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Using the time-dependent wave function we have studied the properties of the
atomic transverse motion in an interferometer, and the cause of the non-classical
behavior of atoms reported by Kurtsiefer, Pfau, and Mlynek [Nature 386, 150
(1997)]. The transverse wave function is derived from the solution of the two-
dimensional Schrödinger’s equation, written in the form of the Fresnel–Kirchhoff
diffraction integral. It is assumed that the longitudinal motion is classical. Com-
paring data of the space distribution and of the transverse momentum distribution
in interferometers with one and two open slits, it follows that the atomic motion is
influenced by the atomic matter wave and violates the laws of classical mechanics.
However, the negative values of Wigner’s function should not be taken as evidence
that the atoms in an interferometer violate the classical statistical law of the addi-
tion of positive probabilities. This inference follows from the comparison of prop-
erties of Wigner’s function and of the de Broglian probability density in phase
space.

KEY WORDS: atomic interference; compatible statistical interpretation;
(non)violation of the classical probability laws; Wigner’s function.

1. INTRODUCTION

The wave function k(x, t) of the transverse motion of an atom in an inter-
ferometer is a linear superposition of states with maxima at two spatially
separated locations. These states lead to negative values in Wigner’s func-
tion W(x, px, t), which is the quasi-probability distribution in phase space
defined by position x and momentum px. Kurtsiefer et al. (1) and Pfau



and Kurtsiefer (2) reconstructed W(x, px, 0) from the measured distribution
|k(x, t)|2 of helium atoms in a double slit interferometer. (2) The authors
conclude that the motion of atoms behave in a strongly non-classical
manner.
Since there are at least two aspects of non-classicality, the charac-

terization of motion (atomic behavior) as non-classical, in our opinion,
requires further specification. First, non-classical motion may denote a
motion, which does not obey the laws of classical mechanics. Second, it
may denote a behavior, which does not obey the classical probability laws,
in particular the classical law of the addition of positive probabilities, as
suggested by Leibfried et al. (3) The aim of our study reported in this paper
is to determine, which of these two aspects is revealed by the negative
values of the Wigner function.
For the reason stated above, we have written in Sec. 2 the solution of

Schrödinger’s equation for an atom in an interferometer. This solution is
written in the form of the Fresnel–Kirchhoff diffraction integral. In Sec. 3
we have derived the time dependent wave function k(x, t) of the transverse
motion. It describes the atomic matter wave that is non-classical property.
Its modulus square |k(x, t)|2 (graphically presented also in Sec. 3) is a
probability density to find an atom at point x at time t.
The transverse momentum distribution |c(px)|2 in the state k(x, t) we

have evaluated and presented graphically in Sec. 4. Also, we explained why
|c(px)|2 is an important characteristic of the state, and how it could be used
for better description of the atomic non-classical behavior.
In Sec. 5 we study the problem of existence and form of a joint prob-

ability distribution of position and momentum of atoms in an interferom-
eter. We have evaluated and presented graphically Wigner’s phase space
density W(x, px, t) and the de Broglie probability distribution P(x, px, t)=
|k(x, t)|2 · |c(px)|2. We have compared (Secs. 5 and 6) their properties and
found that the function P(x, px, t) possess the general properties of a clas-
sical statistical distribution whereas the Wigner function does not possess
such properties. From this comparison follows the conclusion (stated in
Sec. 6) that there is no evidence that the observed nonclassical wavelike
behavior of atoms violates the classical statistical laws.

2. THE APPLICATION OF THE FRESNEL–KIRCHHOFF
DIFFRACTION FORMULA

We want to determine the wave function of an atom which travels
with velocity vF=vıFy=(p/m) ıFy through region I (see Fig. 1), towards the
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Fig. 1. Illustration of the diffraction
formula presented with Eq. (7).

slits and is then sent through the slits to region II. Atom’s behavior and
motion is determined by its wave function, which is a solution of the
time-dependent two dimensional Schrödinger equation
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Y(x, y, t). (1)

If the atomic source is far from the grating, the solution in front of the
grating is a plane wave with the initial wave vector kF=pF/( along the lon-
gitudinal direction y. Behind the grating Tomonaga (4) invoked the approx-
imation which is equivalent to the paraxial approximation in optics and
wrote the solution in the form of a product of the longitudinal and trans-
verse part, the former being plane wave. The transverse part was written
in the form of a superposition of Gaussians (which spread in time) by
Tomonaga, (4) Zurek, (5) Bonifacio, Olivares, (6) and others.
The solution of Eq. (1) may be determined also by applying Fresnel–

Kirchhoff diffraction formula. (7) This possibility, exploited by Zeilinger
et al., (8) Kurtsiefer et al., (1) Božić et al. (9) and others, is due to the fact that
the space dependent part F(x, y) of the stationary solution of Eq. (1)

Y(x, y, t)=e−iwtF(x, y), (2)

where (w=p2/2m and p=mv=(k, satisfies the Helmoholtz equation

−
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2 F(x, y)=(wF(x, y). (3)

The solution of Eq. (3) in region I is (7) a spherical wave

F(P −)=F(x −, y −)=
Ae ikrŒ

r −
, (4)
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where A is a constant and r − is the distance (Fig. 1) from the source (P0)
to the point P −=(x −, y −) in region I. The spherical wave at the slit points
(x −, y −=0) may be approximated by a plane wave, since the distance a
of the double-slit screen from the source P0 is very large compared to
the width of the slits. Consequently, without a loss of generality, for
F(x −, y −=0) at the border of region I we may choose the function

f1(x −, 0)=31/`d , − D2 \ x
− \ − D2−d,

0, all other values of x −,
(5)

for one open slit, and the function

f2(x −, 0)=˛1/`2d, − D2 \ x
− \ − D2−d

1/`2d, D

2+d \ x
− \ D

2 , (6)
0, all other values of x −

for two open slits. This means that in region II the solution of Eq. (3) is
given by the formula of the Fresnel–Kirchhoff diffraction (7)

F(x, y)=−
iA
2l
e ika

a
F
A

dx −
e iks

s
[1+cos q], (7)

where s=`y2+(x −−x)2, cos q=y/s, l=2p/k, while A={x −;−(D/2)−
d < x − < −(D/2)} when the lower slit is open and upper slit is closed, and
A={x −; (D/2) < x − < (D/2)+d or −(D/2)−d < x − < −(D/2)} when the
two slits are open. The constant A will be chosen from the normalization
condition.
The spatial distribution of the transverse degree of freedom as a func-

tion of evolution time was investigated in a double slit experiment (1, 2) with
metastable helium atoms. A diagram of the apparatus is shown in Fig. 2.

Fig. 2. Diagram of apparatus used in Ref. 1 to observe
atomic interference patterns.
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Fig. 3. The function |k(x, t)|2 — |F(x, y=vt)|2/N2 for a single slit
evaluated from Eq. (7) where N2=> |F(x, y=vt)|2 dx for a given y. Other
parameters are: k=4p · 1010 m−1, v=(k/m=1995.58 m/s, m=6.64632
· 10−27 kg is the mass of the Helium atom.
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Atoms are emitted from a gas-discharge source operating in the pulse
operation mode. The beam is collimated by a 5 mm-wide slit and then is
sent through a double-slit structure with a slit separation D+d=8 mm and
an opening d=1 mm. The atoms then propagate for a distance d to a time-
and space-resolving detector. Atom beam velocities lie between 1000 and
3000ms−1. We shall use the parameters of this experimental arrangement
for the following calculations.

3. TIME-DEPENDENT WAVE FUNCTION OF THE TRANSVERSE
MOTION

Assuming that the motion of an atom along the y-axis can be treated
classically and that the transverse motion is quantized, one may use the
relation y=vt and determine the time dependent function of the transverse
motion from the function F(x, y) given in (7), by the following definition

F(x, vt)/N — k(x, t), (8)

where N=`> |F(x, vt)|2 dx. The graphs of the function |F(x, vt)|2/N2
— |k(x, t)|2 for k=4p · 1010 m−1 and for the chosen set of values of the
coordinate y (t=my/(k) are presented in Figs. 3 and 4.
Very close to the slit on the single-slit graphs (Fig. 3) we see the

minima of the wave function for x=xc, where xc=−4 mm is the coordi-
nate of the slit center. But, with increasing y, the maximum is present at
x=xc for all y. This maximum becomes wider and wider with increasing y.

Fig. 4. The function |k(x, t)|2 — |F(x, y=vt)|2/N2 for a double-slit
evaluated from Eq. (7) where N2=> |F(x, y=vt)|2 dx, for a given y. Other
parameters are: k=4p · 1010 m−1, v=(k/m=1995.58 m/s, m=6.64632
· 10−27 kg is the mass of the Helium atom.
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On double-slit graphs (Fig. 4) we clearly see that near the slits the
wave function consists of two widely separated Gaussian like maxima on
which small oscillations are superimposed. With increasing distance from
the slits the Gaussian-like maxima spread and start to overlap, so that the
third maximum with superimposed oscillations start to develop. This
region of y corresponds to Fresnel diffraction. With further increase of
y(t), distinct equally spaced oscillations develop, which correspond to the
Fraunhofer diffraction limit.

4. THE TRANSVERSE-MOMENTUM DISTRIBUTION

The time dependent function defined by Eq. (8) should be a solution
of the one-dimensional time-dependent Schrödinger’s equation. Therefore,
we may assume (9) that it can be written in the form

k(x, t)=
1

`2p(
F
.

−.
c(px) e ipxx/(e−iwxt dpx=

1

`2p
F
.

−.
c −(kx) e ikxxe−iwxt dkx,

(9)

where >.−. |c(px)|2 dpx=>.−. |c −(kx)|2 dkx=1, px=(kx, c −(kx)=`( c(px)
and (wx=p

2
x/2m. From Eq. (9) we may determine the transverse-momen-

tum distribution |c(px)|2=|c −(kx)|2/( in the state k(x, t). At first, one
determines

C(kx, t) —
1

`2p
F
.

−.
k(x, t) e−ikxx dx (10)

by performing the Fourier-transform of the function k(x, t), defined by
Eq. (8), taking t as a parameter. If Eq. (9) is valid, then it should be

C(kx, t)=c −(kx) e−iwxt. (11)

Consequently,

|c −(kx)|2=|C(kx, t)|2. (12)

The graph of |c −(kx)|2=(|c(px)|2 for one slit is given in Fig. 5a and for two
slits in Fig. 5b.
Our numerical calculation for various values of t, show that |c −(kx)|2 is

independent of t. This fact justifies the assumptions of Eqs. (8) and (9) as
well as the statement of Kurtsiefer, Pfau, and Mlynek (1) that the longitudinal
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Fig. 5. Momentum distribution |c −(kx)|2=|c(px)|2 ·( in the state k(x, t) with
parameters given in the caption of Figs. 3 and 4. (a) One open slit; (b) two open
slits.

motion of the atoms at velocities v of several thousand meters per second
can be treated completely classically.
We compared also the transverse momentum distribution |c −(kx)|2

(evaluated as described above and presented in Fig. 4) with the absolute
value square of the Fourier transform

Fi(kx)=
1

`2p
F
.

−.
fi(x −, 0) e−ikxxŒ dx − (13)

of the function fi(x −, 0), i=1, 2. After the evaluation of the latter integral
one finds

F1(kx)=
ie ikx D/2

kx `2pd
{1−e ikxd},

|F1(kx)|2=
2 sin2(kxd/2)
p dk2x

(14)
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and

F2(kx)=
2

kx `pd
sin
kxd
2
cos
kx(D+d)
2

,

|F2(kx)|2=
4
k2xpd

sin2
kxd
2
cos2
kx(D+d)
2

.

(15)

We found that |c −(kx)|2 for one slit is practically identical to |F1(kx)|2 and
that |c −(kx)|2 for two slits is practically identical to |F2(kx)|2.
From these facts we conclude (9) that the function |k(x, t)|2 defined by

(9) and the function |F(x, y=vt)|2/> dx |F(x, y=vt)|2 defined by (7) are
equivalent. However, we have not found yet a general proof of this fact.
Far from the slits (in the Fraunhofer region) the wave function in the

coordinate representation is proportional (10) to the wave function of the
transverse motion in the momentum representation

k(x, t=ym/(k)=
`k

`y
e−ip/4e ikx

2/2yc −(kx/y), (16)

where kx/y plays the role of kx. This relation implies that the transverse
momentum distribution in the state k(x, t) may be determined by measur-
ing the atoms position distribution |k(x, t)|2 in the far field.
In order to verify experimentally the independence of the momentum

distribution on y would require a direct measurement of the momentum
distribution as a function of y. To the best of our knowledge such a
measurement has not been performed.
By comparing the spatial distributions for one and two slits shown

in Figs. 3 and 4, one must conclude that the presence of the second slit
influences the motion of each atom, independent of the slit through which
it has passed to region II (see Fig. 1). This influence is also very well seen
by comparing the momentum distributions for one and two slits, presented
in Fig. 5. Certain values of the particle’s transverse momentum, which are
allowed with one slit, are not allowed when both slits are open. This fact is
also a signature of a non-classical atomic behavior that can be understood
in a similar way to the quantization of the electronic orbits in atom based
on de Broglie’s wavelength. It appears that the atomic matter wave exclu-
des certain values of transverse momentum and favors others, which is an
evident quantum effect.
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5. STATISTICAL LAWS OF THE ATOMIC NON-CLASSICAL
BEHAVIOR

As pointed out in the previous section, due to the relation (16) the
transverse momentum distribution may be measured by measuring the
atomic position distribution very far from the slits. In photon optics this
possibility follows from the far field limit of the Fresnel–Kirchhoff
integral. (11) It is hard to explain why this possibility has been much less
exploited in the study of statistical features of quantum interference than
the assertion about the impossibility of joint measurement of position and
momentum, deduced from Heisenberg’s uncertainty relation.
The interest for the joint measurement of position and momentum is

related to the long standing problems of the existence and form of the joint
probability density in phase space, (12–19) and in general of the missing link
between quantum mechanics and probability theory. (20)

The search for a phase space distribution was initiated by Wigner. (12)

Wigner attempted to determine the phase space distribution function
W(x, px, t) in the pure state k(x, t) by imposing the following requirements:

W(x, px, t) \ 0, (17)

FW(x, px, t) dpx=|k(x, t)|2, (18)

FW(x, px, t) dx=|c(px)|2, (19)

F kg(x, t) F̂(x̂, p̂x) k(x, t)=F F(x, px) dx dpx, (20)

where F̂(x̂, p̂x) is an operator associated with a physical quantity F(x, px).
Wigner showed (12, 15) that the function

W(x, px, t)=
1
(p

F dx̃ e2ipxx̃/(kg(x+x̃, t) k(x− x̃, t)=W −(x, kx, t)/(, (21)

satisfies (18)–(20) but does not satisfy (17). Later, Wigner proved (14) that
positive joint distributions, which are bilinear in the wave function, do not
exist.
Margenau and Hill (19) derived the analogous conclusion valid for two

arbitrary random quantities. Their conclusion is expressed in terms of
covariance and correlations of two quantities: ‘‘There is, however,
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a convincing argument which establishes the impossibility of introducing
any sensible joint probability distribution that exhibits correlations.’’
We would like to point out that Margenau and Hill (19) defined covari-

ance using for the average value the expression on the left hand side of the
relation (20), which is a bilinear form in the wave function. This means that
the conclusion of Margenau and Hill is a generalization of Wigner’s proof
given in Ref. 14.
Cohen and Zaparovanny (17) and Cohen (18) proposed to abandon the

requirement that the joint probability is bilinear in the wave function. This
implies to abandon the requirement (20) of Wigner, as well as the definition
of covariance based on the quantum mechanical average value. By aban-
doning the requirement (20) Cohen and Zaparovanny found (17) the whole
class of positive distributions in phase space. The special case in this class is
the distribution

P(x, px, t)=|k(x, t)|2 |c(px)|2=P −(x, kx, t)/(=|k(x, t)|2 |c −(kx)|2/(,
(22)

for uncorrelated x and px.
The function P(x, px, t), called the de Broglie probability density by

Božić and Marić, (21–23) is the probability density for the particle to have a
momentum px and to be at position x at time t. (22) It is always positive
and satisfies both marginal conditions (18) and (19) imposed by Wigner.
For operators having the form F(x̂, p̂x)=F1(x̂)+F2(p̂x), the probability
density P(x, px, t) satisfies also the requirement (20).
The function P(x, px, t) is associated with the compatible statistical

interpretation (CSI) of a wave function proposed by Božić and Marić. (21)

Based on the P(x, px, t) Božić and Marić (22) explained the coherence of the
characteristic modulation of the momentum distribution at the exit of a
neutron interferometer found by Kaiser et al. (24) Božić and Arsenović (25)

compared this explanation with the explanation based on Wigner’s
function by Lerner, Rauch, and Suda (26) and Suda. (27)

According to the CSI of a wave function, in an ensemble of particles
in a pure state presented by Eq. (9), different particles may have different
momenta. Recall that the probability density of px is |c(px)|2. It is inde-
pendent of x. However, each particle, no matter the value of its momen-
tum px, is surrounded by the same wave, (22, 23) because they all are in the
same state k(x, t). A particle and a wave are two different, but compatible
entities. The whole picture implies the assumption that x and px are uncor-
related random variables. This assumption is not in contradiction with
Heisenberg’s uncertainty relations because, as pointed out by Cohen and
Zaparovanny, (17) ‘‘dispersions of x and px depend only on the marginal
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distributions and hence any proper distribution which yields the proper
quantum mechanical distribution of position and momentum will yield the
uncertainty relations.’’
Since the simultaneous measurement of a coordinate and momentum

is not possible, P(x, px, t) cannot be measured in a single experiment.
However, one could experimentally determine the probability density of a
coordinate x and momentum px in the state k(x, t), i.e., P(x, px, t), by
measuring separately the distributions |k(x, t)|2 and |c(px)|2. These distri-
butions reflect the non-classical behavior, as pointed out in the previous
section.
In Figs. 6 and 7 we present the graphs of the de Broglian probability

density of a coordinate x and transverse momentum px, P(x, px, t), for
y=120 mm (t=y/v=6.01×10−5 s) and y=240 mm (t=y/v=12.02×
10−5 s). For the same values of y we present in Figs. 8 and 9 the plots of
the Wigner distribution function, evaluated from the expression (21).
It is clear from Figs. 6–9 that W(x, px, t) and P(x, px, t) are very dif-

ferent functions. Consequently, from their forms and properties are derived

Fig. 6. The de Broglian probability density P −(x, kx, t)=(P(x, px, t) in the
single slit state k(x, t) with parameters given in the caption of Fig. 3.
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Fig. 7. The de Broglian probability density P −(x, kx, t)=(P(x, px, t) in the
double-slit state k(x, t) with parameters given in the caption of Fig. 4.

different interpretations of the behavior of quantum particles. It was shown
by Janicke and Wilkens (28), Kurtsiefer, Pfau, and Mlynek (1) that Wigner’s
function W(x, px, 0) may be reconstructed from evaluated and measured
values of |k(x, t)|2 for various values of t. The negative values of
W(x, px, 0) were interpreted as a signature of violation of classical statisti-
cal laws of addition of positive probabilities. (3) These negative values are
also associated with the requirement of Heisenberg’s uncertainty relation-
ship that a quantum mechanical particle has to be described by an area of
uncertainty in phase space no smaller than Dx Dpx=(/2. (3) The authors
also pointed out that the negative values reflect the impossibility of joint
measurement of position and momentum.
However, we interpret the de Broglie probability density, presented

in Figs. 6 and 7, as an objective probability density of particle coordinate
and momentum. The eventual impossibility of simultaneous measurements
of a particle’s x and px does not forbid us from assuming that their joint
distribution objectively exists. The important fact is that this assumption
does not lead to any contradiction with the facts derived from measurable
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Fig. 8. Wigner’s function W −(x, kx, t) associated with the single slit state
k(x, t) and evaluated from (21). Parameters are given in the caption of Fig. 3.

distributions. One can see that this joint probability density is consistent
with the measurable probability density of position and the measurable
probability density of momentum. For example, for values of p̃x for which
|c( p̃x)|2=0, the joint distribution P(x, p̃x, t) is also equal to zero. Thus, if
there is no particle with a certain value of momentum p̃x, this value can not
be found anywhere during the measurement of momentum. Similar reason-
ing is valid for space points x̃ in which |k(x̃, t)|2=0, since P(x̃, px, t) is also
equal to zero in these space points for any value of momentum. Therefore,
at a point x̃ no particle will be detected in the experiment.
One can see in Figs. 8 and 9 that Wigner’s function W(x, px, t) may

take values different from zero at the points x̃ and p̃ in which either
k(x̃, t)=0 or c(p̃x)=0. Despite this property, inconsistent with a notion
of a joint probability, the Wigner function satisfies the marginal conditions
stated by Eqs. (18) and (19). It is well known that Wigner’s function may
assume negative values, even though it is a joint probability distribution by
definition. Because of this, it is possible to satisfy Eqs. (18) and (19). Thus,
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Fig. 9. Wigner’s function W −(x, kx, t) associated with the double-slit state
k(x, t) and evaluated from (21). Parameters are given in the caption of Fig. 4.

two different properties of Wigner’s function, inconsistent with a notion of
a joint probability, cancel each other and make it possible to satisfy two
marginal conditions. This is clearly seen by comparing results presented in
Figs. 6 and 7 and 8 and 9. We note in Fig. 8 and 9 the negative peaks in the
x-dependence of the Wigner function for those values p̃x of momentum for
which |c( p̃x)|2=0.

6. CONCLUSION

The properties of atoms in the atomic interferometer and cause of non-
classical behavior are studied using the solution of the two-dimensional
Schrödinger’s equation, written in the form of the Fresnel–Kirchhoff
diffraction integral. The time dependent wave function of the transverse
motion was derived from it.
By comparing the spatial distributions and the transverse momentum

distribution for one and two open slits, we conclude that independent of
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the slit through which it has passed, the presence of the second slit influen-
ces the motion of each atom. This is a signature of a non-classical atom
behavior reflecting nonvalidity of the laws of classical mechanics.
By taking into account the de Broglie, (29) the Bohm and Vigier (30) and

the Selleri (31) understandings of wave-particle duality, we conclude that non-
classical atomic behavior is due to a real atomic wave that is associated
with each atom and that influences its motion. The obstacle in front of the
incoming atoms determine the actual form of this influence. Therefore, the
application of methods for determination of the amplitude and phase
structure of the atomic wave field, similar to the method of Raymer, Beck,
and McAlister, (32) would be of great importance.
By comparing the de Broglian probability density and Wigner’s func-

tion in the state k(x, t), we conclude that the negative values of Wigner’s
function should not be taken as a signature of a violation of classical sta-
tistical laws. This follows from the fact that the de Broglian probability
density has the general properties of a statistical distribution, whereas
Wigner’s function does not possess such properties. Their fundamental
properties are:

(B1) the De Broglian probability density is always positive.

(B2) the De Broglian distribution is consistent with the measurable
probability density of position and measurable probability
density of momentum.

(B3) In the phase space points (xŒ, p −x) in which either |k(x, t)|
2 is

equal to zero or the |c(px)|2 is equal to zero, the de Broglian
probability density P(x, px, t) is also equal to zero.

(W1) In certain phase space points Wigner’s function takes negative
values. So, despite the fact that it satisfies marginal conditions,
it does not satisfy the classical law of addition of positive
probabilities.

(W2) There exist phase space points (xŒ, p −x) in which |k(xŒ, t)|
2=0

but W(xŒ, p −x, t) is different from zero. There exist phase space
points (xœ, p'x) in which |c(p

'

x)|
2=0 but W(xœ, p'x , t) is differ-

ent from zero. In classical statistics this property is not allowed,
because this property is contradictory to the very definition of
a joint probability as a positive quantity. This property con-
tradicts also the law of addition of positive probabilities.

Therefore, it does not follow that the motion of atoms in an inter-
ferometer violates the classical statistical laws neither from the evaluated
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and measured space distribution, (1, 2) nor from the transverse momentum
distribution evaluated in this paper, nor from the negative values of
Wigner’s function in the state k(x, t). However, it follows that this motion
violates the laws of classical mechanics. This is because no wave is asso-
ciated with a classical particle while an atom, whose motion is governed by
the Schrödinger equation, is accompanied by the matter wave.
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