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Abstract Lagrangian formulation of quantum mechanical Schrödinger equation is
developed in general and illustrated in the eigenbasis of the Hamiltonian and in the
coordinate representation. The Lagrangian formulation of physically plausible quan-
tum system results in a well defined second order equation on a real vector space.
The Klein–Gordon equation for a real field is shown to be the Lagrangian form of the
corresponding Schrödinger equation.

1 Introduction

Schrödinger evolution equation of quantum mechanics [1] is of the first order in time
and is formulated on the complex Hilbert space of the system. In these respects, it
is similar to the evolution equation of a Hamiltonian dynamical system[2,3]. The
latter have an equivalent Lagrangian formulation in terms of equations of the second
order in time. On the other hand, something like a Lagrangian formulation of the
abstract Schrödinger equation is usually not considered. The question of a second order
evolution equation equivalent to the Schrödinger equation in coordinate representation
was considered for the first time by Schrödinger himself [4]. However, he did not
consider the problem as the one of relation between Hamiltonian (Schrödinger) and
Lagrange frameworks. An interesting analysis of this problem, again formulated in the
coordinate representation, appeared in [5]. Construction of an appropriate Lagrangian
formulation of the quantum Schrödinger evolution in the general case is the task of
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Fig. 1 Illustrates relations between various formulations of quantum Schrödinger evolution.

this paper. This is quite different from the standard application of the action functional
in the Lagrangian (or Hamiltonian ) form of the functional integral representation of
the quantum propagator [6,7].

Our strategy and the main result could be schematically summarized as in Fig. 1.
We shall start from the quantum Schrödinger equation on an abstract complex Hilbert
space, which we consider as given. This is the box 1 in Fig.1. It is well known that
the Schrödinger equation is equivalent to the appropriate Hamiltonian dynamical sys-
tem on the corresponding phase space [8–11]. This is the box 2 in Fig.1. In fact,
the geometric Hamiltonian form of the Schrödinger evolution could be extended to
an equivalent formulation of the quantum mechanics [10], and is quite suitable for
treatment of problems like nonlinear constraints[12,13], imbedding of classical into
quantum mechanics [14,15] and hybrid theories [16–18]. We shall apply the standard
transition procedure from Hamiltonian to Lagrangian formulation in order to obtain
the Lagrangian form of the Hamiltonian formulation of the Schrödinger equation. The
result is the box 3 in Fig. 1. The final step is the transition from the Lagrangian dynam-
ical system in box 3 to the Lagrangian form of the Schrödinger equation, which turns
out to be a second order equation on a real Hilbert space. This is the box 4 in Fig. 1.
The transitions between boxes, represented by the arrows in Fig. 1, are explained in
detail, and in the general case, in the next section.

Of course, the Lagrangian form, when it exists, is equivalent to the Hamil-
tonian Schrödinger equation. Therefore, our main motivation for the derivation of the
Lagrangian form of the general (linear) Schrödinger equation is purely formal. One
further motivation is that the Lagrangian form of the Schrödinger equation is more
suitable for Lorentz invariant models. In fact, we shall see that the Klein-Gordon equa-
tion [19] for the relativistic state vector is noting else but the Lagrangian formulation
of the Schrödinger equation with the corresponding Hamiltonian. Also, symmetries
are more naturally considered as morphisms of the Lagrangian form and not as time
evolution, while the Hamiltonian formulation, i.e. the Schrödinger equation, on the
other hand, offers the framework in which the time evolution is an automorphism of
the relevant symplectic structure. However, one should bare on mind that the canonical
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coordinates and momenta in the Hamiltonian and velocities in the Lagrangian formu-
lations of the Schrödinger equation are in fact the coefficients in a basis expansion of
the quantum state vector.

The presentation in Sect. 2 is general and formal. The conditions for existence of the
expression of the canonical momenta in terms of velocities will be briefly discussed in
the general case near the end of Sect. 2. The possible problems will be further illustrated
and discussed in Sect. 3, together with the presentation of particular examples obtained
by rewriting the general formalism in particular bases. In this section we also treat the
Klein-Gordon equation as an example of the Lagrangian formulation of the appropriate
Schrödinger equation. Summary is given in Sect. 4.

2 Derivation of the Lagrangian Equations

The Schrödinger equation

i h̄
d|ψ〉

dt
= Ĥ |ψ〉 (1)

on a complex Hilbert space Hc of finite or infinite complex dimension N , is equivalent
to a Hamiltonian dynamical system on an appropriate real, symplectic manifold of
dimension 2N . This Hamiltonian formulation of the Schrödinger evolution equation
is well known ( excellent comprehensive reviews are [10,11]). Nevertheless, we need
to recapitulate the notation and write down the basic definitions and formulas in their
most elementary form. Derivation of the Hamiltonian form of the Eq. (1) ends with
the Eqs. (10) and the rest of this section is devoted to the derivation of the Lagrangian
form of the Schrödinger evolution.

A vector |ψ〉 ∈ Hc in an abstract (arbitrary) basis {|n〉} is written as

|ψ〉 =
∑

n

zn|n〉 =
∑

n

(qn + i pn)|n〉 (2)

The matrix elements
Hmn = 〈m|Ĥ |n〉 ≡ H R

mn + i H I
mn (3)

satisfy H R
mn = H R

nm, H I
mn = −H I

nm since Ĥ is a Hermitian operator. It is not nec-
essary for our main line of reasoning, but it is nevertheless instructive, to write down
explicitly the abstract matrix form of the Schroödinger equation (1) in terms of real
2N dimensional vector

|φ〉 = (q1, . . . qn, p1 . . . pn)
T ≡ (q, p)T (4)

The Schrödinger equation (1) in terms of the 2N real vector |φ〉 in the abstract basis
reads

d|φ〉
dt

= 1

h̄

(
Ĥ I Ĥ R

−Ĥ R Ĥ I

)
|φ〉, (5)
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where Ĥ I , Ĥ R denote N × N matrices introduced in (3). The Schrödinfer equation
(1) and the representations in the abstract basis of Hc are the content of the box 1, and
are considered as given.

The function

H(q, p) = 1

2h̄
〈ψ |Ĥ |ψ〉 (6)

where qn, pn, |ψ〉 are as in (2) is a quadratic form given explicitly by

H(q, p) = 1

2h̄

∑

nm

(
qnqm H R

nm + pn pm H R
nm − 2qn pm H I

nm

)
. (7)

Let us remark that the function H(q, p) can also be written as 〈φ|ĤC |φ〉 where |φ〉
is given by (4) but the representation is not unique, i.e. the expression (7) is given by
〈φ|ĤC |φ〉 where

Ĥ c = 1

2h̄

(
Ĥ R −Ĥ I

Ĥ I Ĥ R

)
(8)

or

Ĥ c = 1

2h̄

(
Ĥ R −2Ĥ I

0 Ĥ R

)
. (9)

or other similar matrces.
It is easily checked that the Hamilton equations with the Hamilton’s function

H(q, p) (7):

q̇n = ∂H(q, p)

∂pn
, ṗn = −∂H(q, p)

∂qn
(10)

reproduce the real form of the Schrödinger equation (5). The Hamiltonian function
(6) and (7) and the corresponding Hamilton’s equations are the content of the box 2,
and the arrow from box 1 to box 2 is given explicitly by the formula (7).

In order to derive the Lagrangian form of the Hamilton’s equations (10) we need
to express the canonical momenta pn in terms of the velocities q̇n . This is done in the
standard way, and using the explicit form of the Eqs. (10). In fact, from (10a)

∑

m

H R
nm pm = h̄q̇n −

∑

m

H I
nmqm (11)

Therefore

pk =
∑

n

(
(H R)−1

)

kn

(
h̄q̇n −

∑

m

H I
nmqm

)
, (12)

or in a more compact form p = (Ĥ R)−1(h̄q̇ − Ĥ I q). At this point we do not care
about the existence of the inverse operator (ĤR)

−1. The relation (12) is substituted
into the definition of the Lagrange function L = ∑

l pl q̇l − H(q, p) to obtain, after
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some manipulation

L(q, q̇) = h̄

2

∑

n,m

q̇n

(
(H R)−1

)

nm
q̇m +

∑

n,m,k

qn H I
nk

(
(H R)−1

)

km
q̇m

− 1

2h̄

∑

n,m

qn

⎡

⎣
∑

k, j

H I
n,k((H

R)−1)k, j H I
j,m + H R

n,m

⎤

⎦ qm (13)

The previous formula for the Lagrangian function L(q, q̇) in terms of the Hamiltonian
Ĥ could be rewritten in a perhaps more systematic form

L(q, q̇) =
∑

nm

q̇n Lq̇q̇
nmq̇m +

∑

nm

qn Lqq̇
nmq̇m +

∑

nm

qn Lqq
nmqm (14)

where Lq̇q̇ , Lqq̇ , Lqq are given in terms of Ĥ R, (Ĥ R)−1, Ĥ I in the following compact
form

Lq̇q̇ = h̄

2
(Ĥ R)−1, Lqq̇ = Ĥ I (Ĥ R)−1, Lqq = −1

2h̄
[H I (Ĥ R)−1 Ĥ I + Ĥ R]. (15)

The Lagrange function (14) is uniquely related to the original Hamiltonian operator
in (1). The corresponding Lagrangian equations are

q̈m = −1

2

∑

n,i

(Lq̇q̇
m,i )

−1Lqq̇
n,i q̇n + 1

2

∑

n,i

(Lq̇q̇
m,i )

−1Lqq̇
i,nq̇n

+
∑

n,i

(Lq̇q̇
m,i )

−1Lqq
i,nqn, (16)

where Lq̇q̇ , Lqq̇ , Lqq are given by (15).
The Lagrangian (14) with transition formulas (15) is the content of the box 3 and

the arrow from the box 1 to the box 3.
Let us remark that the Lagrangian (14) can be written in the form resembling the

Eq. (6) by introducing 2N-dimensional vector |κ〉 = (q, q̇)T . Then

L(q, q̇) = 〈κ|
(−1

2h̄ [H I (Ĥ R)−1 Ĥ I + Ĥ R] 1
2 Ĥ I (Ĥ R)−1

−1
2 (Ĥ

R)−1 Ĥ I h̄
2 (Ĥ

R)−1

)
|κ〉 (17)

In order to go from the box 3 to the box 4 we introduce operators L̂0 and L̂1, acting
on a real N-dimensional space, which are defined in terms of Ĥ R, Ĥ I , (Ĥ R)−1 (Eq.
(3)) as follows

L̂0 = −1

h̄2

[
Ĥ R Ĥ I (Ĥ R)−1 Ĥ I + (Ĥ R)2

]
, L̂1 = 1

h̄

[
Ĥ I + Ĥ R Ĥ I (Ĥ R)−1

]
.

(18)
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The Lagrangian equations (16) are written as

d2|q〉
dt2 = L̂1

d|q〉
dt

+ L̂0|q〉 (19)

where |q〉 ∈ HR . This is the content of the box 4. and represents the Lagrangian form
of the quantum Schroedinger equation on the complex space Hc.

Suppose that the operators L̂0 and L̂1 satisfying (18) exist for a given operator Ĥ in
(1). Then any orbit |q(t)〉 of (19) in HN

R can be used to construct the corresponding orbit
of the Schrödinger equation on HN

c , and the Schrödinger orbit is given by |ψ(t)〉 =
|q(t)〉+i |p(t)〉, where |p(t)〉 is given in terms of |q(t)〉 and |q̇(t)〉 by the formula (12).
Also, the initial conditions for the Lagrangian formulation q(t0), q̇(t0) are related to
the initial state of the Hamiltonian equations or of the Schrödinger equation essentially
by the equation (12). Thus, the crucial question for the construction of the Lagrangian
formulation is the existence of the operators L̂0, L̂1, which is essentially the question
of the existence of the inverse operator (Ĥ R)−1. The Hamiltonian operator Ĥ in (1)
uniquely determines the operators Ĥ R and Ĥ I . However, a singular choice of basis
in Hc might imply that the operator Ĥ R (or Ĥ I ) is represented by zero and (H R

nm)
−1

does not exist (see example in 3.1). However, in a typical basis Ĥ R is represented by a
nonzero operator. The existence of (Ĥ R)−1 then depends on the physical problem. If
(Ĥ R)−1, for the system with the Hilbert space Hc does not exist, then redefinition of
the system by restriction on an appropriate subspace of Hc would lead to a well defined
(Ĥ R)−1. Alternatively, in terms of the Hamiltonian and the corresponding Lagrangian
formulations nonexistence of (Ĥ R)−1 corresponds to constrained Hamiltonian and
singular Lagrangian systems, and the relation between the two formalisms is treated
by the appropriate methods [3].

The Lagrangian system (18) on N dimensional HR can be trivially written in the
form of an evolution equations on real 2N dimensional real space:

d|κ〉
dt

= L|κ〉 (20)

where

L =
(

0 1
L̂0 L̂1

)
, (21)

and |κ〉 ∈ H2N
R was defined just before the Eq. (17).

3 Examples and Discussion

In this section we present a series of examples, in the order of increasing complexity,
which are aimed to illustrate the problems that might occur in the construction of the
Lagrangian formulation.
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3.1 Discrete Finite Basis

The first example is rather trivial and artificial, but points out that problems in the
construction of the Lagrangian formulation might be apparent and induced by specific
choice of a singular basis. Consider the simplest possible quantum system of a single
1/2 spin with the Hamiltonian Ĥ = σ̂y . In the eigenbasis of the σ̂z the Hamiltonian is
represented by

Ĥmn =
(

0 −i
i 0

)
(22)

The real part of the Hamiltonian is zero, there is no (H R
nm)

−1 and the Hamilton’s
function is

H(q, p) = 1

h̄
(q1 p2 − q2 p1) (23)

and there apparently is no Lagrangian formulation. However, by an arbitrary small
change of basis the real part becomes nonzero. In the eigenbasis of σ̂y the imaginary
part becomes zero and the real part of the Hamiltonian becomes

Ĥmn =
(

1 0
0 −1

)
(24)

The Lagrangian formulation is now constructed as in the next example.

3.2 Discrete Energy Eigenbasis

Derivation and the formulas of the Lagrangian formalism acquire specially simple
form in the eigenbasis of the Hamiltonian Ĥ with a discrete, say non-degenerate,
spectrum. The Hamilton’s function is of the form corresponding to a system of linear
oscillators

H(q, p) =
∑

m

em

2h̄
(q2

m + p2
m), (25)

Thus, Hnm = H R
nm = δnmem , where em are real and H I = 0. The momenta pm are

related to the velocities q̇m by pm = h̄q̇m/em , which is well defined if Ĥ has no zero
eigenvalue. Lagrangian function (13) is given by

L(q, q̇) =
∑

m

(
h̄

q̇2
m

em
− emq2

m

2h̄
− h̄

q̇2
m

2em

)
(26)

and the Lagrangian equations are

q̈m = −e2
m

h̄2 qm, (27)

or
φ̈ = L̂0φ, (28)

123



Found Phys

where L̂0 = −Ĥ2/h̄2 operates on the real space RN . The only possible obstacle to the
existence of the Lagrangian formulation is possible zero eigenvalue of the Hamiltonian.
If there is a zero eigenvalue then the restriction of the Schrödinger equation onto the
orthogonal complement of the zero eigenspace generates the Hamiltonian system with
the canonical pair q0, p0 that does not appear in the Hamilton’s function (25), and for
which there is the corresponding Lagrangian formulation on RN−1.

From these two examples we see that the construction of the Lagrangian formulation
might fail if one makes a choice of the singular basis and/or includes nonphysical states.

3.3 Coordinate Representation

Construction of the Lagrangian formulation for the Schrödinger equation in the coor-
dinate representation follows the same steps as in the general case, or can be obtained
by applying the general formulas (18) and (19) written in the coordinate basis. The only
potential problem is, like in the general case, non-existence of the inverse of the real
part of the Hamiltonian operator (Ĥ R)−1, appearing in (12). This operator typically
has non-diagonal elements in almost all bases and, of course, this fact is irrelevant for
the question of its existence. In the coordinate representation, the non-diagonal char-
acter of (Ĥ R)−1 appears as non-locality of the relevant differential operator, and this
fact, like its analog in the general case, is irrelevant for the existence of the Lagrangian
formulation.

Consider a Hamiltonian of the form

Ĥ = P̂2
x

2m
+ V (X̂). (29)

In the representation of the coordinate X̂ , the evolution equation (1) becomes the
Schrödinger linear partial differential equation of mathematical physics

i h̄
∂ψ(t, x)

∂t
= − h̄2

2m
�ψ(t, x)+ V (x)ψ(t, x), (30)

where � = ∂2

∂x2 . This equation is equivalent to the Hamiltonian functional equations
for the canonical fields φ(x), π(x) introduced by ψ(t, x) = φ(t, x) + iπ(t, x). The
Hamilton’s functional is obtained by applying the general rule

H(φ, π) = 〈ψ |Ĥ |ψ〉 =
∫

dx
1

2h̄
(φ − iπ)(− h̄2

2m
�+ V )(φ + iπ)

=
∫

dx
1

2h̄

[
− h̄2

2m
(φ�φ + π�π)+ V (φ2 + π2)

]
(31)
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The Hamilton’s functional (31) is traditionally (see for example [3,10] further trans-
formed into

H(φ, π) = 1

2h̄

∫

X
dx

[
h̄2

2m
((∂xφ(x))

2 + (∂xπ(x))
2)+ V (x)(φ(x)2 + π(x)2)

]
,

(32)
but the form (31) is much more suitable for the construction of the Lagrangian formu-
lation. The Hamilton’s equations corresponding to (31) (or to (32)) are

φ̇ = δH

δπ
= 1

h̄
(V − h̄2

2m
�)π

π̇ = −δH

δφ
= 1

h̄
(

h̄2

2m
�− V )φ. (33)

The generalized momentum π(x) is expressed via φ̇(x) using the formula (33a) and
reads

π(x) = h̄(V − h̄2

2m
�)−1φ̇ (34)

Observe that the differential operator V − h̄2

2m� maps real functions into real ones

and therefore the formula (34) is a special case of (12) p = (Ĥ R)−1q̇ . Using the Eq.
(34) to replace π and (33a) to replace �π , the Lagrangian functional corresponding
to (31) is formed by the standard rule and reads

L(φ, φ̇) =
∫

dx

[−1

2h̄
φ(V − h̄2

2m
�)φ + h̄

2
φ̇(V − h̄2

2m
�)−1φ̇

]
. (35)

This is just the general formula (13) with H I
nm = 0. Observe that the expression �π

that appears in the Hamiltonian (31) is easily handled using the equation of motion
(34a). On the other hand, replacement of the generalized momenta that appear in the
term ∂xπ(x)∂xπ(x) of the equivalent Hamiltonian (32) using (34) might appear as
an additional problem in the construction of the Lagrangian. We see that the problem
is related to the particular form of the Hamiltonian (32) and does not appear in the
equivalent Hamiltonian (31).

We need the Lagrangian equations − d
dt
δL
δφ̇

+ δL
δφ

= 0 with the Lagrangian (35).

Variation of the functional variation δL due to a variation of δφ̇ gives

δδφ̇L =
∫

dx
h̄

2

[
δφ̇((V − h̄2

2m
�)−1φ̇)+ φ̇((V − h̄2

2m
�)−1δφ̇)

]
(36)

However, since the inverse of a Hermitian Hamiltonian Ĥ is also Hermitian the two
terms in the previous expression are equal and the functional derivative of L with
respect to φ̇ becomes

δL

δφ̇
= h̄(V − h̄2

2m
�)−1φ̇. (37)
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The Lagrange equations become

h̄2(V − h̄2

2m
�)−1φ̈ = −(V − h̄2

2m
�)φ (38)

or

h̄2φ̈ = −(V − h̄2

2m
�)2φ. (39)

Of course, the Lagrange equation (39) is the special case of the general formula (19),
as was the Lagrangian (35) the special case of (13). No additional problems in the
construction of the Lagrangian formulation for the Schrödinger equation (30) occur
because of the special choice of the coordinate representation. Like in the general case,
the only possible obstacle to the construction might be non-existence of the inverse

operator (ĤR)
−1 which is in this case (V − h̄2

2m�)
−1.

3.4 Klein–Gordon Equation

Consider the Schrödinger equation for a free relativistic one-dimensional scalar par-
ticle

i h̄
∂ψ

∂t
= Ĥψ = [h̄2c2�+ m2c4]1/2ψ. (40)

Applying the general formulas from Sect. 2, or replacing everywhere in the previous

example − h̄2

2m� + V (x) with [h̄2c2� + m2c4]1/2 we arrive at the corresponding
Lagrangian

L =
∫

dx

[
1

2h̄
φ[h̄2c2�+ m2c4]1/2φ + h̄

2
φ̇[(h̄2c2�+ m2c4)1/2]−1φ̇

]
, (41)

and the corresponding Lagrangian equations for real functions φ(t, x)

1

c2

∂2φ

∂t2 = �φ −
(

mc

h̄

)2

φ (42)

This is the Klein–Gordon equation for the real field φ(t, x).

4 Summary

In summary, we have developed the Lagrangian formalism for the abstract linear
Schrödinger equation on a complex Hilbert space of a quantum system. For a given
Hamiltonian operator Ĥ = Ĥ R + i Ĥ I the Lagrangian system is expressed in terms
of the operators Ĥ R, Ĥ I and (Ĥ R)−1, and is given by a second order equation on a
real space. The operator (Ĥ R)−1, which is crucial for construction of the Lagrangian
formulation, exists provided that the spectrum of Ĥ is bounded away from zero. If
this is not the case, than the Schrödinger equation is in fact equivalent to a constrained
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Hamiltonian system, with the corresponding singular Lagrangian formulation. A sim-
ple example illustrating the failure of the procedure that might occur in a singularly
chosen basis is provided. The general formulation of the Lagrangian system is also
illustrated in the eigenbasis of a Hamiltonian with a discrete spectrum and in the coor-
dinate representation. The Klein–Gordon equation is seen as the Lagrangian system
corresponding to the Schrödinger equation of a relativistic free particle.
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17. Radonjić, M., Prvanović, S., Burić, N.: Hybrid quantum-classical models as constrained quantum

systems. Phys. Rev. A 85, 064101 (2012)
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