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Extended charge in motion: Why is the Hamiltonian of a magnetic
dipole Àm"B?

D. Arsenović and M. Božić
Institute of Physics, P.O. Box 57, Belgrade, Yugoslavia

~Received 2 November 1998; accepted 4 October 1999!

The interaction potential energy of a rigid moving mass and charge distribution~magnetic and
electrical dipole in motion! in an electromagnetic field is expressed in terms of the center of mass
coordinate, the rotation dyadic of a mass distribution, and magnetic and electric dipole moments.
© 2000 American Association of Physics Teachers.
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I. INTRODUCTION

‘‘Why is the Hamiltonian of a magnetic dipole2m•B?’’
is an interesting question raised by Griffiths.1 At the same
time Griffiths explained why he raised this question: ‘‘If yo
integrate the energy densityBtot

2 /2m0 , using Btot5B1Bd ,
whereBd is the field of the dipole itself, you get2 ~for the
interaction term! W5m•B, with the ‘wrong’ sign.’’

We read the Griffiths question just after completing t
derivation of the interaction potential energy of a movi
mass and charge distribution. In our derivation we us
Rowe’s3 formulation of nonrelativistic equations of motio
of a rigid body. Rowe applied3 his formulation to derive the
expression for the interaction potential energy of a mov
mass and charge distribution in an external electrostatic fi
In our derivation, which is explained in this paper, we co
sider the same problem but in the presence of electric
magnetic fields.

The answer to the Griffiths question follows from our de
vation.

II. FORMULATION OF THE PROBLEM

We consider mass and charge distributions which are r
and move together, i.e., we assume that relative position
charge and mass elements do not change in time.

The configuration of the mass distribution is determin
by the position vectorX of its center of mass and a rotatio
dyadicR.3,4 HereR describes the orientation of the framee1 ,
e2 , e3 @attached with mass distribution~Fig. 1!#, with respect
to the laboratory reference frameE1 , E2 , E3 ,

R~ t !5ek~ t !Ek , ~1!

where the summation convention is used. The rotat
dyadic satisfies

R•Ei5ei ~2!

and

R•RT5RT
•R51, ~3!

where

RT5Ekek~ t ! ~4!

and

15EkEk5ek~ t !ek~ t !. ~5!

Charge distribution is described by a function%(x,t), which
represents the density of charge when the center of mass
the pointX(t), and the orientation of the frame is determin
540 Am. J. Phys.68 ~6!, June 2000
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by R(t). To shorten the notation we shall write

%~x,t !5%X,R~x!5%~x!, xPV~ t !5V
~6!%X50,R5I~x!5%0~x!, xPV0 ,

whereV0 is the charge domain forX50 andR5I andV is
the charge domain for arbitraryX andR.

The total charge we shall denote by

Q5E
V
%~x! dx5E

V0

%0~x! dx. ~7!

A point charge in an electromagnetic field is subject to
Lorentz force

F5q~v3B1E!. ~8!

With this force is associated4 a generalized potential energ

U52qv•A1qw, ~9!

so that

F52
]U

]x
1

d

dt
S ]U

]v
D . ~10!

The generalization of the expression~9! to the case of a
mass and charge distribution~an extended mass and charg!
is straightforward. It is done by chopping an extended cha
into infinitesimal pieces. Any piecedq is subject to the Lor-
entz force

dF5dq~v3B1E!. ~11!

The interaction potential energy of the charge distribution
obtained by integrating the elements of potential energy

dU5~2%v•A1%w!dx ~12!

and by introducing a current density

j5%v. ~13!

The result is

U5E ~2 j•A1%w! dx. ~14!

However, when we try to generalize~10! to the case of a
charge and mass distribution, we conclude that this is no
straightforward. We know that an extended charged bod
an electromagnetic field is subject to a force and a torque
find the precise expressions for these, it is necessary to w
the interaction potential~14! as a function of external and
internal coordinatesX andR, respectively. This is the prob
lem which we solve in the following two sections.
540© 2000 American Association of Physics Teachers
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III. INTERACTION POTENTIAL OF A MOVING
CHARGE DISTRIBUTION IN AN
ELECTROMAGNETIC FIELD

In order to write the integral in~14! in terms of coordi-
natesX andR, we expressx in terms ofX andh ~Fig. 1!:

x5X1h5X1R•x0 . ~15!

From ~15! it follows that

v5 ẋ5Ẋ1Ṙ•x05Ẋ1ḣ. ~16!

By developingw(x) andA(x) in a Taylor series around th
point X up to terms linear inh, and using the relation~16!,

which contains the termḣ, we find

U5U11U21U31U41U51U6 , ~17!

where

U152E
V
%~x!Ẋ•A~X! dx,

U252E
V
%~x!Ẋ•

]A

]Xi
~x2X! i dx,

U352E
V
%~x!~ ẋ2Ẋ!•A~X! dx,

~18!

U452E
V
%~x!~ ẋ2Ẋ!•

]A

]Xi
~x2X! i dx,

U55E
V
%~x!w~X! dx,

U65E
V
%~x!

]w

]X
•~x2X! dx.

Let us denote byp0 the electric dipole moment atX50 for
R5I :

p05E
V0

%0~x0!x0 dx0 . ~19!

It seems appropriate to generalize this well-known expr
sion for the electric dipole moment of a stationary cha
distribution to the case of a moving charge distribution
follows:

Fig. 1. The illustration of reference frames and notations.
541 Am. J. Phys., Vol. 68, No. 6, June 2000
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p5E
V
%~x!~x2X! dx

5E
RV0

%R~h!h dh

5E
V0

%0~x0!R•x0 dx05R•p0 , ~20!

where

%R~h![%~X1h!. ~21!

The quantityp is the electrical dipole moment with respe
to the center of mass atX for arbitraryR.

Similarly, the expression for the magnetic moment of
stationary charge distribution atX50, for R5I ,

m05
1

2 EV0

x03%0~x0!ẋ dx0 , ~22!

is generalized to the case of a moving charge distribution

m5
1

2 ERV0

h3%R~h!ḣ dh. ~23!

Herem is the magnetic moment with respect to the center
mass atX for arbitrary orientationR.

Applying Green’s theorem to the integral

R
S
x~dS•a!5E

V
~x div a1a! dV, ~24!

which for dS'a reduces to

E
V
adx52E

V
x div adx ~25!

and the equation of continuity

div j1
]%

]t
5div~%v!1

]%

]t
50, ~26!

the termsUi are transformed~see the Appendix! into the
following forms:

U152QẊ•A~X!,

U252Ẋ•~p¹!A,

U352A~X!•ṗ,
~27!

U452m•B2
1

2

]A

]Xi
•E

RV0

hh i

]

]t
%R~h! dh,

U55Qw~X!, U65
]w

]X
•p.

The total interaction potential energyU now reads

U52QẊ•A~X!2Ẋ•~p¹!A2A~X!•ṗ2m•B

1Qw~X!1
]w

]X
•p2

1

2

]A

]Xi

•E
RV0

hh i

]

]t
%R~h! dh.

~28!

Using a series of vector identities, the second, third, a
sixth terms in the latter expression may be rearranged to
541D. Arsenovic´ and M. Božić
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U21U31U65~Ẋ3p!•~¹3A!2
d

dt
~A•p!2E•p. ~29!

The termd(A•p)/dt does not contribute to the equations
motion. Therefore, the interaction potential energy of a m
ing charge distribution in an electromagnetic field@in the
linear approximation of potentialsA(x) andw(x) by the po-
tentialsA(X) andw(X)# takes the form

U52QẊ•A~X!1Qw~X!2E•p2m•B2~p3Ẋ!•B

2
1

2

]A

]Xi
•E

RV0

hh i

]

]t
%R~h! dh. ~30!

The meanings of the first four terms in this expression
evident because their forms are known either from the the
of a point charge or from the theory of magnetic and elec
dipoles at rest in an electromagnetic field. The first two ter
represent the interaction energy of a point chargeQ at X, the
third is the interaction energy of a dipole at rest, and
fourth is the interaction energy of an intrinsic magnetic m
ment ~which is due to a rotation of a charge distributio
centered atX!. The fifth term is associated with a motion o
an electric dipole in a magnetic field~as distinct from the
first one which is associated with a motion of a point cha
in a magnetic field!. It shows that a moving electrical dipol

picks up5 a magnetic dipole momentmd5p3Ẋ.
The interpretation of the last term is not clear because

integral in it is not expressible in terms ofX, R, m, or p. It
contains second-order powers ofh i and we expect that i
would contribute to quadrupole moments. Therefore, the
teraction potential energy in the dipole approximation is
termined by the first five terms:

U52QẊ•A~X!1Qw~X!2E•p2m•B2~p3Ẋ!•B. ~308!

As stated at the beginning, our aim is to write the inter
tion potential energy~14! in the form from which one could
derive the generalized forces using the Lagrangian presc
tion. Neither with the form~30! nor with its dipole approxi-
mation ~308! have we reached this goal. This is because
fourth and sixth terms are not written as functions of gen
alized ~collective! coordinatesX and R and/or of the corre-
sponding generalized velocities. In the next section we s
solve this problem for a particular charge distribution.

IV. MAGNETIC MOMENT OF A MOVING MASS
AND CHARGE DISTRIBUTION

It follows from ~23! that the magnetic moment of an e
tended charged particle, imagined as a charge and mass
tribution, is associated with the current which is due to
particle’s internal motion—joint instantaneous rotation o
mass and charge distribution centered atX.

Therefore, it seems suitable to express the magnetic
ment in terms of the angular velocityv of a body. It is
defined3,4 by the motion of the moving framee1 , e2 , e3 :

ėk~ t !5v~ t !3ek~ t !, k51,2,3. ~31!

Now we may expressḣ in terms ofv, since3

Ṙ5ėkEk5v3ekEk5v3R. ~32!

Therefore,
542 Am. J. Phys., Vol. 68, No. 6, June 2000
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ḣ5Ṙ•x05v3~Rx0!5v3h. ~33!

By substituting the relation~33! into ~23! and using the vec-
tor identity

h3~v3h!5~h•h!v2~h•v!h, ~34!

we find

m5
1

2
vE

RV0

%R~h!h2 dh2
1

2 ERV0

%R~h!vh cosqhdh,

~35!

whereq is the angle betweenv andh. We see that the firs
term is proportional tov for any %R(h). However, the sec-
ond term is a more complicated function ofv. In the special
case of a spherically symmetric charge distribution, the s
ond term is also proportional tov, as we now show.

For this purpose it is convenient to write the vectorh in
spherical coordinates, where the polar axis is taken to
along the angular velocityv. In this way we find

m5
1

2
vE

RV0

%R~h!h4 dhE
0

p

sinq dqE
0

2p

dw

2
v

2 E %R~h!h4 dhE
0

p

dqE
0

2p

dw cosq

3sinq@cosq iv1sinq cosw im1sinq sinw in#,

whereiv is the unit vector along thev axis andim andin are
two mutually orthogonal vectors in the plane normal tov.
After integration we get

m5v2pE %R~h! dhh42v
2p

3 E %R~h! dhh4,

i.e.,

m5v
4p

3 E %R~h! dhh4[kv. ~36!

The constantk is related to the gyromagnetic ratiog by k
5gI .

The sixth term in~30! is equal to zero in the case of
spherical charge distribution because (]/]t)%R(h)50 in this
case.

Therefore, it follows from~14! and ~308! that the interac-
tion potential energy of the movingsphericalcharge distri-
bution ~whosep50! in an electromagnetic field~in the di-
pole approximation! is the following function of the
coordinatesX andR and of the angular velocityv:

U52QẊ•A~X!1Qw~X!2kv•B. ~37!

The spherical rotator with a magnetic moment prop
tional to its angular momentum (m5gI v5kv) was named
the ‘‘magnetic top’’ by Barutet al.6

The interaction potential energy of the magnetic top w
moving center of mass contains two parts:

Uext52QẊ•A~X!1Qw~X!, ~38a!

U int52kv•B. ~38b!

HereUext depends on the CM position and velocity andU int
is determined by the internal motion.
542D. Arsenovic´ and M. Božić
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Consequently, the Lagrangian of the moving magnetic
is given by

L5Lext1L int , ~39!

where

Lext5Ttr2Uext5
mẊ2

2
1QẊ•A~X!2Qw~X!, ~40a!

L int5Trot2U int5
I v2

2
1kv•B. ~40b!

Evidently, in a homogeneous field the external and the in
nal motion of the magnetic top are mutually independent
may be studied separately. In an inhomogeneous field
internal and external motion are coupled~mutually depen-
dent!.

The classical internal motion of the magnetic top in a h
mogeneous magnetic field was extensively studied by B
et al.6 and Arsenovic´ et al.,7 using Euler’s angles as the in
ternal coordinates, and by Maric´ et al.,8 using spinors as the
internal coordinates.

The external motion in a homogeneous electromagn
field is the standard motion under the Lorentz force.

The equations of the internal motion may be written us
any one of the following methods:~i! Lagrange’s equations
for the independent orientation coordinates,4 ~ii ! Lagrange’s
equations for systems with constraints4 ~method of Lagrange
multipliers!, ~iii ! the variational method developed by Row3

for the system described by the rotation dyadic—the se
coordinates which satisfy certain conditions~constraints!.

By choosing Euler’s anglesw, x, q for three independen
orientation coordinates Barutet al.6 applied method~i! and
wrote Lagrange’s equations of motion for the magnetic t

d

dt
I @ẇ1ẋ cosq#5Fw50,

d

dt
I @ ẋ1ẇ cosq#5Fx5gBI sinq•q̇, ~41!

d

dt
I q̇1I ẋẇ sinq5Fq52gBI sinq•ẋ.

HereFw , Fx , andFq are generalized forces associated w
Euler’s anglesw, x, andq:

Fa52
]U int

]qa

1
d

dt
S ]U int

]q̇a
D , a5w,x,q. ~42!

By choosing the complex components of Cartan’s spi
for the set of four orientation coordinates which satisfy o
constraint, Maric´ et al.8 applied method ~ii !. Both
approaches6–8 lead to the same equation

dsW

dt
5gs3B ~43!

for the canonical spin angular momentum, defined6 by

s5I v1gIB. ~44!

The equation~43! of spin motion is the so-called torqu
equation,4 because on its right-hand side is the torque

T5gs3B. ~45!
543 Am. J. Phys., Vol. 68, No. 6, June 2000
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It follows from these studies5–7 that the magnetic top is an
appropriate classical model of a particle with spin.

A magnet in the form of a spinning top is called a ma
netic top by Simonet al.9 and a levitron by Hones10 and
Berry.11 The magnetic top of Barutet al.6 and the magnetic
top of Simonet al.9 have in common that the magnetic m
ment and angular momentum point in the same directi
However, the former has a magnetic moment which is due
the rotation of its charge distribution, whereas the latter p
sesses at rest an intrinsic magnetic moment, it is unchar
and it is made of a ferromagnetic material. Its spinning in
direction of its magnetic moment is induced by an exter
torque.

V. SUMMARY

The integral expression~14! for the interaction potentia
energy of a moving charge distribution in an electromagne
field is transformed into the sum of six terms@Eq. ~30!#,
using the linear approximation of potentialsA(x) andw(x)
by the potentialsA(X) and w(X). ~It is assumed that the
relative positions of masses and charges do not change
ing a motion and that the structure is rigid.!

The first five terms have a clear physical meaning a
their sum~308! represents the interaction potential energy
the dipole approximation. The first two terms represent
interaction energy of a point chargeQ at X, the third is the
interaction energy of a dipole at rest, and the fourth is
interaction energy of an intrinsic magnetic moment~which is
due to the rotation of a charge distribution at pointX!. The
fifth one is associated with the motion of an electric dipole
a magnetic field~as distinct from the first one which is ass
ciated with a motion of a point charge in a magnetic field!.

The sixth term contains second-order powers ofh i .
Therefore, it would contribute to the quadrupole mome
together with other terms which would appear in the seco
order approximation of potentialsA(x) andw(x).

It is important to note that, in this approach, the magne
moment of a particle is associated with an internal curr
which is due to a joint internal motion~rotation! of a mass
and a charge. The magnetic momentm is due to a time-
varying current associated with a rotation of the charge.
our opinion, this classical model is more appropriate fo
~charged! particle with spin than the model based on a~mac-
roscopic! current loop. The relative motion of a charge a
mass is an important characteristic of the loop.

VI. THE ANSWER TO QUESTION #66

From the results in this paper, an answer follows to qu
tion #66 raised by Griffiths:1 ‘‘Why is the Hamiltonian of a
magnetic dipole2m•B?’’ The question was raised becau
the interaction term of a magnetic dipole derived in the fie
theory ~by the reasoning1,2 quoted at the beginning of thi
article! has a positive sign. Our answer contains two part

The first part of our answer is as follows: From the Lor
entz force law and from the dipole approximation~308! of
the interaction potential energy of an extended charge in
tion ~14!, it follows that the term2m•B, which represents
the interaction energy of the intrinsic magnetic moment in
electromagnetic field, has a negative sign.

In the field theory, the plus sign arises because the in
action energy is defined by the integral2
543D. Arsenovic´ and M. Božić
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Wint5
1

m0
E Bd•B dx, ~46!

whereBd is the field of the dipole itself. Using the relation

B5¹3A, ¹3Bd5m0j , ~47!

the integral~46! is then transformed to

Wint5
1

m0
E ~¹3Bd!•A dx5E j•A dx. ~48!

If we compare the latter integral with the first integral in~14!
we conclude that they differ only in sign. Therefore, th
shows that them•B term, derived in the field theory from
~46!, has1 sign and why the2m•B term, derived in me-
chanics from~14!, has2 sign.

The second partof our answer to question #66 deals wi
the construction of the Hamiltonian from the Lagrangi
~39!, of an extended charge in motion. The interaction p
tential energy~30! is dependent both on external and intern
velocities, which means that the Hamiltonian of an extend
charge in motion is not equal to the sum of kinetic and p
tential energy. Its form has to be determined from the
plicit dependence of the interaction energy on velocities
coordinates.

In the case of a magnetic top, this problem was solved
Barutet al.6 The Hamiltonian associated with the Lagrangi
~40! of a magnetic top reads

H5
mẊ2

2
1

I v2

2
5Hext1H int5

~p2QA!2

2m
1

~s2kB!2

2I
,

~49!

wherep is the canonical momentump5mẊ1QA and s is
the canonical angular momentum-spin, given by~44!.
544 Am. J. Phys., Vol. 68, No. 6, June 2000
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The internal Hamiltonian may be written in the form

H int5
~s2kB!2

2I
5

s2

2I
2m•B1

k2B2

2I
, ~50!

where

m[gs5m1gkB ~51!

is the canonical magnetic moment. HereH int contains three
terms: the first is the constant of motion,6–8 and the third is
constant in the case of a homogeneous time-indepen
field. The second term has the same form as the Hamilton
of a magnetic dipole in quantum theory~Pauli term!. How-
ever, we point out thatmW in ~50! is a canonical magnetic
moment related to the magnetic momentm by the relation
~51!.

The results obtained in this paper, together with the res
of Barut et al.,6 show that the explanation of the linear rel
tion between magnetic moment and spin, postulated in qu
tum theory, could be based on the classical electrodynam
of an extended charge in motion.
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APPENDIX: COMPACT FORM OF THE POTENTIAL TERMS

The transformations of the termsUi defined in~18! into the forms~27!:

U152E
V
%~x!Ẋ•A~X! dx52Ẋ•AE

V
%~x! dV52QẊ•A~X!,

U252E
V
%~x!Ẋ•

]A

]Xi
~x2X! i dx52E

V
%~x!Ẋ•

]A

]Xi
~R•x0! i dx52Ẋ•

]A

]Xi
E

V
%~x!~R•x0! i dx

52Ẋ•

]A

]Xi
FR•E

V0

%0~x0!x0 dx0G
i

52Ẋ•

]A

]Xi
pi52Ẋ•~p¹!A,

U352E
V

%~x!~ ẋ2Ẋ!•A~X! dx52E
V
%~x!~Ṙ•x0!•A~X! dx52A~X!•E
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%~x!~Ṙ•x0! dx
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52
]A

]Xi
•~m3Ei !1

1

2

]A

]Xi
•E

RV0

hh i div „%R~h!ḣ… dh
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6Asim O. Barut, Mirjana Bozˇić, and Zvonko Maric´, ‘‘The Magnetic Top as
a Model of Quantum Spin,’’ Ann. Phys.~N.Y.! 214, 53–83~1992!.
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