of micro and
macro subparts, as separately described by the quantum and the classical mechanics
respectively.

The Hamiltonian hybrid theory, as formulated and discussed for example in [10–
13, 31], has many of the properties commonly expected of a good hybrid theory. In
fact, the dynamical formulas of the Hamiltonian theory are equivalent to the well
known mean field approximation, the main novelty being that the theory is formu-
lated entirely in the framework of the theory of Hamiltonian dynamical systems. In
particular, this demonstrates that the theory is mathematically consistent. However,
the theory also has some controversial features concerning the class of mathemati-
cal objects that should be interpreted as physical variables and the most general type
of states of the hybrid system. In what follows we shall first briefly recapitulate the
Hamiltonian formulation of the hybrid systems and present the dynamical laws for
pure states and for ensembles of hybrid systems. Unlike the purely quantum case,
the dynamics of hybrids in pure states is nonlinear and the dynamics of densities in-
volves the most general class of statistical ensembles. Therefore, one needs to discuss
the possibility of superluminal communication between hybrid systems.

Hamiltonian theory of hybrid systems can be developed starting from the Hamil-
tonian formulation of a composite quantum system and imposing a constraint that
one of the components is behaving as a classical system [12]. The result, in the
macro-limit imposed on the constrained subsystem, turns out to be equivalent to a
Cartesian product of two Hamiltonian systems as in [10]. One of these Hamiltonian
systems corresponds to the quantum and one to the classical subsystem of the hybrid.
However, the interaction between the two subsystems has crucial influence on their
properties.
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The space of pure states of the hybrid system M is considered as a Cartesian
product M = Mc × Mq of the classical subsystem phase space Mc and of the
quantum subsystem phase space Mq . Local coordinates on the product are denoted
{p,q, x, y}, where (p, q) ∈Mc will be called the classical degrees of freedom (CDF)
and (x, y) ∈ Mq will be called the quantum degrees of freedom (QDF). The con-
straint that CDF behave as a classical system implies that there is no entanglement
between QDF and CDF, but no restriction on the entanglement in QDF is imposed.
The evolution equations of the hybrid system are of the Hamiltonian form with the
Hamilton’s function comprised of three terms

Ht(p,q, x, y) = Hc(p,q) + Hq(x, y) + Vint (p, q, x, y), (34)

where Hc is the Hamilton’s function of the classical subsystem, Hq(x, y) =
〈ψx,y |Ĥq |ψx,y〉 is the Hamilton’s function of the quantum subsystem and Vint (p, q,

x, y) = 〈ψx,y |V̂int (p, q)|ψx,y〉 describes the interaction between the subsystems,
where V̂int (p, q) is an operator in the Hilbert space of the quantum subsystem which
depends on the classical coordinates (p, q). The state vectors |ψx,y〉 are normalized
by assumption. The Poisson bracket on M of arbitrary functions of the local coordi-
nates (p, q, x, y) is defined as

{F1,F2}M =
nc∑

i=1

(
∂F1

∂qi

∂F2

∂pi

− ∂F2

∂qi

∂F1

∂pi

)
+

nq∑

j=1

(
∂F1

∂xj

∂F2

∂yj

− ∂F2

∂xj

∂F1

∂yj

)
, (35)

where nc and nq are numbers of CDF and QDF respectively. Of course, if the Hilbert
space of the quantum part is of infinite dimension then nq is infinite. Thus, the Hamil-
tonian form of the hybrid dynamics on M as the phase space reads

q̇ = {q,Ht }M, ṗ = {p,Ht }M, (36)

ẋ = {x,Ht }M, ẏ = {y,Ht }M, (37)

where Ht is given by (34).
In particular, the evolution of QDF can be stated in the form of the Schrödinger

equation

i� ∂t |ψx,y〉 = Ĥqc(p, q)|ψx,y〉, (38)

with the Hamiltonian operator Ĥqc(p, q) = 〈p,q|Ĥ |p,q〉 acting on the Hilbert space
of quantum subsystem and depending parametrically on the CDF (p, q) through the
coherent states |p,q〉. The evolution of the state vectors (38) is norm-preserving, but
nonlinear.

It is worth noticing that the state of QDF in a hybrid system might have nonzero
entanglement. We tested this using as an example a pair of 1/2-spins in interaction
with a 2D classical oscillator. The interaction between QDF and CDF couples the
classical coordinates with the spins components σ

1,2
x,y,z,. It turns out that the concur-

rence of the pure state of the two spins displays nontrivial dynamics and is often
nonzero.
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Thus, QDF of the hybrid model display some typically quantum properties and
evolve nonlinearly in the same time. Furthermore, the Poisson bracket (35) of two
functions F1(p, q, x, y) and F2(p, q, x, y) which are both quadratic in QDF and de-
pend on CDF, is not a function quadratic in the QDF. However, the proper interpreta-
tion of this fact is nontrivial. Let us first reexamine the situation in the purely quantum
case with linear evolution and normalized state vectors. There, a quadratic function
A(x,y) = 〈ψx,y |Â|ψx,y〉 was considered as mathematical representative of a dynam-
ical variable, and the set of quadratic functions is invariant under the evolution. Thus,
in the purely quantum case, the evolution of a quadratic function can be interpreted as
the Heisenberg picture of the evolution of a dynamical variable or as the Schrödinger
picture of the expectation of the variable in an evolving state. On the other hand, in
the Hamiltonian hybrid theory one can stick to the original interpretation of A(x,y)

as the expectation of the observable Â in the state |ψx,y〉. One could then argue that
the Heisenberg picture of the hybrid evolution is not defined, and the non-quadratic
expression A(x,y; t) = 〈ψx,y(t)|Â|ψx,y(t)〉 should be interpreted as the expectation
value of the standard Schrödinger quantum variable in the state |ψx,y(t)〉 at time t .
Nevertheless, the nonlinear evolution of the QDF shows that QDF of a hybrid system
do not have all the properties of a purely quantum system. Hybrid systems appear
to be qualitatively different from a simple union of classical and quantum systems
[10, 12, 13, 31]. This is further illustrated by studying the evolution of ensembles of
hybrid systems.

The most general ensemble of hybrid systems is represented by some probability
density ρ(p,q, x, y). As pointed out in Sect. 3.1, the function ρ should not be con-
sidered as an expectation 〈ρ̂(q,p)〉 of some density operator ρ̂(q,p) parametrically
dependent on (q,p). The densities evolve according to the Liouville equation with a
solution ρ(p,q, x, y; t). As in Sect. 3.2, this Liouville equation for the hybrid system
is itself a Hamiltonian dynamical system. The density ρ(p,q, x, y; t) for any fixed t

generates a unique positive operator valued function (POVF):

ρ̂(p, q; t) =
∫

Mq

ρ(p, q, x, y; t)Π̂(x, y)dMq, (39)

which can be called the hybrid statistical operator. The unconditional mixed state
of the quantum subsystem of the hybrid in the state ρ(p,q, x, y; t) is also uniquely
obtained as

ρ̂(t) =
∫

M
ρ(p,q, x, y; t)Π̂(x, y)dM ≡

∫

Mq

ρq(x, y; t)Π̂(x, y)dMq, (40)

where the marginal distribution ρq(x, y; t)

ρq(x, y; t) =
∫

Mc

ρ(p, q, x, y; t)dMc (41)

can be considered as the probability density on Mq associated with the state ρ̂(t) of
QDF. Due to the properties of the Liouville evolution of ρ(p,q, x, y; t), the formula
(40) defines for all t a continuous one-parameter family of statistical operators on H.
Like in the purely quantum case, ρ̂(t) and ρ(p,q, x, y; t) give the same expectation
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Tr(ρ̂(t)Â) = ∫
ρA(x, y)dM of quantum observables Â represented by A(x,y). All

that was said about many-to-one relation between ρ and ρ̂ in the quantum case applies
also in the hybrid case.

However, contrary to the purely quantum case, different ρ(p,q, x, y; t0) that give
the same ρ̂(t0) generate different evolution of ρ̂(p, q; t) (or ρ̂(t)) and thus must be
considered as physically different (for a related analysis please see [30, 31]). Indeed,
the evolution equation satisfied by ρ̂(p, q; t) [13] is

∂ρ̂(p, q; t)
∂t

= 1

i�

[
Ĥq + V̂int (p, q), ρ̂(p, q; t)] + {

Hc(p,q), ρ̂(p, q; t)}
p,q

+
∫

Mq

{
Vint (p, q, x, y), ρ(p, q, x, y; t)}

p,q
Π̂(x, y)dMq. (42)

The dynamical equation for ρ̂(t) is

dρ̂(t)

dt
= 1

i�

[
Ĥq, ρ̂(t)

] + 1

i�

∫

Mc

[
V̂int (p, q), ρ̂(p, q; t)]dMc. (43)

The first term of (43) generates the unitary part of the evolution and the second term
does not preserve the norm of ρ̂ and is responsible for non-unitary effects. Notice
that the evolution of ρ̂(p, q; t) (ρ̂(t)) cannot be expressed only in terms of ρ̂(p, q; t)
(ρ̂(t)), but irreducibly involves the probability density ρ(p,q, x, y; t). At this point
we might remark that the von Neumann entropy of SvN = Tr(ρ̂ ln ρ̂) of (40) can in-
crease and decrease during the evolution (43) starting from a general initial ensemble.
However, this is not an instance of the Peres objection [21] against nonlinear evolu-
tion of a quantum system since the QDF form an open dynamical system. On the
other hand the Gibbs entropy S(ρ) = ∫

M ρ lnρ dM is conserved by the Liouville
evolution of the total density.

The evolution equation for ρ̂(t) is reduced to (36) and (37) if the initial
ρ(p,q, x, y; t0) is a pure state in M. This is intuitively clear since there can be
no entanglement between QDF and CDF. Formally, pure initial state is represented
as a delta function on the total phase space and the Liouville equation is reduced to
the Hamilton equations for pure states. If however, the initial density is of the form
δ(x −x0)δ(y −y0)ρ(q,p) the pure state ρ̂(t0) = |ψ(t0)〉〈ψ(t0)| might evolve accord-
ing to (43) into a non-pure mixture. Quantum-classical interaction with the classical
part in the initially mixed state can transform an initially pure state of the quantum
part into a mixed state. This is an important observation.

The evolution of QDF of a hybrid system is fundamentally different from the linear
evolution of a quantum subsystem of a quantum system. The reason for this qualita-
tive difference is that dynamical influences of many degrees of freedom correspond-
ing to the entangled states and to the non-classical states of the classical subsystem
are completely neglected in the derivation of the hybrid dynamics.

The characteristic main features of the QDF evolution in the hybrid case are ex-
pressed by the nonlinearity of the pure state evolution, or by the dynamically induced
differences of ρ̂(t) with different convex mixture representations. It is well known
[19, 20], that the linearity of the Schrödinger equation and the equivalence of different
convex mixtures, are both necessary in order to prevent superluminal communication
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in ordinary quantum mechanics of bipartite systems. If either of the two properties is
violated, without further modification of the quantum formalism, superluminal com-
munication between entangled parts of a bipartite system is possible. The nonlinear
pure state evolution and the evolution dependence on the initially equivalent different
ensembles appear quite naturally in the Hamiltonian description of hybrid systems,
and in the same time the QDF of the hybrid might be in an entangled state. Therefore,
superluminal communication can be avoided only by some further modification of the
hybrid theory. It has been argued that the direct product might not be the natural type
of coupling between systems with nonlinear evolution [19], and that nonlinear evolu-
tion might suggest non-standard computation of correlations [32]. Alternatively, one
might consider the model of hybrid systems presented here as insufficient to describe
fully the true features of coupled real quantum and macroscopic classical systems.
One might resort to ad hoc modifications of the hybrid evolution by introducing dis-
sipation and stochastic terms [33, 34] or one might explore the possibilities opened
up by replacing a simple classical system by truly complex classical systems with
many degrees of freedom [10, 34].

Finally, we would like to stress that the presented theory of quantum-classical in-
teraction does not provide a description of the quantum measurement process (for a
discussion of this opinion see [35]) if the total system is initially in a pure state. The
Hamiltonian system (36) and (37) with, for example Hq(x, y) = 0 and Hc(p,q) = 0,
but with a nonzero interaction, for example Hint (p, q, x, y) = cx2p, where c is a
coupling constant, can describe “classical measurement” of a quantity A(x) = x2 by
the meter given by the variable conjugate to p, that is by q . In fact q(t) and the initial
x0 get correlated as q(t) = cx2

0 t and thus reading of q(t) at some t is a measurement
of x2

0 . However, the result of such “classical measurement”, i.e., A(x,y), is the ex-

pectation of the observable Â, and not one of its eigenvalues, as it should be in ideal
quantum measurement on a single system. Only if the initial state of the QDF is an
eigenstate of Â with eigenvalue a1, the quantum-classical interaction can give the
eigenvalue a1. An arbitrary initial state of the QDF, for example a superposition of a1
and a2 eigenstates would lead to q(t) corresponding to the average of the eigenvalues.
In conclusion, the proper quantum measurement process seems to involve dynamical
entanglement between the quantum system and the apparatus, which, once entangled
with the system, must be considered in some sense complex and classical. The ini-
tial entanglement is impossible in the present model of quantum-classical interaction,
which treats the macroscopic apparatus as completely described by the classical the-
ory from the beginning. On the other hand, in order to reproduce the results of ideal
quantum measurement by quantum-classical interaction one could contemplate the
hybrid systems as effectively dissipative, supplementing the Hamiltonian model with
the attractors indicating the eigenvalues of the quantum observable.

5 Summary

We have explored relations between properties of quantum mixed states as repre-
sented by statistical operators or by density distributions on the phase space in the
Hamiltonian formulation of quantum mechanics and hybrid systems. Some conse-
quences of the fact that in general many density functions correspond to a single
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statistical operator are discussed. Liouville and von Neumann evolution equations
are seen as Hamiltonian dynamical systems. This perspective additionally illustrates
the restriction imposed on a general Hamiltonian system if it is to represent a physi-
cal system with quantum mechanical properties. We then explored representation of
the partial trace operation in terms of partial integration over the relevant variables in
the Hamiltonian formulation. Our main objective was to analyze ensembles of hybrid
quantum-classical systems in the Hamiltonian formulation. In this context relation
between the evolution of the quantum degrees of freedom in a pure state and in a
mixed state is explored. The quantum degrees of freedom of a hybrid in a pure state
evolve nonlinearly and if the hybrid is in a mixed state different convex representa-
tions must be considered as nonequivalent because they evolve differently.

Linear evolution of QM, and invariance of the evolution of ρ̂ on different con-
vex representations, need to be abandoned if the effects of interaction with CDF, like
those occurring during measurements, are to be described dynamically. On the other
hand, QM treatment of composite systems is adapted to the linear evolution, and if
the later is replaced by a nonlinear one, the kinematic properties of the composite QM
systems have to be modified as well. The needed modification of the kinematic prop-
erties of quantum composite systems is not supplied by the presented Hamiltonian
hybrid theory. Furthermore, the theory does not describe the measurement process.
It is fair to say that the Hamiltonian hybrid theory, in its presented form, does not
describe the quantum-classical interaction successfully. In fact the QC interaction
is treated in an oversimplified manner, because the macro-object in interaction with
QDF is considered as fully described by a small subset of distinguished degrees of
freedom which are described classically. A large number of degrees of freedom of
the macroscopic object which also interact with the quantum system are completely
neglected. The presented form of the Hamiltonian hybrid theory must be modified in
order to incorporate the effects of these degrees of freedom. It is our belief that such
modifications will result in a hybrid theory which is consistent and whose predictions
are closer to the experimentally observed facts.
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