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Abstract—Microring-resonator filters have important appli-
cations as filtering elements in microphotonic circuits. In this
paper, we address the question of optimum design of resonator-
based add-drop filters in the presence of finite losses, and show
that symmetric coupling provides the optimum design. This
conclusion contravenes previous work on this subject, and the
oft-cited critically coupled resonator case. While the minimum
bandwidth of a resonant filter is ultimately limited by intrinsic
losses, i.e. the intrinsic Q, we show that the symmetric design
can approach twice as narrow a linewidth as a critically coupled
design for the same losses, in principle. We present a coupled-
mode theory (CMT) model, and a complete electromagnetic
device design example based on finite-difference time-domain
field simulations which validates our conclusions.

Index Terms—Microring resonators, channel add-drop filters,
coupled mode theory, filter synthesis, power splitters.

I. INTRODUCTION

INTEGRATED silicon based photonics has many promising

applications in optical telecommunications, optoelectron-

ics and optical signal processing [1]–[4]. The integration of

silicon photonics and electronic circuits offers the prospect

of low energy devices, circuits and systems for applications

including on-chip and processor-to-memory interconnects [3],

[4], as well as photonic analog-to-digital converters [5]. Other

applications include nonlinear and quantum optical devices for

applications in quantum information and computing [6].

An important photonic device, and one of the earliest

concepts realized in integrated photonics, is the resonant

channel add-drop filter. Microring resonators are particularly

well suited for add-drop filter applications [7], [8] because

of their traveling wave structure that allows for a natural

separation of the four ports (in, through, drop, add in Fig. 1),

without the use of circulators. Detailed techniques have been

worked out for synthesizing standard Butterworth, Chebyshev

[1], [9], and more advanced [10] filter responses.

These filter synthesis techniques have primarily dealt with

lossless structures. However, radiation and scattering losses are

not insubstantial in strong-confinement photonics, with typical

losses of 2-3 dB/cm [4] and radiation Q’s on the order of

250,000 in silicon, and higher in some other material systems.

Regardless of the magnitude of the loss, it begins to play a

major role for narrow enough bandwidth filters, when the total
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Fig. 1. Schematic of a single microring-resonator add-drop filter showing
the parameters used in the CMT model.

Q approaches the loss Q, Qo. Therefore it is of interest to

investigate the optimal design of filters in the presence of loss.

Some prior work has already addressed this issue in photon-

ics [11], and considerably more in circuit and microwave the-

ory. Here, we show that the design of single-microring filters

that provides minimum loss calls for symmetric coupling to the

input and drop bus. This is in contradiction with the critically

coupled design claimed to provide optimum transmission e.g.

by Vörckel et al. [12] explicitly, and often assumed optimal

in other work (e.g. [13]).

II. COUPLING OF MODES IN TIME (CMT) MODEL

Coupled-mode theory in time (CMT) provides a simple

model that affords all of the necessary physics of the reso-

nant add-drop filter problem, including resonance, loss and

coupling to ports. The system of equations that describes a

single-resonator filter excited by a monochromatic input wave

si(t) at angular frequency ω is [1], [2]

d

dt
a(t) = jωa(t) = (jωo − r)a(t)− j

√
2resi(t)

st(t) = si(t)− j
√
2rea(t) (1)

sd(t) = −j
√
2rda(t)

where |a|2 is the energy amplitude of the ring resonant mode,

and si, st, and sd are the power-normalized amplitudes of

input, through and drop port waves [2] (Fig. 1). With input

wave si incident, some excitation is picked up by the resonator,

and the remaining field propagates on to the through port.

It then interferes with the light leaving the resonator in the

through port and is carried away by through-port wave st.
The energy stored in the resonator is |a|2 and according to

Eq. (1) the energy amplitude a(t) decays at the total rate r,
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comprising a decay rate describing external coupling to the

input port, re, the drop port, rd, and a loss mechanism, ro:

r = re + rd + ro (2)

The decay rates are related to decay time constants as ri =
1/τi, for i ∈ {e, d, o}. Since τ is a field time constant, the

associated photon lifetime (1/e-intensity time) is τ/2.

The drop-port response of the device is found from Eq. (1),∣∣∣∣sdsi
∣∣∣∣
2

=
4rerd

(ω − ωo)2 + r2
(3)

The response is Lorentzian, with a 3dB (full width at half

maximum, FWHM) bandwidth of δω3dB = 2r.

Unlike a full scattering model using transfer matrices [2],

[14], the CMT model treats only given resonances (here, ωo)

of the ring and does not include geometry information that

would reveal properties such as the free spectral range (FSR).

III. OPTIMAL AND CRITICAL COUPLING

Given a certain loss Q, Qo, and corresponding loss rate ro =
ωo/(2Qo), our objective is to find the optimum choice of ring-

waveguide couplings re, rd in order to maximize on-resonance

efficiency of transmission to the drop port, |sd/si|2. The CMT

model, because of its simplicity, lends itself to closed-form

analytical synthesis.

To find the optimum solution, we first note that the trans-

mission efficiency, see Eq. (3), not surprisingly decreases with

increasing loss, ro. On the other hand, increasing re and rd
with a fixed ro increases transmission, but also bandwidth,

thus providing lower loss for a different filter. Therefore, we

must ask for the best design of a fixed bandwidth. This was

neglected in Ref. [12], and is the cause of its erroneous claim

that critical coupling provides the minimum drop loss. Fixing

bandwidth means fixing total rate r, according to δω3dB = 2r,

and together with a fixed loss, ro, leaves only one undeter-

mined degree of freedom, since from Eq. (2), rd = r−re−ro.

Maximizing with respect to the remaining (input) coupling

rate re, gives the optimal couplings for maximum drop port

transmission

re = rd =
r − ro

2
(4)

It is instructive to compare this solution to the critical coupling

solution of the same bandwidth [1], [13] which leads to

re = rd + ro =
r

2
(5)

A comparison of the transmission efficiency of the optimal

(symmetric) and critical-coupling designs is given in Fig. 2,

showing that the symmetric design is indeed optimal for

maximizing dropped on-resonant power. We define normalized

bandwidth α ≡ Δω3dB/Δωo as the ratio of total bandwidth

2r to intrinsic (loss limited) bandwidth 2ro. Substitution of

Eqs. (4,5) into (3) yields the efficiency of the symmetric and

critically coupled designs for various relative bandwidths α:∣∣∣∣sdsi
∣∣∣∣
2

=

(
1− 1

α

)2

(6)

∣∣∣∣sdsi
∣∣∣∣
2

= 1− 2

α
(7)
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Fig. 2. Minimizing the impact of loss on a single filter stage: comparison
of symmetric (optimal) and critically coupled single-ring filter designs for
different normalized bandwidths, α (ratio of total bandwidth to loss-limited,
intrinsic bandwidth).

This comparison is useful in the design process to determine

the narrowest bandwidth that supports a desired transmission

to the drop port, or the maximum transmission achievable at

a certain bandwidth, given known linear losses. Fig. 2 and

Eqs. (4–5) show that the optimum symmetric design has a

minimum bandwidth limit of Δfo, while the critically coupled

design has a minimum bandwidth of 2Δfo. In the limit of

a large relative bandwidth α, the loss plays a negligible

role and the two solutions can be verified by to be equal

by a first-order Taylor series expansion in α−1 of Eqs. (4–

5). For 3dB transmission, the symmetric case can reach

α =
√
2/(

√
2 − 1) ≈ 3.412 times the intrinsic linewidth,

while the critically coupled case is limited to α = 4 intrinsic

linewidths, a difference of ∼20%.

IV. ELECTROMAGNETIC DESIGN

We next verify these results on a hypothetical lossy device

design, via full-wave finite-difference time-domain (FDTD)

numerical simulations [15]. We first use numerical simulations

to design the example filter and relate the physical geometry

to CMT variables such as re, rd and ro, and then verify the

total device performance against the CMT model by simulating

the entire device’s response using FDTD. Without loss of

generality, we consider a two-dimensional (2D) model in TE

polarization, because all relevant physics is in the plane. The

theory applies, however, to arbitrary resonator type (microring,

photonic crystal cavity, etc.), in 2D (e.g. toy models) or 3D

(real devices), and for arbitrary choices of excitation mode

(e.g. polarization) and loss mechanism. In our example, we

consider bending loss as the source of loss, but the approach

treats equally absorption, roughness-induced scattering, etc.

Fig. 1 shows the geometry of the device. First, the bus and

ring waveguide widths are chosen to be the widest that still

give single mode slab operation in the 1.55μm wavelength

range. For core and cladding indices nco = 3.5 and ncl =
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1.45, the waveguide width is wg = 0.24μm. The microring

resonator radius is chosen next, purposefully small enough to

result in substantial radiation losses, so that we can test our

design approach for filters with lossy resonant elements. A

circularly bent waveguide is known to produce radiation loss

due to bending that exponentially increases with decreasing

radius [16]. We use a two-dimensional mode solver for bent

slab waveguides [17] to find a radius for which the radiation Q,

Qo ≈ 1, 000. This amounts to selecting a radius at which the

real part of the propagation constant forms an integer number

of wavelengths in one round trip at 1550 nm, and the imaginary

part of the propagation constant yields the losses, and the target

loss Q (Qo ≈ ko(dβR/dko)/(2βI)). This radiation Q, Qo,

determines the minimum possible 3 dB linewidth known as

the intrinsic linewidth, Δfo = fo/Qo, due to decay rate ro.

The closest radius to a Qo of 1,000 and 1550nm resonance is

an outer radius of Ro = 0.78μm.

Next we choose the gaps that correspond to calculated

coupling rates re, rd in the presence of loss, ro. The evanescent

field that exists in the cladding is responsible for coupling

between the bus waveguide and the ring waveguide. The

fraction of power coupled to the ring normalized to the input

bus power is termed the power coupling coefficient, k2. Since

the evanescent field decays exponentially far from the core,

larger gaps between the bus and the ring lead to smaller

coupling coefficients as [2], [14]

k2(g) ≈ k2oe
−γ(g−go). (8)

where ko ≡ k(go). In high-index-contrast, strong-confinement

structures, this dependence deviates from purely exponential

dependence, but rigorous FDTD simulations provide the exact

relationship between the coupling coefficients and the bus-

ring gap. Hence, to capture the data in a physically consistent

model, we take the log of k2 vs. gap, which is nearly linear

and fit it to a low-order polynomial to account for higher-order

effects captured in the full-wave simulation [8]

ln k2(g) = p3 + p2g + p1g
2. (9)

From this type of fit, the coupling geometry of the device can

be chosen to obtain desired re,rd. Finally, for a given loss

Q, Qo (i.e. ro), we use FDTD simulations to simulate the

full device design to confirm the analytic solutions obtained

using the CMT model and Eqs. (4–5) in both the optimal and

critically coupled case. We give one design example in this

paper, for α = 2.5. From the chosen microring cavity design,

and corresponding radiation loss ro, we obtain total bandwidth

2r = 2roα, and the corresponding re and rd for the symmetric

and critical designs. To connect the power coupling coefficient

to the CMT model, we use the first-order correspondence [1]

k2i ≈ 2ri
ΔfFSR

for i ∈ {e, d} (10)

where the FSR is ΔfFSR ≡ c
2πRng

, c is the speed of light

in vacuum and ng ≈ 3.62 is the ring group index found in

modesolver simulations. Using Eq. (9), the coupling gaps are

gi =
−p2 −

√
p22 − 4p1(p3 − ln k2i )

2p1
for i ∈ {e, d} (11)
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Fig. 3. Spectra of through and drop ports calculated in FDTD simulations
and drop port calculated using the CMT model for a) optimally coupled and
b) critically coupled microring resonator channel add-drop filters on α = 2.5
A good matching of the analytic CMT solution with numerically simulated
FDTD is observable. The insets are showing spectra on dB scale.

In Fig. 3, spectral responses resulting from FDTD simulations

are shown for optimal and critically coupled filters for α =
2.5. Overlapping the data is the CMT model of the target

design, showing very good matching. CMT and FDTD spectra

significantly differ only at far off-resonant detuning, where

drop port transmission is less than −30 dB. The reason for

this disagreement is that the CMT model here has included

only one resonance, while a physical microring cavity has a

finite FSR and repeating resonances. Hence, the FDTD drop

response levels off on the left (shorter wavelength side) and

right (longer wavelength side) because it is about to rise into

another peak one FSR away. The left and right sides of the

FDTD response are unequal because dispersion results in the

FSR becoming smaller with increasing wavelength. We have

verified that equally good agreement can be obtained for other

values of the normalized bandwidth α. The on-resonant drop

loss is plotted (points) alongside the analytic response (lines)

in Fig. 2 and confirms the analytic model of the optimum
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Fig. 4. Numerical FDTD simulations of symmetrically (on the left), i.e. optimally, and critically (on the right) coupled microring resonator channel add-drop
filters showing the electric field propagation in the structures. Geometrical parameters are also provided. This is a snapshot under continuous-wave excitation
on-resonance and it shows that more power is dropped for optimally coupled device.

symmetric and critical designs, respectively.

Figure 4 shows field snapshots of FDTD simulations of the

α = 2.5 designs whose spectra are in Fig. 3. While pulsed

excitation was used to obtain full spectral response data in a

single simulation, the snapshots are taken in the steady state

with continuous-wave excitation at the resonant wavelength,

for simpler interpretation. Fields are shown with excitation

amplitudes on the same scale. More power is seen dropped

by the symmetric design in Fig. 4(a) even though the critical

case has less through-port transmission (it also radiates more).

The guided fields look ‘wobbly’ because of the significant

presence of radial radiation from the ring in the total field.

An additional interesting observation is the larger steady-state

field enhancement in the critically-coupled cavity in Fig. 4(b)

even though both have the same total Q (r). This is because

the input coupling re is stronger for the critically coupled case.

Hence, the symmetric design is not only more efficient but also

less sensitive to nonlinear resonance shifting and nonlinear loss

due to Kerr nonlinearity and two-photon absorption.

V. CONCLUSION

We showed that the optimum design of a drop filter, in the

context of minimizing on-resonance insertion loss, is a design

with a symmetric coupling configuration. A CMT model

shows that the symmetric design approaches a 2-fold narrower

loss-limited bandwidth, and allows 20% narrower passbands

for 3 dB insertion loss. We constructed an example geometry

using mode solver and FDTD simulations of a microring cavity

and directional couplers, and verified that the complete device

has the CMT-predicted response from full-wave simulations

of the entire device. We also noted that the symmetric design

is in addition more robust to nonlinearities.
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