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1.07.1 Introduction

Since the early 1980s, remarkable progress in technology

has been made, enabling the production of nanometer-

sized semiconductor structures. This is the length scale

where the laws of quantum mechanics rule and a range

of new physical effects are manifested. Fundamental

laws of physics can be tested on the one hand, while on
the other hand many possible applications are rapidly

emerging for nanometer-sized semiconductors..
The ultimate nanostructure where carriers are

confined in all the three spatial dimensions is called

a quantum dot. In the last 15 years, quantum dots

have been produced in several different ways in a

broad range of semiconductor material systems. The
properties of quantum dots and their possible appli-

cations are largely dependent on the method they

have been obtained with, which can, therefore, be

used as a criterion for classification of different

types of quantum dots:
Electrostatic quantum dots. One can fabricate quan-

tum dots by restricting the two-dimensional (2D)
electron gas in a semiconductor heterostructure
laterally by electrostatic gates or vertically by etch-
ing techniques [1,2]. The properties of this type of
quantum dots, sometimes termed as electrostatic
quantum dots, can be controlled by changing the
applied potential at gates, the choice of the geometry
of gates, or external magnetic field. The typical size
of these dots is of the order of 100 nm.

Self-assembled quantum dots. Self-assembled quantum
dots are obtained in heteroepitaxial systems with dif-
ferent lattice constants. During the growth of a layer of
one material on top of another, the formation of
nanoscale islands takes place [3], if the width of the
layer (the so-called wetting layer) is larger than a
certain critical thickness. This growth mode is called
Stranski–Krastanov mode. The most common experi-
mental techniques of the epitaxial nanostructure
growth are molecular beam epitaxy (MBE) and meta-
lorganic chemical vapor deposition (MOCVD) [4,5].
Since the quantum dot material is embedded in
another material, we refer to these dots also as
embedded quantum dots. Self-assembled quantum
dots typically have lateral dimensions of the order of
15–30 nm and height of the order 3–7 nm.
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Colloidal quantum dots. A very different approach to
obtain quantum dots is to synthesize single crystals

of the size of a few nanometers through chemical

methods. The dots obtained in this way are called

nanocrystals or colloidal quantum dots [6]. Their

size and shape can be controlled by the duration,

temperature, and ligand molecules used in the synth-

esis [7]. Colloidal quantum dots are typically of

spherical shape. They are often smaller than

embedded quantum dots with the diameter some-

times as low as 2–4 nm.
Quantum dots have enabled the study of many

fundamental physical effects. Electrostatic quantum

dots can be controllably charged with a desired

number of electrons and therefore the whole periodic

system [8] of artificial atoms created, providing a

wealth of data from which an additional insight into

the many-body physics of fermion systems could be

obtained [1]. Single-electron transport and Coulomb

blockade effects on the one hand, and the regime of

Kondo physics on the other hand, have been investi-

gated [9,10].
One of the most exciting aspects of quantum dot

research is certainly the prospect of using the state of

the dot (spin state, exciton, or charged exciton) as a

qubit in quantum information processing. Coherent

control of an exciton state in a single dot selected

from an ensemble of self-assembled quantum dots as

well as the manipulation of the spin state in electro-

static quantum dots [12,13] have been achieved [11].

The theoretical and experimental progress in the

field of spin-related phenomena in quantum dots

has been reviewed in Refs. [1 and 14]. These results

appear promising, although the control of a larger

number of quantum dot qubits is not feasible yet,

mainly due to difficulty in controlling qubit–qubit

interactions.
The practical applications of quantum dots

certainly do not lag behind these exciting areas of

fundamental science with quantum dots. For exam-

ple, colloidal quantum dots have found several

cutting-edge applications such as fluorescent biolo-

gical labels [15], highly efficient photovoltaic solar

cells [16], and nanocrystal-based light-emitting

diodes [1]. Self-assembled quantum dots find the

main application as optoelectronic devices – lasers

[17], optical amplifiers [18], single-photon sources

[19,20], and photodetectors [21,22,23].
This chapter focuses on theoretical methods used

for calculation of physical properties of self-

assembled and colloidal quantum dots.
1.07.2 Single-Particle Methods

While quantum dots seem to be small and simple

objects, a look at their structure from the atomistic

side reveals their high complexity. Bearing in mind

that the lattice constants of the underlying semicon-

ductor materials are typically of the order of 0.5 nm,

one can estimate that a single self-assembled quan-

tum dot contains �106 nuclei and even a larger

number of electrons interacting among each other

with long-range Coulomb forces. Even the smallest

colloidal quantum dots contain thousands of atoms.
This clearly indicates that direct solution of the

many-body quantum dot Hamiltonian is not a feasi-

ble approach and that smart and efficient methods

need to be developed. Here, methods that reduce the

problem to an effective single-particle equation are

reviewed.
More than two decades ago, Brus introduced

[24–25] a simple effective mass method to calculate

ionization energies, electron affinities, and optical

transition energies in semiconductor nanocrystals.

Within Brus’s model, the single-particle (electron or

hole) energies E and wave functions  (r) satisfy the

Schrödinger’s equation given as

–
1

2m�
r2 þ PðrÞ

� �
 ðrÞ ¼ E ðrÞ ð1Þ

where m� is the electron or hole effective mass. The
system of atomic units where the reduced Planck’s
constant h�, the electron mass m0, and the electron
charge c are all equal to 1 was used in equation 1 and
will be used in what follows. For simplicity, equation
1 assumes that the particle must be confined within
the dot, that is, that the potential outside the dot is
infinite. This simplifying assumption can be easily
relaxed by adding a more realistic confining potential
Vconf (r).

P(r) in equation 1 is the additional potential caused
by the presence of the surface of the quantum dot. It

has a certain analogy with electrostatic image poten-

tials in the case when a charge is near the surface of the

metal or the interface between two dielectrics. It can

be obtained by calculating the interaction energy

between a bare electron and its induced screening

potential. The extra interaction energy of an electron

at r inside the quantum dot compared to the corre-

sponding value in bulk is then P(r).
To model the two-particle excitations (such

as electronþ hole¼ exciton), Brus introduced an



Quantum Dots: Theory 191
electrostatic interaction energy term among these
particles as

V ðr1;r2Þ ¼ �
e2

" r1–r2j j � PM r1;r2ð ÞþP r1ð ÞþP r2ð Þ ð2Þ

where " is the dielectric constant, PM corresponds to
the interaction of the charge of one particle with
surface-induced polarization potential of the other
particle, while the P-terms describe the interaction
of the charge of one particle with its own surface-
induced polarization potential, as previously
described. The plus (minus) sign is for the two par-
ticles of the same (opposite) charge. The effective
exciton Hamiltonian is then given as

Hexciton ¼ –
1

2me
r2

e –
1

2mh
r2

h –
e2

� re – rhj j

– PMðre; rhÞ þ PðreÞ þ PðrhÞ ð3Þ

The solution of the eigenvalue problem of this
Hamiltonian can be written down analytically as

E�. Eg þ
�2

2R2

1

me
þ 1

mh

� �
–

ace2

�R
þ small term ð4Þ

where ac ¼ 2 –
Sið2�Þ
�
þ Sið4�Þ

2�
� 1:8 and Si(x) is the

sine integral function, SiðxÞ ¼
R x

0

sint

t
dt : The last

term in equation 4 originates from the last three terms
in equation 3. One should note that P(r)¼ PM(r, r)/2;
therefore, PM(re, rh) and P(re)þ P(rh) cancel out exac-
tly when re¼ rh and lead to a small term when re and rh

are not equal. This small term can often be ignored in
practice for spherical quantum dots.

The cancellation of the polarization terms gives us a
guide for a general approach for calculating the excitons
in nanocrystals. As a first step, one calculates the single-
particle energies from equation 1 without the polariza-
tion term. As a second step, the screened electron–hole
interaction is added perturbatively. One should, how-
ever, have in mind that such an approach is an
approximation based on classical electrostatic considera-
tion. It ignores the effects such as dynamic screening and
the local-field effects of the dielectric function. The
single-particle states obtained in this way are not the
quasiparticles from the usual GW formalism. (The
eigenenergies of equation 1 with the P-term are the
quasiparticle energies that correspond to the electron
affinity and ionization potential.) However, such single-
particle states are the natural extension of single-particle
states considered in other nanostructures, such as quan-
tum wells and superlattices. These are also fully in line
with eigenstates defined in the density functional theory
(DFT) discussed below. This section is, therefore, com-
pletely devoted to the theoretical frameworks and
methodologies for calculating these states.
1.07.2.1 Density Functional Theory

Within the DFT [26], the many-body Hamiltonian
problem reduces to a set of single-particle Kohn–
Sham equations [27] that read as

–
1

2
r2 þ Vion þ VH þ VXC

� �
 iðrÞ ¼ "i iðrÞ ð5Þ

In equation 5,  i(r) and "i are the wave functions and
energies of Kohn–Sham orbitals, Vion(r) is the poten-
tial of all nuclei in the system, and VH(r) is the
Hartree potential of electrons given as

VHðrÞ ¼
Z

dr9
�ðr9Þ
r� r9j j ð6Þ

where

�ðrÞ ¼
X

 iðrÞj j2 ð7Þ

is the electronic charge density of the system. The
summation in equation 7 goes over all occupied
Kohn–Sham orbitals. The exchange-correlation
potential VXC in equation 5 is supposed to take into
account all the other effects of electron–electron
interactions beyond the simple Coulomb repulsion
(described in VH). The exact form of this potential is
not known, and it needs to be approximated. The
most widely used approximation is the local density
approximation (LDA) where it is assumed that VXC

depends only on the local electronic charge density
and takes the same value as in the free electron gas of
that density [27]. Equations 5 and 7 need to be solved
self-consistently until the convergence is achieved.

DFT calculations are still computationally
demanding, partly due to the necessity of self-
consistent calculations. One also needs to calculate
all the orbitals  i in each iteration, while in semicon-
ducting systems one is often interested in only a
few states in the region around the gap that determine
the optical and transport properties of the system.

An alternative approach that avoids the full self-
consistent calculation without loss in accuracy is the
charge patching method (CPM) [28,29,30–32,33].
The basic assumption of the CPM is that the charge
density around a given atom depends only on the
local atomic environment around the atom. This is
true if there is no long-range external electric field
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that causes long-range charge transfer. This is often
satisfied if there is a band gap in the material. Based
on this assumption, the idea is to calculate (e.g., using
DFT in LDA) the charge density of some small
prototype system �LDA(r), decompose it into contri-
butions from individual atoms (charge density
motifs), and then use these motifs to patch the charge
density of a large system.

In particular, charge density motifs are calculated
from the charge density of the prototype system as

mI�ðr –R�Þ ¼ �LDAðrÞ
w� r – R�j jð ÞP

R�9
w�9 r –R�9j jð Þ ð8Þ

where R� is the position of atom type � and
mI� r –R�ð Þ is the charge density motif of this
atom type, w�(r) is an exponentially decaying
function that defines the partition function
w� r –R�j jð Þ=R�9

w�9 r –R�9j jð Þ that divides the
space into (mutually overlapping) regions assigned
to each atom. mI�ðr –R�Þ is, therefore, a localized
function that can be stored in a fixed-size numer-
ical array. I� denotes the atomic bonding
environment of the atom �. After the charge
density motifs are obtained from small prototype
systems, the total charge density of the large
nanosystem is obtained simply as the sum of
motifs assigned to each of the atoms:

�patchðrÞ ¼
X
R�

mI� r –R�ð Þ ð9Þ

Once the charge density is obtained using the
charge patching procedure, the single-particle
Hamiltonian can be generated by solving the
Poisson equation for the Hartree potential and
using the LDA formula for the exchange-correlation
potential. The energies and wave functions of a few
states around the gap can then be found using the
methods developed to find a few eigenvalues of the
Hamiltonian only, such as the folded spectrum
method (FSM) [34] (that is described in Section
1.07.2.2).

The CPM was used to generate the charge den-
sities of carbon fullerenes [33], semiconductor alloys
[28], semiconductor impurities [29], organic mole-
cules and polymers [35], and semiconductor
quantum dots [32]. The resulting patched charge
density is typically within 1% of the self-consistently
calculated LDA charge density, and the correspond-
ing energies are within 30 meV. Typical numerical
uncertainty (due to basis function truncations and
different nonlocal pseudopotential treatments) of an
LDA calculation is about the same order of
magnitude. Therefore, the CPM can be considered
to be as accurate as the direct ab initio calculations.

There are, however, cases where CPM cannot be
used. One example is the total dipole moment of an
asymmetric quantum dot [36]. Such a dipole moment
can also induce an internal electric field and cause
the long-range charge transfer in the system. It is,
therefore, necessary to solve the charge density self-
consistently, which can be done using the DFT/LDA
method. However, a much more efficient linear
scaling method to do such calculations has been
developed recently: the linear scaling three-
dimensional fragment (LS3DF) method [37].
Within the LS3DF method, the system is divided
into many small fragments. The wave functions and
charge densities of each fragment are calculated
separately, each within the standard DFT/LDA
method, using a group of a small number of computer
processors. After the fragment charge densities are
obtained, they are patched together to get the charge
density of the whole system using a novel scheme
that ensures that the artificial surface effects due to
the system subdivision will be cancelled out among
the fragments. The patched charge density is then
used to solve a global Poisson equation for the global
potential. An outside loop is iterated, which yields
the self-consistency between the global charge den-
sity and the input potential. Due to the use of this
novel patching scheme, the LS3DF is very accurate,
with its results (including the dipole moments) essen-
tially the same as the original direct DFT calculation
results [37], but with potentially 1000 times speed-
ups, for systems with more than 10 000 atoms. As the
system grows larger, there are more fragments (while
the fragment size is fixed); thus, more processor
groups can be used to solve them. This provides a
perfect parallelization to the number of processors.
Meanwhile, the total computational cost is propor-
tional to the number of fragments, and consequently
the total number of atoms.

A well-known problem of the LDA-based
calculations is that the band gap is severely under-
estimated [38,39]. DFT is rigorously valid only for
ground-state properties, and there is no physical
meaning for the Kohn–Sham eigen energies [27].
This conceptual difficulty can be circumvented by
using time-dependent DFT, which is discussed later.
In practice, however, one often restricts to the simple
empirical ways to correct the band-gap error. One
such way is to slightly modify the LDA Hamiltonian
to fit the crystal bulk bandstructure, which can be
done, for example, by changing the s, p, and d
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nonlocal pseudopotentials [29] to move the posi-
tion of the conduction band while keeping the
position of the valence band unchanged. This approach
is based on the assumption that the valence band
alignment predicted by the LDA is reliable.

For the treatment of colloidal quantum dots, one
also has to take care of the quantum dot surface. The
surface of an unpassivated nanocrystal consists of
dangling bonds that introduce band-gap states. One
way to remove these states is to pair the dangling-
bond electron with other electrons. If a surface atom
has m valence electrons, this atom provides m/4
electrons to each of its four bonds in a tetrahedral
crystal. To pair m/4 electrons in a dangling bond, a
passivating agent should provide 2�m/4 additional
electrons. To keep the system locally neutral, there
must be a positive 2�m/4 nuclear charge nearby.
The simplest passivation agent can, therefore, be a
hydrogen-like atom with 2�m/4 electrons and a
nuclear charge Z¼ 2�m/4. For IV–IV group mate-
rials like Si, this is a Z¼ 1 hydrogen atom. For III–V
and II–VI systems, the resulting atoms have a
noninteger Z; consequently, these are pseudohydro-
gen atoms. These artificial pseudohydrogen atoms
do describe the essential features of good passivation
agents and serve as simplified models for the real
passivation situations, where organic molecules with
complicated and often unknown structure are
involved.
1.07.2.2 Empirical Pseudopotential Method

The empirical pseudopotential method (EPM) was
introduced in the 1960s by Cohen et al. [40,41] to fit
the bandstructure of bulk semiconductors. Within
the EPM, the Schrödinger equation is given as

–
1

2
r2 þ V ðrÞ

� �
 iðrÞ ¼ Ei iðrÞ ð10Þ

with

V ðrÞ ¼
X
atom

vatom r – Ratomj jð Þ ð11Þ

where Ratom are the positions of the atoms and
vatom(r) are spherical atomic potentials that in an
effective manner take into account the effects of
nuclei, core, and valence electrons. The great success
of the EPM was that it was actually possible to fit the
bandstructure of the semiconductors using this
single-particle approach.

In the EPM calculations, the plane-wave repre-
sentation is typically used, that is, the wave function
is expanded as a linear combination of plane waves,
where the summation is restricted only to reciprocal
lattice q vectors with kinetic energy smaller than
certain predefined value Ecut. To evaluate the result-
ing Hamiltonian matrix in plane-wave
representation, Fourier transforms of atomic poten-

tials vatom(jqj) are needed. Only a few of these are
nonzero. These are used as adjustable parameters to
fit the semiconductor bandstructure.

To apply the EPM to nanostructures, one needs to
have a continuous vatom(q) curve, since the supercell

is very large, and consequently q points are very
dense. The continuous vatom(q) can be represented
by a function of four parameters a1�a4

vðqÞ ¼ a1 q2 – a2ð Þ
a3ea4q2 – 1

or a sum of Gaussians

vðqÞ ¼
X

ai e
– ci q – bið Þ2

For a full description of the colloidal quantum dots,
the pseudopotentials of surface passivating hydrogen
or pseudohydrogen atoms need to be fitted as well.
The pseudopotentials are fitted to experimental data
and first-principles calculations of bulk bandstruc-
tures, clean surface work function, and the density
of states of chemisorbed surfaces.

Another approach to fit the pseudopotentials is to
fit them directly to the LDA-calculated potential

[42] and then modify them slightly to correct the
band-gap error. The vatom(q) obtained in such a man-
ner are able to fit the band structure within 0.1 eV
and have in the same time a 99% overlap with the
original LDA wave function. This approach, called
the semiempirical pseudopotential method (SEPM),
has been applied to CdSe [42], InP [43], and Si [42]
nanostructures, representing II–VI, III–V, and IV–IV
semiconductor systems, respectively.

With the empirical or semiempirical pseudopo-
tentials at hand, one is able to construct the single-
particle Hamiltonian. The diagonalization of this
Hamiltonian is a routine task in the case of bulk
semiconductors due to a small number of atoms in

a supercell. However, this is no longer the case in
quantum dots that contain a large number of atoms.
Even the conventional conjugate gradient method
[44] that is often used in ab initio calculations
cannot be used since it scales as O (N3) due to an
orthogonalization step, which is a necessary part of
the algorithm. Fortunately, for the analysis of most
electronic, transport, and optical properties of
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semiconductor nanosystems, only the states in the
spectral region close to the band gap are relevant,
and there is no need to find all the eigenstates of
the Hamiltonian. The FSM, specialized to find the
eigenstates in a certain spectral region only, has
therefore been developed by Wang and Zunger
[34]. The method is based on the fact that the
Hamiltonians H and (H� Eref)

2 have the same
eigenvectors and that the few lowest eigenvectors
of (H� Eref)

2 are the eigenvectors of H closest to
the energy Eref. The lowest eigenstates of
(H� Eref)

2 are then solved using the conjugate gra-
dient method. It turns out that the use of
(H� Eref)

2 compared to H slows down the conver-
gence but with the use of preconditioners and a
large number of iterations, convergence can still be
achieved. The FSM within the plane-wave repre-
sentation has been implemented in the parallel
code Parallel Energy SCAN (PESCAN) [45]. It
can be routinely used to calculate systems with a
few thousand atoms, or even near-million atom
systems [46]. Since only a few wave functions are
calculated, the computational effort scales linearly
to the size of the system. Linear scaling method for
the calculation of the total and local electronic
density of states and the optical absorption spec-
trum has been developed by Wang [47]. The
reader is referred to Ref. [47] for the description
of this method, called the generalized moments
method (GMM).

Another method for solving of the EPM
Hamiltonian is the linear combination of bulk Bloch
bands (LCBBs) method [48]. The disadvantage of the
plane-wave expansion is that it does not lend itself to
systematic approximations. A basis set in which such
approximations can be naturally made is the basis of
full-zone bulk Bloch states. In this basis, the wave
function expansion reads

 ðrÞ ¼
XNB

n

XNk

k

Ck;n �
0
knðrÞ ð12Þ

where

�0
knðrÞ ¼

1ffiffiffiffi
N
p uknðrÞeik ? r ð13Þ

is the bulk Bloch function of the constituent bulk
solid, where n is the band index, k is the supercell
reciprocal-lattice vector, N is the number of primary
cells in the supercell. The LCBB expansion allows
one to select the physically important bands n and
k-points. As a result, the number of basis functions
can be significantly reduced compared to the
plane-wave basis. It turns out that it is possible to
use a fixed number of basis functions to achieve the
same degree of accuracy for different system sizes, in
contrast to the plane-wave basis where the number of
basis functions scales linearly with system size. The
origin of this effect is the fact that when the size of the
system increases, the envelope function of the elec-
tronic state becomes smoother, and therefore the
maximum value of the k-vector needed to represent
it becomes smaller. This makes the LCBB method
ideal for studying very large systems such as
embedded quantum dots.
1.07.2.3 Tight-Binding Methods

The tight-binding (TB) method [49] is the simplest
method that still includes the atomic structure of a
quantum dot in the calculation [50,51,52,53]. In the
TB method, one selects the most relevant atomic-
like orbitals ji�i localized on atom i, which are
assumed to be orthonormal. The single-particle
wave function is expanded on the basis of these
localized orbitals as

j i ¼
X

i�

ci�ji�i ð14Þ

and therefore the TB single-particle Hamiltonian is
of the form

H ¼
X

i�

"i�ji�ihi�j þ
1

2

X
i�; j�

ti�; j�ji�i j�jh ð15Þ

where "i� are the energies of the orbitals (the on-site
energies), while ti�, j� are the hopping integrals
between different orbitals, which can be restricted
to include only nearest neighbors or next-nearest
neighbors. For the sake of notational simplicity, the
form that does not include the spin–orbit interaction
and therefore does not mix the states of different spin
was presented. The extension to include spin orbit
interaction is straightforward. The most popular fla-
vor of TB is the empirical TB where the parameters
of the Hamiltonian are treated as phenomenological
and fitted to reproduce the bulk band structure
obtained from experiment or higher level calcula-
tions. In such an approach, the atomic orbitals are
not treated explicitly, since the whole spectrum of
the single-particle Hamiltonian is determined by the
onsite energies and hopping integrals. The wave
function is represented by the coefficients ci� that
slowly vary from site to site.
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In the TB method, one restricts the atomic orbitals
to include only a few for each atom. Since one is

typically interested in states around the energy

gap, one has to select the orbitals that define these

states. In III–V, IV–IV, and II–VI semiconductors,

these are typically the s, px, py, pz orbitals and some-

times d orbitals. Quite often, an additional s-like

orbital called s� is added to provide an additional

degree of freedom in fitting of the TB parameters,

which leads to models such as sp3s� [54] and sp3d5s�

[55]. In these models, the size of the resulting

Hamiltonian matrix is nN� nN, where N is the num-

ber of atoms and n is the number of orbitals per atom

(n¼ 10 for sp3s� with spin and n¼ 20 for sp3d5s� with

spin). Due to nearest-neighbor approximation, the

matrix is sparse, and efficient methods for the diag-

onalization of sparse matrices can therefore be

exploited.
One problem of the TB method is the lack of

explicit basis functions. Although these can be

added after the TB eigenstates have been calcu-

lated, these basis functions are not an intrinsic part

of the TB Hamiltonian and its fitting process; thus,

their compatibility is an issue. This causes problems

to calculate physical properties such as dipole tran-

sitions and Coulomb and exchange interactions.

Another issue in treating quantum dot heterostruc-

tures is how to choose the parameters at the

interface of two materials, since only the parameters

for bulk materials are available. An approximation

needs to be introduced, usually by assuming the

parameters at the interface as a certain average of

the TB parameters of the two materials. In colloidal

quantum dots, the surface has to be passivated.

Here, we give an example of how this is done in

the case of Si nanocrystals. The surface is passivated

by H atoms, where the TB nearest-neighbor matrix

elements VH–Si between H and Si are scaled from

the Si–Si matrix elements VSi–Si according to the

Harrison’s rule [56]: VH–Si¼VSi–Si(dSi–Si/dH–Si)
2,

where dSi–Si and dH–Si are the bond distances [57].

Another way to treat the surface passivation is simply

to remove the dangling-bond states from the calcu-

lated results or even from the Hamiltonian before the

matrix is diagonalized. This is done by removing the

hybrid sp3 dangling-bond orbital from the TB

Hamiltonian basis set (e.g., by removing the

Hamiltonian matrix columns and rows expanded by

these sp3 bases) [58]. This is a unique way of artificial

passivation only applicable to TB calculations. The

ability to describe the surface atomistically is a big
advantage of the TB model compared to the k ? p
model, which is described next.
1.07.2.4 k ? p Method

The previously described methods treat explicitly
the atomistic details of the nanostructure, which
therefore leads to their high accuracy and reliability
but also to a significant computational cost. In the
k ? p method, central quantities are the slowly vary-
ing envelope functions that modulate the rapidly
varying atomistic wave function. Historically, the
k ? p method was introduced to describe the bulk
band structure around a certain special point in the
Brillouin zone, and later on it was extended to
describe heterostructures.

Let the Hamiltonian of an electron in a semicon-
ductor be

Ĥ ¼ p̂2

2
þ V0ðrÞ þ Ĥso ð16Þ

where p̂ is the momentum operator, V0(r) the crystal
potential (including nuclei, core electrons, and self-
consistent potential of valence electrons), and Ĥso the
spin–orbit interaction Hamiltonian arising from rela-
tivistic corrections to Schrödinger equation given by

Ĥso ¼
�2

4
rV0ðrÞ � p̂½ �?s ð17Þ

where � is the fine structure constant, and s is a
vector of Pauli matrices:

�x ¼
0 1

1 0

" #
; �y ¼

0 – i

i 0

" #
; �z ¼

1 0

0 – 1

" #
ð18Þ

The envelope representation of the wave function of
an electron is given by

�ðrÞ ¼
X

i

 iðrÞuiðrÞ ð19Þ
where ui(r) form the complete orthonormal set of
functions with periodicity of the Bravais lattice, and
 i(r) are slowly varying envelope functions. The
most common choice of the functions ui are bulk
Bloch functions at the � point. After the replacement
of equation 19 in the Schrödinger equation and mak-
ing an approximation that eliminates the nonlocal
terms that appear in the derivation, one arrives at
[59,60]

–
1

2
r2 mðrÞ þ

X
n

ð – iÞpmn?r nðrÞ

þ
X

n

HmnðrÞ nðrÞ ¼ E mðrÞ
ð20Þ
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Since the second term in equation 20 is crucial in
determining the Hamiltonian matrix (and (�i)r
becomes the k-vector if, e.g., the envelope function
is expanded in plane waves), the method being
described is called the k ? p method. The terms in
the previous equation are given by

pmn ¼
1

�

Z
umðrÞ�p̂unðrÞd3r ð21Þ

where the integration goes over the volume of the
crystal unit cell �, and Hmn(r) is the term that, away
from the interfaces, reduces to the bulk matrix
elements of the Hamiltonian

Hmn ¼
1

�

Z
umðrÞ�ĤunðrÞd3r ¼ Em	mn ð22Þ

where Em is the band edge of band m. In practice, one
has to restrict to a finite number of bands.
Historically, the k ? p method was first applied to
valence band (six-band Hamiltonian) [61–62], and
later on the conduction band was added (eight-band
Hamiltonian) [63].

The explicit form of the eight-band Hamiltonian
for the crystals with zinc-blende structure (such as,
InAs, GaAs, AlSb, CdTe, GaP, GaSb, InP, InSb,
ZnS, ZnSe, and ZnTe) is given below. This
Hamiltonian also perturbatively includes the effect
p

– P

p

p

of remote bands. Since the point Td symmetry group
of the zinc-blende crystal is a subgroup of the dia-
mond group of Ge and Si, the same k ? p
Hamiltonian can be applied to these semiconduc-
tors, as well. On the basis jJJzi that diagonalizes the
bulk Hamiltonian at k¼ 0

j1i¼ 1

2
; –

1

2

����
�
¼ jS #i

j2i¼ 1

2
;
1

2

����
�
¼ jS "i
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i ffiffiffi
6
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jZ "i
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����
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¼ i ffiffiffi

2
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2
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����
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i ffiffiffi
2
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2
; –
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����
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6
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ð23Þ

the eight-band k ? p Hamiltonian reads (where the
definition k¼�ir was introduced)
ffiffiffi
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Ĥk ¼

A 0 Vþ 0
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where

A ¼ EC þ A9k2 þ k2

2

U ¼ 1ffiffiffi
3
p P0kz

V ¼ 1ffiffiffi
6
p P0 kx – iky

	 


P ¼ – EV þ 
1
k2

2

Q ¼ 
2
1

2
k2

x þ k2
y – 2k2

z

� �

R ¼ –

ffiffiffi
3
p

2

2 k2

x – k2
y

� �
– 2i
3kxky

h i
S ¼

ffiffiffi
3
p

3kz kx – iky

	 

In previous equations jSi, jXi, jYi, and jZi are the
bulk Bloch functions that transform as s, x, y, and z

under the action of the symmetry group

P0 ¼ – i S p̂x

�� ��X �
¼ – ihSjp̂y jY i ¼ – i S p̂z

�� ��Z �
ð25Þ

is the interband matrix element of the velocity opera-
tor [64] usually reported in energy units as EP ¼ 2P2

0 ,
the parameter A9 is related to the conduction band
effective mass as

A9 ¼ 1

2m�
–

P2
0

Eg þ 1
3 �

–
1

2
ð26Þ

� is the spin–orbit splitting, Eg is the energy gap (the
actual energy gap after the effect of � was taken into
account) equal to Eg¼ EC� EV, while 
1, 
2, and 
3

are the Luttinger parameters [61] of the eight-band
model that can be expressed in terms of the para-
meters of the six-band model 
L

1 ; 

L
2 ; and 
L

3


1 ¼ 
L
1 –

EP

3Eg þ�


2 ¼ 
L
2 –

1

2

EP

3Eg þ�


3 ¼ 
L
3 –

1

2

EP

3Eg þ�

Since material parameters in the Hamiltonian of a
quantum dot are position dependent and the k opera-
tors do not commute with coordinate operators, an
ambiguity arises about the proper choice of operator
ordering. It is necessary to choose the ordering in
such a way that the Hamiltonian remains hermitian;
however, this condition still does not give a unique
choice. The most widely used [65,66,67,68,69] opera-
tor ordering in k ? p-based quantum dot electronic
structure calculations is heuristic, symmetrical
arrangement of operators

f ðrÞki kj !
1

2
k̂i f ðrÞk̂j þ k̂j f ðrÞk̂i

	 

f ðrÞki ! 1

2
k̂i f ðrÞ þ f ðrÞk̂i

	 
 ð27Þ

It has been pointed out that such ordering of opera-
tors can lead to unphysical solutions in some
circumstances [70]. One can derive the appropriate
form of the envelope function Hamiltonian with
proper operator ordering starting from the empiri-
cal pseudopotential [59] or the LDA Hamiltonian
[71]; however, such Hamiltonians are still not
widely used.

A variety of numerical methods can be used to
solve the k ? p Hamiltonian; these include the finite-
difference methods [66,65,72,73] and the wave func-
tion expansion methods, where the basis functions
can be plane waves [74,75,76,77,69,78], the eigen-
functions of the particle in a cylinder with infinite
walls [79,80,81], or eigenfunctions of a harmonic
oscillator [82].

While the k ? p model can be quite reliable for large
embedded quantum dots, the colloidal quantum dots
are often only a few nanometers in size. In reciprocal
space, this could correspond to the k point at 1/3
toward the Brillouin zone boundary, where the k ? p
might no longer be adequate. Indeed, it was found that
the k ? p result compared to the result of a more
accurate calculation might differ by 50% in the
confinement energy [83], and sometimes it could
change the ordering of the states [84]. Without care,
spurious states in the energy gap might appear in k ? p
calculations [85]. These states appear as the conse-
quence of the fact that k ? p Hamiltonian does not
correctly represent the bandstructure for k-vectors
far away from � point and can give states in the gap
for these k-vectors. The finite-difference method is, in
particular, susceptible to the appearance of these
states. The wave function expansion methods are less
susceptible to this [86] since by the expansion in a
finite basis set, the high k components of the envelope
function are effectively filtered out. Another issue is
that the k ? p Hamiltonian with a limited number of
bands has a larger symmetry group than the true
symmetry group of the system. This weakness from
the fundamental point of view can be turned into a
strength from the computational point of view, as it
allows for block diagonalization of the Hamiltonian
and therefore a more efficient solution of the problem
[87,77,81].
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1.07.2.5 The Effect of Strain

In previous sections, it was assumed that positions of

atoms in a quantum dot are known a priori and that

local arrangement is the same as in the bulk crystal.

However, in real structures this is certainly not the

case. Self-assembled quantum dots are grown by

depositing layers of material with a different lattice

constant than the substrate, and therefore the quan-

tum dot is strained. In colloidal quantum dots, there

is also some relaxation of atoms close to the surface.

It is well understood that strain has a strong effect on

the electronic structure of semiconductors.

Therefore, in this section, we describe how the effect

of strain can be included in each of the methods

described previously.
Within the framework of DFT, the effect of strain

appears naturally in the formalism itself. One starts

with a reasonable initial guess for the positions of

atoms in the structure, then self-consistently solves

the Kohn–Sham equations and obtains the forces on

all atoms. One then moves the atoms in the direction

of forces and obtains the new atomic configuration

and solves the Kohn–Sham equations again, and the

whole procedure is repeated until forces become

close to zero. In such a way one obtains a new,

relaxed configuration for the positions of atoms in

the structure. Unfortunately, this procedure is prac-

tical only for small systems and is not feasible for

larger systems, such as quantum dots.
A widely used methodology to overcome these

difficulties is to model the total energy of the system

through a classical force field, that is, to express it as a

function of atomic coordinates only. The valence

force field (VFF) model of Keating [88] and Martin

[89] is mostly used in inorganic semiconductors for

that purpose. Within the VFF model, the energy of

the system is modeled as [90]

E¼ 1

2

X
i

Xnn

j

3�ij

8ðd ð0Þij Þ
2
ðRi–RjÞ2–ðd ð0Þij Þ

2
h i2

þ1

2

X
i

Xnn

j ;k>j

3�i;jk

8d 0
ij d 0

ik

ðRj–RiÞ?ðRk–RiÞ–cos�0ðjikÞd 0
ij d 0

ik

h i2

ð28Þ

where d 0
ij are the equilibrium bond lengths between

atoms i and j, and �0(jik) is the equilibrium angle
between bonds ij and ik, which is a constant in
zinc-blende materials (�0� 109.47	). In the case of
zinc-blende material, the constants � and � are related
to elastic constants of the material through [90]
C11 þ 2C12 ¼
ffiffiffi
3
p

4d 0
3�þ �ð Þ

C11 –C12 ¼
ffiffiffi
3
p

d 0
�

C44 ¼
ffiffiffi
3
p

4d 0

4��

�þ �

ð29Þ

Although there are three elastic constants and only
two parameters � and �, it is possible to choose � and
� to fit the C ’s of the most zinc-blende materials
within a few percent. To obtain the relaxed atomic
structure, one again starts with a reasonable guess for
initial atomic structure and then minimizes E in
equation 28 using some of the standard methods for
finding the local minimum of a function, such as the
conjugate gradient method. The atomic structure
obtained can be used as an input to any of the
atomistic approaches previously described: charge
patching, empirical pseudopotentials, and TB.

It has been pointed out in Section 1.07.2.1 that the
charge density motifs used in the CPM depend on the

local environment of the atom. In strained structures,

bond lengths and angles change compared to the ideal
ones, which therefore represents the change in the envir-

onment that affects the motifs. To include this effect, one

introduces the so-called derivative motifs, defined as the

change in the motif due to a particular bond length or

angle change. These motifs can also be extracted from

small-system calculations on prototype structures with

slightly changed bond lengths or angles. Once the motifs

and derivative motifs are obtained, the total charge

density is constructed and the calculation of the electro-

nic structure can be performed as previously described.
It might seem at first sight that it is not necessary

to introduce any modifications to the empirical pseu-

dopotential Hamiltonian to include the effects of

strain. However, it turns out that within such an

approach it would be difficult to correctly describe

the dependence of the valence band maximum state

on the hydrostatic strain [91]. Therefore, a strain-

dependent term is introduced for the local part of the

pseudopotential of the atom of type � in the form

vloc
� ðr; eÞ ¼ vloc

� ðr; 0Þ 1þ 
�TrðeÞ½ � ð30Þ

where 
� is a fitting parameter and Tr(e)¼ exxþ eyyþ
ezz is the trace of the strain tensor. The SEPM strain-
dependent Hamiltonian obtained this way can be
solved by representing it on the basis of plane waves
or bulk Bloch bands. The extension of the unstrained
cases to the strained cases for the basis of plane waves is
straightforward. On the other hand, this is not true if
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bulk Bloch bands are used since the Bloch functions of
the unrelaxed system form a poor basis set for the
relaxed system. Therefore, one needs to use the
strained linear combination of Bloch bands, and the
method is then referred to as the SLCBB method. The
reader is referred to Ref. [48] for technical details of
the implementation of the SLCBB method.

The natural way to introduce strain in TB models
is through the dependence of hopping integrals on
bond lengths and bond angles. The dependence on
bond lengths is modeled by scaling the Slater–Koster
two-center integrals [92] from which the hopping
integrals are constructed as

V ¼ V0
d0

d

� ��
ð31Þ

which is a generalization [52,93] of Harrison’s d �2

rule [56,50]. In the above equation, V0 is the
integral for equilibrium bond length d0 and V

the integral when the bond length is d. The
–

–

p

p

change in bond angles in the system leads to
different relative orientation of orbitals of neigh-
boring atoms and consequently to a different
hopping integral. This effect is naturally
included through the Slater–Koster [92] tables
of matrix elements in terms of the two-center
integrals and direction cosines. Furthermore,
there is a question whether the influence of
strain on onsite energies should also be included.
This is indeed done in many recent works
[94,93,95], although different methods are used.
Currently, there does not seem to exist a unique
and simple model for the inclusion of this depen-
dence as for the hopping integrals.

In k ? p models, the effect of strain is included
through the bulk deformation potential parameters

that can be either measured or determined from ab

initio calculations. In the case of eight-band

Hamiltonian for zinc-blende crystals, the strain con-

tribution to the Hamiltonian reads
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32

where

e ¼ e11 þ e22 þ e33

p ¼ ave

q ¼ b e33 –
1

2
e11 þ e22ð Þ

� �

r ¼
ffiffiffi
3
p

2
b e11 – e22ð Þ – ide12
s ¼ – d e13 – ie23ð Þ

u ¼ 1ffiffiffi
3
p P0

X3

j¼1

e3j kj

v ¼ 1ffiffiffi
6
p P0

X3

j¼1

e1j – ie2j

	 

kj

where ac and av are the conduction and valence band
hydrostatic deformation potentials, respectively, and
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b and d are the shear deformation potentials. The
strain tensor that enters the Hamiltonian (32) can
be obtained either from the VFF model (previously
described) or from the continuum mechanical (CM)
model.

In the CM model, the quantum dot structure is
modeled by an elastic classical continuum medium

whose elastic energy is given by

W ¼ 1

2

X
ijkl

Z
d3rijkl eij ekl ð33Þ

where ijkl is the elastic tensor relating the stress and
strain tensor by Hooke’s law

�ij ¼
X

kl

ijkl ekl ð34Þ

In the crystals with zinc-blende lattice, the elastic
tensor is of the form
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where C12, C44, and Can¼C11�C12� 2C44 are the
elastic constants. The finite element discretization
and minimization of the functional (33) leads to a
system of linear equations that can be efficiently
solved.

There have been several comparisons in the
literature between the VFF and CM models

[66,90,96]. While certain differences have been

obtained, the results of the two models give

overall agreement, as can be seen from a

comparison between strain distribution in a pyr-

amidal InAs/GaAs quantum dot from Ref. [90]

that is given in Figure 1. From the fundamental

point of view, the advantage of the VFF model is

that it captures the atomistic symmetry of the

system, while the CM models have a higher
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symmetry group. From the computational point
of view, the VFF model is more demanding as

the displacement of each atom is considered, in
contrast to the CM models where a grid of the
size of lattice constant or even larger may be

used, leading to a smaller number of variables
to be handled. In several important cases, there
are analytical or nearly analytical solutions of the

CM model [97,98]. However, these advantages of
the CM models are becoming less important as

modern computers can handle the VFF calcula-
tions quite easily.

The nonself-consistent methods described
above do not allow for long-ranged charge redis-
tributions and therefore neglect the effects such as
piezoelectricity where charge is moved due to

strain. The piezoelectric potential then has to be
calculated independently and added as an addi-
tional potential. The components of piezoelectric

polarization in a crystal of arbitrary symmetry are
given as

Pi ¼
X3

k;l¼1

"ikl ekl ð36Þ

where "ikl are the piezoelectric constants of the mate-
rial. In a crystal with zinc-blende symmetry, the only
nonzero components of "ikl are

"123 ¼ "132 ¼ "213 ¼ "231 ¼ "312 ¼ "321 ð37Þ

The charges induced by piezoelectric polarization
can then be calculated, and the additional
piezoelectric potential is obtained from the solu-
tion of Poisson equation. It has been recently
realized that in addition to the first-order
piezoelectric effect given by equation 36,
second-order piezoelectric effects might be
important as well [99].
1.07.3 Many-Body Approaches

The methods presented in Section 1.07.2 give a strat-
egy for calculating the single-particle states. These
can be very useful for calculating the optical proper-

ties, as demonstrated, for example, in Section 1.07.4.3.
Nevertheless, there are cases when the many-body

nature of electron–hole excitations should be directly
considered. The approaches along this line are
described in Section 1.07.3.
1.07.3.1 Time-Dependent DFT

Within the time-dependent DFT (TDDFT)
[100,101], one solves the time-dependent Kohn–
Sham equations

i
q
qt
 iðr; tÞ ¼ –

1

2
r2 þ V ðr; tÞ

� �
 iðr; tÞ ð38Þ

where

�ðr; tÞ ¼
XM
i¼1

 iðr; tÞj j2 ð39Þ

The potential V(r, t) should depend, in principle, on
charge density in all times before t. A widely used
approximation is the adiabatic LDA in which it is
assumed that V(r, t) depends only on �(r, t), and that
the functional form of this dependence is the same as
in LDA in time independent DFT. We refer to this
approximation as time-dependent LDA (TDLDA).

The TDLDA can be used to calculate the optical
absorption spectrum by adding the external electro-
magnetic field perturbation potential to equation 38
and solving the equations by explicit integration in
time [102]. Another approach is to assume that the
perturbation is small and use the linear response
theory. The exciton energy can then be found from
the eigenvalue problemX

jl

"i – "kð Þ	ij 	kl þ ðfi – fkÞKik;jl ð!Þ
� �

Cjl ¼ !Cik ð40Þ

where "i and "k are the LDA ground-state Kohn–
Sham eigen energies, and fi and fk are the occupation
number of Kohn–Sham eigen states  i and  k. Within
TDLDA, Kik, jl becomes independent of ! and is
given as

Kik;jl ¼
Z Z

d r1dr2 iðr1Þ kðr1Þ½ 1

r1 – r2j j

þ	 r1 – r2ð Þ qm
LDA
xc � r1ð Þð Þ
q� r1ð Þ

i
 j r2ð Þ l r2ð Þ

ð41Þ

where �LDA
xc (p) is the LDA exchange-correlation

potential. The first term in equation 41 is the
exchange interaction, while the second can be called
the screened Coulomb interaction. The justification
of this assignment would require a comparison with
equations from other approaches, such as the config-
uration interaction and GW+Bethe–Salpeter
equation (BSE). It might also seem surprising that
the screened Coulomb interaction is not a nonlocal
integral between r1 and r2. This is because in the
LDA, the exchange-correlation term is a local
functional of charge density.
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TDLDA appears to work quite well for optical spec-
tra of small clusters and molecules. The results of
TDLDA can then agree quite well with experimental
measurements, as shown, for example, for the case of
SiH4 in Ref. [103]. These results are significantly
improved compared to bare LDA results, which is due
to exchange interaction in equation 40, which can be
quite strong in such small systems. The screened
Coulomb interaction in equation 40, however, does not
play a significant role then, as also shown in Ref. [103].

On the other hand, the TDLDA is not as accurate
for larger systems. For a bulk system, it is known that
the TDLDA band gap will be the same as the LDA
band gap [104,49]. The TDLDA does not provide a
better bulk optical absorption spectrum than the
LDA, as shown in Ref. [103]. The origin of these
problems is the screened Coulomb interaction in
equation 40, which then gives a significant contribu-
tion. However, such diagonal form of screened
Coulomb interaction is not able to correctly describe
its long-range behavior.

Density functionals other than the LDA can also
be used in conjuction with the TDDFT. A very
popular approach is to use the hybrid B3LYP func-
tional [105]. Within the B3LYP approach, the total
energy is modeled as a linear combination of the
exact Hartree–Fock exchange with local and gradi-
ent- corrected exchange and correlation terms. The
coefficients in the linear combination were chosen to
fit the properties of many small molecules. The
B3LYP method gives accurate bandgaps for various
bulk crystals [106]. Since it contains the explicit
exchange integral, it introduces the long-range
Coulomb interaction in equation 40. Therefore, the
TDDFT–B3LYP can overcome the two difficulties
of TDLDA previously discussed.

1.07.3.2 Configuration Interaction Method

When the single-particle states are obtained, one can
form many-body excitations by creating Slater deter-
minants out of these single-particle states. One can
then diagonalize the many-body Hamiltonian in the
Hilbert space formed from a restricted set of such
determinants. This approach is called the configura-
tion interaction (CI) method. When one is interested
in excitons, the wave function is assumed as

� ¼
XNv

v¼1

XNc

c¼1

Cv;c �v;c ð42Þ

where �v,c is the Slater determinant when the
electron from the valence band state v is excited to
the conduction band state c. The eigenvalue problem
of the Hamiltonian then readsX

v9c9

Hvc;v9c9Cv9c9

¼
X
v9c9

½ Ev – Ecð Þ	v;v9	c;c9þKvc;v9c9 – Jvc;v9c9�Cv9c9

¼ ECvc ð43Þ

where Ev and Ec are the single-particle eigenenergies,
E is the exciton energy, and Kvc;v9c9 and Jvc;v9c9 are the
exchange and Coulomb interactions, respectively

Kvc;v9c9 ¼
Z Z

 c9 r1ð Þ �v9 r1ð Þ v r2ð Þ �c r2ð Þ
�" r1; r2ð Þ r1 – r2j j dr1dr2 ð44Þ

Jvc;v9c9 ¼
Z Z

 v r1ð Þ �v9 r1ð Þ c9 r2ð Þ �c9 r2ð Þ
�" r1; r2ð Þ r1 – r2j j dr1dr2 ð45Þ

The effective dielectric screening used in equations
44 and 45 is of the form

1

�" r1; r2ð Þ r1 – r2j j ¼
Z
" – 1

bulk r1; rð Þ 1

r – r2j j dr ð46Þ

where " – 1
bulk r1; rð Þ is the bulk inverse dielectric function

that differs from the one of the quantum dot nanos-
tructure, which also contains the surface polarization
potential P discussed in Section 1.07.2. The use of bulk
inverse dielectric function is in line with the fact that
the single-particle energies Ec and Ev are obtained from
the Schrödinger equation that does not contain the
surface polarization term. If the surface polarization
term is used in the single-particle equation, then the
full inverse dielectric function should be used and the
surface polarization terms will roughly cancel out.

There are arguments that the exchange interac-
tion Kvc;v9c9 should not be screened, which come from

the two-particle Green’s function construction,

where screening of the exchange term would cause

double counting [107]. Nevertheless, in practice, it is

found that the exchange consists of a long-range term

that should be unscreened and a short-range term

[108] that should be screened by the bulk dielectric

function [109,110]. The effective dielectric function
�" r1; r2ð Þ used in equation 44 incorporates this

because �" r1 : r2ð Þ ! 1 for r1 – r2j j ! 0. The seeming

contradiction to the Green’s function argument can

be resolved by realizing that if only a limited config-

uration space is used in equation 43, the effect of

other unused configurations can be included in the

exchange screening term [107].
The CI equation 43 has the same form as the

corresponding equation in the TDLDA (equation 40),

with the difference in the expressions for the exchange
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and the Coulomb integrals. On top of a single-particle
calculation, the CI method was used to calculate very
large systems, such as pyramidal quantum dots with
near by one million atoms [111]. It was also used to
calculate many-body excitations, such as multiexci-
tons, and few electron excitations, and to study Auger
effects [112]. All these calculations are made possible
by selecting a limited window of single-particle states
used in these configurations. It is difficult or impos-
sible to study such systems using TDLDA or
GWþBSE. One should nevertheless be cautious
about the models used for screening in these multi-
particle excitations.
1.07.3.3 GW and BSE Approach

Within this approach, one first calculates the quasi-
particle eigenenergies, which is somewhat analogous to
single-particle calculations in Section 1.07.2. These are
then used to solve the BSE for excitons, which is in some
sense similar to CI equations of the previous section.

A quasiparticle is defined as the pole in frequency
space in the single-particle Green’s function

G rt ; r9t 9ð Þ ¼ – i MjT  ̂ rtð Þ ̂y r9t 9ð ÞjM
D E

ð47Þ

where  ̂ rtð Þ is the particle creation operator, jMi the
M particle ground state, and T the time-ordering
operator. Quasiparticle energies correspond to ener-
gies for adding or removing one electron from the
system [113]. Within the GW approximation [114],
the appropriate single-particle equation reads

–
1

2
r2þ

X
atom

�vbareðr –RatomÞþ
Z

�ðr9Þ
jr – r9jd

3r9

" #
 iðrÞ

þ
Z X

ðr;r9;�iÞ iðr9Þdr9¼ �i ðrÞ ð48Þ

where

� r;r9;!ð Þ¼ –
X

k

 k rð Þ �k r9ð Þ

� fkW r;r9;"k–!ð Þþ 1

�

Z
ImW r;r9;!9ð Þ
!–"k–!9þ i	

d!9

� �
ð49Þ

is the self-energy potential that replaces the LDA
exchange-correlation potential of LDA single-
particle equations.

W r; r9; !ð Þ ¼
Z
" – 1 r; r1; !ð Þ 1

r1 – r9j j dr1 ð50Þ

is the dynamically screened interaction, where
"�1(r, r1, !) is the inverse dielectric function.
While equations 48 and 49 should, in principle, be
solved self-consistently, one usually replaces the self-
energy term with its expectation value with respect to
the LDA Kohn–Sham wave functions h kj�j ki,
which constitutes the zeroth-order approximation of
the GW procedure. It has been shown that the self-
consistent calculations [115,116,117,118,119] make
the spectral properties worse. Such calculations are
performed with the use of pseudopotentials. It is pos-
sible that self-consistency will not make the results
worse if all-electron calculation is performed.

The two-particle Green’s function defined as

G r1t1;r2t2;r91t 91;r92t 92ð Þ
¼ – M T r1t1ð Þ r2t2ð Þ y r92; t 92ð Þ y r91; t 91ð Þ

�� ��M �
ð51Þ

contains the information about the exciton
energies. These can be retrieved by taking
t1 ¼ t 91 þ 0 – and t2 ¼ t 92 þ 0 – and transforming to fre-
quency space to obtain (in the condensed notation)
G2(!), whose poles are the exciton energies. The
Dyson equation for G2(!) reads [120,113]

G2 !ð Þ ¼ G
ð0Þ
2 !ð Þ þ G

ð0Þ
2 !ð ÞK 9 !ð ÞG2 !ð Þ ð52Þ

where G
ð0Þ
2 !ð Þ is the noninteracting two-particle

Green’s function, and K9(!) is an electron–hole inter-
action kernel. Equation 52 for the electron–hole pair
is called the BSE [120]. It can be solved by expanding
the exciton wave function as

jM; Si ¼
X

v

X
c

Cvc âyvb̂
y
c jMi ð53Þ

where av
þ and bc

þ are the hole and electron creation
operators. The equations for Cvc coefficients are then
given as

"c – "vð ÞCvc þ
X
v9c9

Kvc;v9c9 – Jvc;v9c9

	 

Cv9c9 ¼ �S Cvc ð54Þ

where "c , "v are the quasiparticle eigenenergies
obtained from equation 48, and �S is the exciton
energy. The Kvc;v9c9 is the same as in equation 44
without the screening �" r1; r2ð Þ. The Jvc;v9c9, on the
other hand, reads

Jvc;v9c9¼
Z

drdr9 �c rð Þ c9 rð Þ v r9ð Þ �v9 r9ð Þ

� i

2�

Z
d!e–i!0þW r;r9; !ð Þ

�
h

�S –!– "c9–"vð Þþi0þð Þ–1

þ �Sþ!– "c–"v9ð Þþi0þð Þ–1
i

ð55Þ

where W(r,r9,!) is the screened Coulomb interaction
given by equation 50.
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The GWþBSE approach is thought to be one of
the most reliable methods for the calculation of the
optical absorption spectra and excited-state electro-
nic structures. It has been used to calculate small
molecules and bulk crystals. Unfortunately, its use
for the larger systems is hindered by the significant
computational cost.

Excellent agreement with experimental results
was obtained for the optical absorption spectrum
of bulk Si calculated using the GWþBSE approach
[121]. Within GWþBSE, the lower energy peak
originating from the excitonic binding effect was
obtained for the first time. In contrast, previous
LDA and TDLDA results were unable to predict
this peak due to the inadequacy of the local approx-
imation for the Coulomb interaction.

The BSE (equation 54) is formally the same as
the linear response TDLDA (equation 40) and CI
(equation 43), except for the meanings of single-
particle energies and the exchange and screened
Coulomb interactions. In the GWþBSE approach,
the quasiparticle electron (hole) energies are equal to
the total energy difference for adding (or removing)
one electron from the system and include the surface
polarization term P(r) from equation 1. On the other
hand, in the CI approach, the single-particle states
are obtained without including the P(r) term. The
single-particle states then do not correspond to the
total energy differences for adding or removing one
electron. A surface polarization term needs to be
added to relate them to ionization energies or elec-
tron affinities [122]. In the linear response TDLDA
(equation 40), the single- particle energy is the
Kohn–Sham LDA eigenenergy. It does not contain
the surface polarization term, just like the single-
particle energies in the CI approach. A difference
between the TDLDA and CI approach is that
TDLDA contains LDA band-gap error, while in the
CI approach the single-particle states can be found,
for example, by EPM or SEPM that correct the LDA
band-gap error.

The polarization term in the GW quasiparticle
eigenenergy cancels out a term in J in equation 54
because the same surface polarization term exists in
W(r,r9,!) in equation 55. This cancellation corre-
sponds to the cancellation of the PM(r1, r2) and
P(r1), P(r2) terms in equation 2 of the classical phe-
nomenological analysis. Delerue et al. [123] have
shown numerically that the Coulomb correction
term cancels the polarization term in the self-energy
of the quasiparticle eigenenergy. Consequently, the
results of the GWþBSE are expected to be similar
to the results of the CI where J is screened by the
bulk dielectric function. In the TDLDA, where
the Coulomb interaction is local, it is also screened
by the bulk dielectric function, in line with the fact
the LDA single-particle states used in equation 40
do not include the surface polarization term. The
different cancellation schemes in TDLDA, CI, and
GWþBSE (equations 40, 43, and 54) can be illu-
strated by comparing the calculated absorption
spectra in these methods with the one obtained
from single-particle energies. It was shown in Ref.
[124] that the BSE absorption spectrum of small
clusters of SinHm is red-shifted from the calculated
single-particle spectrum, which is mostly due to
negative surface polarization energies in the
Coulomb interaction J. On the other hand, it was
shown in Ref. [103] that the TDLDA spectrum is
blue-shifted from the single-particle LDA spectrum.
There is no surface polarization in J or single-parti-
cle energies then; thus, the exchange interaction
dominates the spectrum shift. However, if total
LDA energy differences for adding or removing an
electron are used in equation 40, then the surface
polarization must be considered [125] and Coulomb
interaction cannot be calculated from equations 45
and 46. The above-discussed cancellations are only
good for spherical quantum dots. For quantum rods,
wires, and the nanostructures of other shapes, the
GWþBSE-like approach should be used. In the CI
approach, P(r) should be added to the single-particle
energy, while the full nanosystem inverse dielectric
function (not the bulk one) should be used for
�" r1; r2ð Þ in equations 44 and 45.
1.07.3.4 Quantum Monte Carlo Methods

Within the quantum Monte Carlo (QMC) method
[126], the whole system is described by a many-body
wave function and the many-body Schrödinger equa-
tion is solved using some of the Monte Carlo
techniques such as variational Monte Carlo method
(VMC) [127,128] or diffusion Monte Carlo method
(DMC) [129,130].

In the VMC, the variational form of the many-
body wave function �(X) is assumed as a Slater
determinant multiplied by a Jastrow term

� Xð Þ¼D" Rð ÞD# Rð Þexp
XM

i¼1

� rið Þ–
XM
i<j

u ri–rj

�� ��	 
" #
ð56Þ

where X¼ {ri , si} for i¼ 1, M. The Slater determi-
nant D is usually constructed from single-particle
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LDA or Hartree–Fock wave functions, while para-
meterized forms are used to express � and u. The
total energy of the system is found by minimizing the
expectation value of the many-body Hamiltonian H,
given as

E ¼ � Hj j�h i= �j�h i

The last expression can be rewritten as

E ¼

Z
� Xð ÞH� Xð ÞdXZ

� Xð Þj j2dX

¼

Z
H�ðXÞ
� Xð Þ

� �
� Xð Þj j2dXZ

� Xð Þj j2dX

ð57Þ

The last integral can be viewed as the average value of
the quantity H� Xð Þ=� Xð Þ distributed in multi-
dimensional space with a probability � Xð Þj j2. It can
be found using the Metropolis algorithm. In this algo-
rithm, one simulates the path of the walker in the
multidimensional space. The jump of the walker from
X to X9 is accepted if � ¼ � X9ð Þj j2= � Xð Þj j2 > 1 and
accepted with probability � if �< 1. The average value
of H� Xð Þ=� Xð Þ along the path of the walker gives E in
equation 57.

In the DMC, one treats the many-body imaginary
time Schrödinger equation as the classical diffusion
equation [129,130]. In this method, the many-body
wave function (not its square) corresponds to the
equilibrium distribution of Monte Carlo walkers.
However, for fermion system, antisymmetry is
required for the many-body wave function. This
causes a sign problem, which is usually approxi-
mately solved by a fixed nodal approximation
where an auxiliary wave function is used to define
the fixed nodal hypersurface for the DMC wave
function. Usually, the VMC wave function of equa-
tion 56 is used as the auxiliary wave function.

With the use of pseudopotentials [131], both
VMC and DMC methods have been used for systems
up to a dozen atoms. Williamson et al. [132] showed
that QMC methods can be used for exciton energies.
This is done by replacing one single-particle valence
band wave function with a conduction band wave
function in the Slater determinant. The DMC with
a nodal hypersurface defined by this new Slater
determinant is performed then, and it fully takes
into account the resulting correlation effects. This
approach gives the Si band structure that agrees

well with the experiments. QMC is one of the most
reliable methods for small-system calculations.

The development of a linear scaling QMC
method [133] extended its applicability from a
dozen atoms to a few hundred atoms. Within the
linear scaling QMC method, Slater determinants
are represented on a basis of localized Wannier func-
tions. This makes the Slater determinant sparse and
therefore the calculation time is proportional to the
size N, instead of N3 in the old scheme. Consequently,
this allows the QMC calculation of a few hundred
atoms and makes possible the use of the QMC
method for small quantum dots [134].
1.07.4 Application to Different
Physical Effects: Some Examples

1.07.4.1 Electron and Hole Wave Functions

The shape of the single-particle wave functions and
their energies determine many physical properties of
quantum dots. This section is, therefore, devoted
to the analysis of electron and hole wave functions.
The wave functions of the lowest four states in the
conduction band and the top four states in the
valence band of a pyramidal [119]-faceted
InAs/GaAs quantum dot are presented in Figure 2.
The results presented in Figure 2 were obtained
using the EPM, including the effect of spin–orbit
interaction.

The lowest conduction state is an s-like state,
while the next two conduction states are p-like states
oriented in the directions of base diagonals, with
nodal planes perpendicular to these directions.
These are followed by d-like states. Due to lateral
dimension larger than the quantum dot height, none
of the nodal planes is parallel to the pyramid base.
There are, therefore, only two p-like states, in con-
trast to spherical quantum dots where there are three
p-like states.

The two p-states are relatively close in energy
and their splitting is caused by several effects. To
discuss each of these effects, we first assume that the
structure is unstrained.

1. In the simplest single-band effective mass model,
these states are degenerate and can be split if the
base of the pyramid acquires a shape different than
the square. The same is the case for the four-band
k ? p model (i.e., eight-band model without spin–
orbit effects). Addition of spin–orbit effects to
four-band k ? p splits these levels by a small (less
than 1 meV) amount [77,135]. Atomistic methods
predict the correct symmetry of the system and
split the p-states, as well as k ? p models with
larger number of bands (14, for example).
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2. When strain (without piezoelectricity) is included
in the k ? p model within CM approach, it cannot
cause the splitting, while the VFF model, due to
its atomistic nature, splits the p-states.

3. Piezoelectricity added to any of the models also
causes the splitting of the p-states.

The splitting of the p-states is therefore caused by
the shape anisotropy, spin–orbit effect, atomistic
(a)symmetry, strain, and piezoelectricity. It is amaz-
ing that a single quantity is determined by such a
large number of effects. Unfortunately, in a given
quantum dot, all these effects are present and cannot
be probed separately.

The conduction band states are formed essentially
of a single envelope function and therefore these can
be classified as being s, p, and d-like. On the other
hand, the band mixing of the valence states is much
stronger and such a simple classification is not possi-
ble. The valence band functions actually have no
nodal planes. (This becomes obvious from Figure 2,
when the isosurface values are additionally reduced
for valance band maximum (VBM-1) and VBM-2.)
The approximation of using a single heavy hole
band to describe the valence state, which is often
used in quantum wells, is therefore not applicable to
quantum dots due to stronger heavy and light hole
mixing.

As the dot size is reduced, the valence band ener-
gies become lower and the conduction band energies
higher. The bound states are then less confined and
the effective energy gap increases. With the reduc-
tion in quantum dot dimensions, some bound states
become mixed with wetting layer or continuum
states and the number of truly bound states decreases.
1.07.4.2 Intraband Optical Processes in
Embedded Quantum Dots

Most of the semiconductor optoelectronic devices
utilize transitions between the conduction-band
states and the valence band states. The operating
wavelength of these devices is mainly determined
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by the band gap of the materials employed and is
therefore limited to the near-infrared and visible part
of the spectrum. However, if one wishes to access
longer wavelengths, a different approach is neces-
sary, that is, the transitions within the same band
have to be used. These transitions are called intra-
band transitions. Intraband optical transitions in bulk
are not allowed and therefore low-dimensional
nanostructures have to be used. Therefore, in the
past two decades, semiconductor nanostructures,
such as quantum wells, wires, and dots, have been
recognized as sources and detectors of electromag-
netic radiation in the mid- and far-infrared region of
the spectrum.

When the use of nanostructures as detectors is
concerned, several limitations of quantum well infrared
photodetectors (QWIPs) have motivated the develop-
ment of quantum dot infrared photodetectors (QDIPs).
The main origin of the undesirable dark current in
QWIPs is thermal excitation (due to interaction with
phonons) of carriers from the ground state to the con-
tinuum states. The discrete electronic spectrum of
quantum dots as opposed to continuum spectrum of
quantum wells significantly reduces the phase space for
such processes and therefore reduces the dark current.
Higher operating temperatures of QDIPs are therefore
expected. Due to optical selection rules, QWIPs based
on intersubband transitions in the conduction band
interact only with radiation having the polarization
vector in the growth direction. This is not the case in
quantum dots since these are 3D objects where the
corresponding selection rules are different.

For the QDIP applications, it is essential to
understand the quantum dot absorption spectrum. The
simplest model that is sufficient to qualitatively under-
stand the quantum dot intraband absorption spectrum is
the parabolic dot model, where the potential is assumed
in a separable form V rð Þ ¼ V1ðx; yÞ þ V2ðzÞ, where

V1ðx; yÞ ¼
1

2
m�!2 x2 þ y2

	 

is the potential of a 2D

harmonic oscillator, and V2(z) is the potential of a quan-
tum well confining the electrons in the z-direction. The
solutions are of the form �ðrÞ ¼ hnx

ðxÞhny
ðyÞ nz

ðzÞ,
where hn(t) is the wave function of a 1D harmonic
oscillator, and  nz

ðzÞ are solutions of the 1D
Schrödinger equation with potential V2(z) (correspond-
ing to energies "nz

). The eigenenergies are then of the
form E nx ; ny ; nz

	 

¼ h�! nx þ ny þ 1

	 

þ "nz

. The fac-
tor h�! corresponds to the transition energy from the
ground to first excited state, and for modeling realistic
quantum dots it should be set to h�! � 40 – 70 meV.
Typical quantum dots are wide in the xy-plane
(diameters of the order of 20 nm and more) and have

very small height (of the order of 3–7 nm) in the z-

direction; therefore, the effective potential well repre-

senting the z-direction confinement is narrow (see

Figure 3). In a typical case, therefore, "1� "0 is of the

order of at least 100 meV.
The optical absorption matrix elements on the

transitions between states are proportional to the

matrix elements of coordinate operators; therefore,

by calculating the latter, one obtains the following

selection rules on the transitions between states:


 �nx¼� 1, �ny¼ 0, �nz¼ 0, for x-polarized

radiation;

 �ny¼� 1, �nx¼ 0, �nz¼ 0, for y-polarized radia-

tion; and

 �nx¼ 0, �ny¼ 0, for z-polarized radiation.

The transitions from the ground state are of primary

importance for QDIPs. From the selection rules

obtained, one concludes that only the transition to a

pair of degenerate first excited states is allowed for in-

plane polarized radiation, while in the case of

z-polarized radiation, only the transitions to higher

excited states are allowed, as demonstrated in Figure 3.
Although the model presented considers the

quantum dot band structure in a very simplified

manner, it is excellent for understanding the results

of more realistic models. The strict selection rules

from this model are then relaxed, and strictly for-

bidden transitions become weakly allowed.

Nevertheless, qualitatively, the absorption spectrum

retains the same features as in this model.
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Figure 4 (a) The intraband optical absorption spectrum for a quantum dot of conical shape with the diameter D¼25 nm and
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The absorption spectrum obtained by the eight-
band k ? p model for an InAs/GaAs quantum dot of

conical shape with the diameter D¼ 25 nm and

height h¼ 7 nm is presented in Figure 4. The

dimensions were chosen to approximately match

those reported for quantum dots in a QDIP struc-

ture in Ref. [136]. The optical absorption spectrum

in the case of z-polarized radiation is shown in

Figure 4(a). The experimental intraband photocur-

rent spectrum exhibits the main peak at 175 meV

and a much smaller peak at 115 meV, in excellent

agreement with the results obtained for z-polarized

incident radiation where the corresponding peaks

occur at 179 and 114 meV, respectively. The corre-

sponding absorption spectrum for in-plane

polarized incident radiation is presented in the

inset of Figure 4(a). There is a single peak in the

spectrum, which is due to the transition from the

ground state to a pair of nearly degenerate first

excited states (see Figure 4(b)).
The results presented and other similar calcula-

tions suggest that the in-plane polarized radiation

causes nonnegligible transitions only between the

ground and first excited states, these being located

in the region 40–80 meV in the far-infrared. On the

other hand, z-polarized radiation causes the transi-

tion in the �100–300 meV region in the mid-

infrared. The best way to understand the origin of

such behavior is through a simplified parabolic model

presented. Such behavior can be altered only if the

dot dimension in the z-direction becomes compar-

able to the in-plane dimensions.
1.07.4.3 Size Dependence of the Band Gap
in Colloidal Quantum Dots

The size dependence of the band gap is the most
prominent effect of quantum confinement in semicon-
ductor nanostructures. The band gap increases as the
nanostructure size decreases. Many of quantum dot
applications rely on the size dependence of the optical
properties. Therefore, studying the size dependence of
the band gap is one of the most important topics in
semiconductor nanocrystal research.

According to a simple effective-mass approxima-
tion model, the band-gap increase of spherical
quantum dots from the bulk value is

�Eg ¼
2h�2�2

m�d 2
ð58Þ

where d is the quantum dot diameter and

1

m�
¼ 1

m�e
þ 1

m�h
ð59Þ

with m�e and m�h being the electron and hole effective
masses.

The experiments usually measure the optical gap
of a quantum dot. Therefore, in addition to the dif-
ference in single-particle energies, one has to include
the interaction between created electron and hole, in
order to calculate the optical gap. One simple
approach to do this is to calculate the exciton energy
by including the electron–hole interaction on top of
the single-particle gap. This procedure ignores the
electron–hole exchange interaction and possible cor-
relation effects. However, in the strong confinement
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regime, which is present in most colloidal nanocrys-
tals and embedded quantum dots, these effects are
very small. Under this approximation, the exciton
energy can be expressed as

Eex ¼ "c – "v – EC
cv ð60Þ

where "c and "v are the single-particle CBM and
VBM energies, and EC

cv is the electron–hole
Coulomb energy calculated as

EC
cv ¼

Z Z
dr1dr2

 c r1ð Þj j2  v r2ð Þj j2

" r1 – r2ð Þ r1 – r2j j ð61Þ

where  c(r) and  v(r) are the electron and hole wave
functions, and "(r1� r2) is a distance-dependent
screening dielectric function, which can be modeled
as described in Ref. 32.

The dependence of calculated optical gap on
CdSe nanocrystal size is presented in Figure 5. A
fit of the theoretical results to the

Eg ¼ a?d –�

dependence yields values quite different from the simple
d�2 law predicted from the effective mass approach. In
the case of CdSe,�¼ 1.18. The� parameter is material-
dependent and its values for III–V and II–VI semicon-
ductors typically fall in the range of 1.1–1.7.
1.07.4.4 Excitons

In the previous section, we have presented the exci-
ton calculations based on a simple, but useful
approach. For the calculation of excitons, the meth-
ods in Section 1.07.3 must be used in principle. The
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corrected local density approximation study of semiconductor qua
results of these methods are shown in Figure 6 for
H-passivated Si quantum dots [138]. The DMC
method and GW–BSE method produce almost the
same band gap for the smallest quantum dots. The
DMC result is about 1 eV above all the other results
for somewhat larger quantum dots with the diameter
up to 1.6 nm. It remains to be seen how accurate is
this DMC result, for example, when compared with
well-controlled experiments (perhaps for other
material quantum dots like CdSe). The TDLDA
method gives almost the same results as the LDA
Kohn–Sham energy difference. This suggests that
both the exchange and Coulomb interactions in the
TDLDA results have a very small contribution.
Besides TDLDA, TDDFT-B3LYP was used in
Refs. [138,139]. The TDDFT-B3LYP band gap is
below the DMC result, especially for relatively
large quantum dots. However, in Ref. [139], it was
shown that for small molecules, the TDDFT-B3LYP
result agrees with the MR-MP2 quantum chemistry
calculations. The TB and EPM results in Figure 6
can be considered as the lowest order results of the
CI equation 43, where only the zero-order screened
Coulomb interactions between the VBM and CBM
states are taken into account. These agree well with
each other. However, they are between the TDLDA
and TDDFT-B3LYP results.

To summarize these results, the DMC result is
above all the other methods for d¼ 1.5nm Si quan-
tum dots. The LDA and TDLDA have the lowest
band gap, followed by the TB and EPM-limited CI
results and the TDDFT-B3LYP results. For very
small quantum dots, the DMC results agree well
with the GW-BSE results.
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1.07.4.5 Auger Effects

Auger effects play a crucial role in carrier dynamics
in nanostructures when both types of carriers
(electrons and holes) are present. They become
important, in particular, in quantum dots that have
discrete electronic levels, which implies that the
competing phonon-assisted relaxation processes are
strongly reduced. Different types of Auger processes
are schematically illustrated in Figure 7.

According to Fermi’s golden rule, the formula for
the Auger rate is given as

Wi ¼
2�

h�

X
n

ij i�Hj jfnij2	 Efn – Ei

	 

ð62Þ

where jii and jfni are the initial and final Auger states,
Ei and Efn

their energies, and �H is the Coulomb
interaction. At a temperature T 6¼ 0, the Boltzmann
average over the initial states has to be taken. It
would seem at first sight that the discreteness of
quantum dot energy levels and the requirement for
energy conservation in the process would not allow
for efficient Auger processes. However, other excita-
tions, such as phonons, can be involved as well and
help satisfy the energy conservation. Their effect can
then be phenomenologically modeled by Lorentzian
broadening of the delta function in Fermi’s golden
rule expression as

	 Efn – Ei

	 

! �

2�

1

Efn – Ei

	 
2þ �=2ð Þ2
ð63Þ

The most important step in the electron cooling
process involves the transition of the electron from

the p-level (ep) to the ground s electronic state (es).

This process is mediated by a transition of the hole

from hs to hn. The calculated Auger lifetime for this

process is shown in Figure 8. Its value is of the order

of 0.1–0.5 ps, in agreement with experimental results

[140]. This result suggests that Auger processes are

sufficient to explain electron cooling in quantum

dots, although other mechanisms are not necessarily

ruled out.
The same process can take place in the presence

of an electron and a hole that act only as spectators. It

is very interesting that the electron lifetime increases

by an order of magnitude in those cases, as demon-

strated in Figure 8.
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1.07.4.6 Electron–Phonon Interaction

The theory and results presented so far covered only
the stationary electronic structure of quantum dots
when atoms are in their equilibrium positions.
However, at finite temperatures the vibrations of
atoms around their equilibrium positions (phonons)
create additional potential that perturbs otherwise
stationary electronic states and causes transitions
among them.

Phonons in quantum dots can be treated at various
levels of approximations. The approximation that is
often used for large quantum dots is that the phonons
are the same as in bulk material. The strongest cou-
pling between electrons and phonons in polar
crystals is polar coupling to longitudinal optical
(LO) phonons, while deformation potential coupling
to longitudinal acoustic (LA) phonons might also
sometimes be important.

In order to calculate the transition rates among
different electronic states due to the interaction
with LO phonons, it is tempting to apply Fermi’s
Golden rule, which is a good approximation in
quantum wells, for example, [141]. However, its
direct application to quantum dots leads to the
result that transition rates are zero unless two
levels are separated by one LO phonon energy
exactly [142]. Such an approach treats the electron
and phonon systems separately with their interac-
tion being only a perturbation. It is currently
known that electrons and phonons in quantum
dots form coupled entities – polarons. Polarons in
self-assembled quantum dots have so far been evi-
denced experimentally by optical means in the
intraband magneto-optical spectrum [143,144],
magneto-photoluminescence spectrum [145], and
Raman scattering [146], and it has been suggested
theoretically that they could have transport signa-
tures as well [147]. Polarons are usually evidenced
by anticrossing of electron energy levels when
these are gradually changed, such as, for example,
by magnetic field. We illustrate this here by a
numerical experiment where the energies of the
pair of first excited states are shifted in opposite
directions by the same amount �E, which is var-
ied. The polaron states were calculated by direct
diagonalization of the electron–phonon interaction
Hamiltonian. The polaron energy levels that con-
tain a contribution from at least one of the
electronic states larger than 10% are shown by
circles in Figure 9. Anticrossing features in
polaron spectrum are clearly visible.
There is therefore a widespread thought that car-
rier relaxation in quantum dots should be treated by
considering the carriers as polarons. The polaron
lifetime is then determined by anharmonic decay of
an LO phonon into two low-energy phonons
[148,143,149,150,151]. It is thought that the physical
process responsible for that decay process is the
decay either to two LA phonons [152,148] or to one
acoustic and one optical phonon [151]. Within such
assumptions, the polaron lifetime is in the case of a
two-level system given by [148]

W ¼ �

h�
–

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 R –Xð Þ

p
h�

ð64Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2
p

; X ¼ g2 þ �2 –�2
	 


=4;
Y ¼ ��=2;� ¼ Ei – Ef – h�!LO, g is the electron–

phonon coupling strength, �=h� the phonon decay
rate, and Ei and Ef the energies of the single-
particle states. Equation 64 has been used in
several occasions to fit the experimental results
on intraband carrier dynamics in quantum dots
[149,153].

The approximation of bulk phonon modes
certainly fails in small quantum dots. In that case,
one should use the atomistic description of phonons.
To calculate the phonon frequencies and displace-
ments, one needs a force field that describes the
vibrations of atoms around their equilibrium
positions. VFF, for example, can be used for that
purpose. To calculate the electron–phonon coupling,
one needs to be able to calculate the change in single-
particle Hamiltonian due to atomic displacements.
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Any of the single-particle methods described in
Section 1.07.2 can, in principle, be used for that
purpose. However, if some of the empirical methods
are used, one should be sure that the fitted para-
meters are appropriate for this purpose as well. Due
to large number of atoms and consequently phonon
modes, such calculations could be quite expensive
nevertheless they are sometimes practiced. For
example, Delerue et al. [154] calculated the phonon
modes in a Si nanocrystal using a VFF model, and the
coupling between the phonon modes and the transi-
tion electronic states explicitly using the Harrison’s
rule [56] for changes of TB parameters following the
atomic displacements. Most recently, Chelikowsky
et al. [155] calculated the phonons of Si quantum
dots using direct DFT calculations.
1.07.5 Conclusions

We have given an overview of theoretical methods
used for electronic structure calculations in quantum
dots. We have emphasized the weaknesses and
strengths of each of the methods. An interested
reader can therefore choose the method of choice
depending on the desired application, the degree of
accuracy required, and the available computational
resources.

For the treatment of single-particle states, the
simplest effective mass method is excellent for
pedagogical purposes to illustrate the effect of quan-
tum confinement. It is often even used in research
when one wishes to qualitatively take into account
the effect of quantum confinement and the details
of the electronic structure are not essential. The
multiband k ? p method gives a more quantitative
description, especially for large quantum dots. It is
widely used in modeling of optical and transport
processes in optoelectronic devices. Atomistic meth-
ods give a very detailed description of quantum dot
electronic structure and are clearly the best choice in
research for understanding the new physical effects.

For the treatment of excitations in quantum dots,
Section 1.07.3 gives an overview of the methods that
can be applied in principle. For application of these
methods to quantum dots, linear scaling of the
method is an essential requirement. CI approach
satisfies this but it is based on classical model deriva-
tions and physical intuitions. QMC also appears to be
promising. However, the method is relatively new,
when the calculations of excited states and large
systems are concerned. A deeper understanding of
the accuracy, that is, the quality of the variational
form of the wave function or the nodal hypersurfaces,
is required. Where the GW–BSE approach is con-
cerned, it is a challenge to make it scalable to larger
systems.
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