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Extended charge in motion: Why is the Hamiltonian of a magnetic
dipole —m-B?

D. Arsenovic and M. Bozic

Institute of Physics, P.O. Box 57, Belgrade, Yugoslavia

(Received 2 November 1998; accepted 4 October 1999

The interaction potential energy of a rigid moving mass and charge distrib(iagnetic and
electrical dipole in motionin an electromagnetic field is expressed in terms of the center of mass
coordinate, the rotation dyadic of a mass distribution, and magnetic and electric dipole moments.
© 2000 American Association of Physics Teachers.

[. INTRODUCTION by R(t). To shorten the notation we shall write

“Why is the Hamiltonian of a magnetic dipole m-B?” e(x,t)y=exr(X)=0(x), xeV(t)=V
is an interesting question raised by Griffithét the same _ (6)
time Griffiths explained why he raised this question: “If you @x=0r=1(X)=Qo(X), XeVo,
integrate the energy densiBfOJZMO, using B;,:==B+By, whereV, is the charge domain foX=0andR=1 andV is
where By is the field of the dipole itself, you getfor the the charge domain for arbitraty andR.

interaction term W=m- B, with the ‘wrong’ sign.” The total charge we shall denote by

We read the Griffiths question just after completing the
derivation of the interaction potential energy of a moving Q:f o(X) dx:f 0o(x) dx. (7
mass and charge distribution. In our derivation we used v Vo

Rowg'§ formulation of nonrelativistic equations of motion A point charge in an electromagnetic field is subject to the
of a rigid body. Rowe appli€this formulation to derive the Lorentz force

expression for the interaction potential energy of a moving
mass and charge distribution in an external electrostatic field. F=q(vXB+E). (8)

In our derivation, which is explained in this paper, we Con-yith this force is associatéch generalized potential energy
sider the same problem but in the presence of electric and

magnetic fields. U=-qv-A+qe, 9
The answer to the Griffiths question follows from our deri-
i so that
vation.
Eo U d[oU 10
Il. FORMULATION OF THE PROBLEM T XJF dt\ av | (10

We consider mass and charge distributions which are rigid The generalization of the expressi® to the case of a
and move together, i.e., we assume that relative positions ohass and charge distributidgan extended mass and charge
charge and mass elements do not change in time. is straightforward. It is done by chopping an extended charge

The configuration of the mass distribution is determinedinto infinitesimal pieces. Any piecgyq is subject to the Lor-
by the position vectoKX of its center of mass and a rotation entz force

dyadicR. HereR_descrlbes_the_ orl_(—:-nt_'cmon of t_he frareg dF=dq(VXB+E). (11)
e,, &; [attached with mass distributidfig. 1)], with respect
to the laboratory reference frani , E,, Es, The interaction potential energy of the charge distribution is
obtained by integrating the elements of potential energy
R(t)=ex(t)Ex, (N
. o , dU=(-ov-A+oe)dx (12)
where the summation convention is used. The rotation ) ] .
dyadic satisfies and by introducing a current density
R-E;=¢ 2 j=ov. (13
and The result is
. T: T. =
R-R=R"-R=1, ©® sz (—j-A+po¢)dx. (14
where
RT=E,&(t) (4) However, when we try to generaliz&0) to the case of a
kS charge and mass distribution, we conclude that this is not so
and straightforward. We know that an extended charged body in

an electromagnetic field is subject to a force and a torque. To
1=EE=alt)el(t). ®  find the precige expressions fojr these, it is necessaryqto write
Charge distribution is described by a functig(x,t), which  the interaction potentiall4) as a function of external and
represents the density of charge when the center of mass isiaternal coordinateX andR, respectively. This is the prob-
the pointX(t), and the orientation of the frame is determinedlem which we solve in the following two sections.
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Fig. 1. The illustration of reference frames and notations.

[ll. INTERACTION POTENTIAL OF A MOVING
CHARGE DISTRIBUTION IN AN
ELECTROMAGNETIC FIELD

In order to write the integral if14) in terms of coordi-
natesX andR, we expresx in terms ofX and # (Fig. 1):

X=X+ np=X+R-Xg. (15
From (15) it follows that
v=X=X+R- Xo= X+11 (16

By developinge(x) andA(x) in a Taylor series around the

point X up to terms linear iny, and using the relatiofi6),
which contains the termy, we find

U=U;+U,+Uz+U,+Us+ U, 17
where
—f 2(0X-A(X) dx,
\Y
U,= JQ(X)X (x X),; dx,
—fve<x><'x—>'<)~A<><> dx
(18)

f@(x )(X— X) (x X); dx,

Us—jQ

_ 9 e
Ua—fvg(x) X (x—X) dx.

o(X) dx,

Let us denote by, the electric dipole moment &= 0 for
R=1:

po:J 00(Xg)Xo dXgp. (19
Vo

It seems appropriate to generalize this well-known expres-
sion for the electric dipole moment of a stationary charge

= f 0 (X)(x—X) dx
\Y

p
:f or(m)mdy
RVg
:fv Qo(Xg)R-Xg dXg=R-po, (20
0
where
or(m)=0(X+ 7). (21)

The quantityp is the electrical dipole moment with respect
to the center of mass &t for arbitraryR.

Similarly, the expression for the magnetic moment of a
stationary charge distribution at=0, for R=1,

1
mo:—f XoX @o(Xg)X dXg, (22
2 Iy,

is generalized to the case of a moving charge distribution as

1 .
m=§f X Qr(n) ndn. (23
RV,
Herem is the magnetic moment with respect to the center of
mass atX for arbitrary orientatiorR.
Applying Green’s theorem to the integral

jgx(ds- a)=f (xdiva+a)dV, (29
S \%
which for dSL a reduces to
f adx= —f x divadx (25
\% \%
and the equation of continuity
J J
d|v1+—Q—d|v(Qv)+—Q=0, (26)

at

the termsU; are transformedsee the Appendijxinto the
following forms:

Ui=—QX-A(X),
Up=—X-(pV)A,
Us=—A(X)-p,
g LA p . @7
a=—M-Bog o VO’?”iEQR(’?) 7,
Ug= X U a(P
5_QQD( )1 6= (9X p
The total interaction potential enerdy now reads
U=—Q)’(-A(X)—)’(-(pV)A—A(X)-p—m-B
+ Qe+ 22 po 2 A () d
¢ IX p 2 9. RVO7I77| QR n) an.
(28)

distribution to the case of a moving charge distribution asUsing a series of vector identities, the second, third, and

follows:

541 Am. J. Phys., Vol. 68, No. 6, June 2000
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Up+Ug+Ue=(XXP)-(VXA)= S (A-p)—E-p. (29 7=R-Xo= X (Rxo) = X 7. (33

By substituting the relatiofi33) into (23) and using the vec-
The termd(A- p)/dt does not contribute to the equations of tor identity

motion. Therefore, the interaction potential energy of a mov- _ _
ing charge distribution in an electromagnetic fig¢id the X (X 5)= (o n)o=(q ), (34)
linear approximation of potentials(x) and¢(x) by the po-  we find

tentialsA(X) and ¢(X)] takes the form

1 1
U=—QX-A(X)+Qq(X)—E-p—m-B—(pxX) B m= E‘"JRVOQR(”)”Zd”_ EJRVOQR(")“’”COSﬂ”d”'
1 A J (39
20X Jry, 77 Cr(7) A7 B0 \whered is the angle betweem and . We see that the first

term is proportional tas for any ox( 7). However, the sec-

The meanings of the first four terms in this expression are, d term is a more complicated functionef In the special

evident because their forms are known either from the theory,, . ¢ » spherically symmetric charge distribution, the sec-
of a point charge or from the theory of magnetic and electric : .
nd term is also proportional t@, as we now show.

dipoles at rest in an electromagnetic field. The first two term$ . L . . :
represent the interaction energy of a point cha®get X, the For_ this purpose it is convenient to wrlte_th_e vecipin

third is the interaction energy of a dipole at rest, and theSpherlcal coordinates, yvhere th? polar axis 15 taken fo be
fourth is the interaction energy of an intrinsic magnetic mo-2/0ng the angular velocit. In this way we find

ment (which is due to a rotation of a charge distribution 1 - o

centered aX). The fifth term is associated with a motion of m= wa or(m) 774d7;f sinﬂdﬁf de
an electric dipole in a magnetic fielgs distinct from the RVo 0 0
first one which is associated with a motion of a point charge

T 2
in a magnetic field It shows that a moving electrical dipole - ﬂf or(7m) 1;4d77J dﬂf d¢ cosd
. . : 2 0 0
picks up a magnetic dipole momemy=px X.
The interpretation of the last term is not clear because the X sind[ cosdi,+ sind cosei,+sind sinei,],

integral in it is not expressible in terms &f, R, m, or p. It o ) ) _ )
contains second-order powers of and we expect that it wherei,, is the unit vector along the axis andi,, andi,, are
two mutually orthogonal vectors in the plane normalaio

would contribute to quadrupole moments. Therefore, the in- A )
teraction potential energy in the dipole approximation is deAfter integration we get

termined by the first five terms: 2
, . m= w?2 dynt— —f dnn?,
U=—0QX-A(X)+Qe(X)—E-p—m-B—(pxX)-B. (30) @ Wf Cr(7) dny" =5~ | er(7) dnn

As stated at the beginning, our aim is to write the interac4.e.,
tion potential energy14) in the form from which one could
derive the generalized forces using the Lagrangian prescrip-
tion. Neither with the form(30) nor with its dipole approxi-
mation (30') have we reached this goal. This is because thel_
fourth and sixth terms are not written as functions of gener-

4ar .
m=w?J er(n) dnn"=ke. (36)

he constant is related to the gyromagnetic ratipby «

alized (collective coordinatesX and R and/or of the corre- ~ . . . . .

sponding generalized velocities. In the next section we shall 1he Sixth term in(30) is equal to zero in the case of a

solve this problem for a particular charge distribution. spherical charge distribution becausédt) ¢r(#) =0 in this
case.

Therefore, it follows from(14) and(30') that the interac-
tion potential energy of the movingphericalcharge distri-
bution (whosep=0) in an electromagnetic fiel@in the di-
pole approximation is the following function of the
coordinatesX andR and of the angular velocitw:

IV. MAGNETIC MOMENT OF A MOVING MASS
AND CHARGE DISTRIBUTION

It follows from (23) that the magnetic moment of an ex-
tended charged particle, imagined as a charge and mass dis- |, A B
tribution, is associated with the current which is due to the U=~QX-A(X)+Qe(X)~xw-B. (37
particle’s internal motion—joint instantaneous rotation of a The spherical rotator with a magnetic moment propor-

mass and charge distribution centerecKat tional to its angular momentum(= yl w= xkw) was named
Therefore, it seems suitable to express the magnetic mahe “magnetic top” by Barutet al®
ment in terms of the angular velocity of a body. It is The interaction potential energy of the magnetic top with
defined by the motion of the moving frame;, e, e;: moving center of mass contains two parts:
& =ow(t)xXeg(t), k=1,23. (31 U= — QX-A(X) + Qe(X), (383
Now we may express in terms of w, sincé U= — ko-B. (380)
R=6&E=wxaE=wxR. (32 Here U, depends on the CM position and velocity adg,
Therefore, is determined by the internal motion.
542 Am. J. Phys., Vol. 68, No. 6, June 2000 D. Arsenoaiwd M. Boic 542
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Consequently, the Lagrangian of the moving magnetic topt follows from these studi€s’ that the magnetic top is an

is given by appropriate classical model of a particle with spin.
A magnet in the form of a spinning top is called a mag-
L=Lext Lint, (39 netic top by Simonet al® and a levitron by Honé8 and
where Berry!! The magnetic top of Barut al® and the magnetic
top of Simonet al® have in common that the magnetic mo-
mX? , ment and angular momentum point in the same direction.
Lex= Ty = Uex=—— +QX- A(X)=Qe(X), (408 However, the former has a magnetic moment which is due to
the rotation of its charge distribution, whereas the latter pos-
2 sesses at rest an intrinsic magnetic moment, it is uncharged,
Lint=Trot— Uim=7 + Kkw-B. (40b) and it is made of a ferromagnetic material. Its spinning in the

direction of its magnetic moment is induced by an external

Evidently, in a homogeneous field the external and the intertorque.

nal motion of the magnetic top are mutually independent and

may be studied separately. In an inhomogeneous field th@ SUMMARY

internal and external motion are couplédutually depen- '

dend. The integral expressiofil4) for the interaction potential
The classical internal motion of the magnetic top in a ho-energy of a moving charge distribution in an electromagnetic

mogeneous magnetic field was extensively studied by Barifield is transformed into the sum of six terrigq. (30)],

etal’ and Arsenovicet al,” using Euler's angles as the in- ysing the linear approximation of potentia¢x) and ¢(x)

ternal coordlngtes, and by Margt al.® using spinors as the by the potentialsA(X) and ¢(X). (It is assumed that the

internal coordinates. relative positions of masses and charges do not change dur-

_ Thg external motion in a homogeneous electromagnet@ng a motion and that the structure is rigid.

field is the st'andard motion under the Lorentz forpe. . The first five terms have a clear physical meaning and
The equations of the internal motion may be written usingy, i sum(30') represents the interaction potential energy in

any one of the following methodsi) Lagrange’s equations  yhe gipole approximation. The first two terms represent the
for the independent orientation coordinatds) Lagrange’s interaction energy of a point chargeat X, the third is the

equations for systems with constrafimethod of Lagrange interaction energy of a dipole at rest, and the fourth is the

multipliers), (i ) the variational method developed by Rowe . L . L
for the system described by the rotation dyadic—the set ogjzr?gttlﬁg ?:teart?gnogﬁ 2 g:;?;éc drrsetﬁ&i[;gnm;n;%'tm?ﬁz
coordinates which satisfy certain conditiogonstraints fifth one is associated with the motion of an electric dipole in

By choosing Euler’s angleg, y, 9 for three independent > O S : T
orie%tation co%rdinates Bgrﬁi affe applied methoo{pi) and & magnetic fieldas distinct from the first one which is asso-
. ciated with a motion of a point charge in a magnetic field

wrote Lagrange’s equations of motion for the magnetic top: The sixth term contains second-order powers

o Therefore, it would contribute to the quadrupole moments
gi'[e+xcosd]=F,=0, together with other terms which would appear in the second-
order approximation of potentias(x) and ¢(x).
d | . . It is important to note that, in this approach, the magnetic
gt/ [x+ e cosd]=F,=yBlsind- 9, (4)  moment of a particle is associated with an internal current
which is due to a joint internal motiofrotation of a mass
. o ) ] and a charge. The magnetic momentis due to a time-
gt 9t Ixesind=Fy=—yBlsind-y. varying current associated with a rotation of the charge. In
our opinion, this classical model is more appropriate for a
HereF,, F,, andF; are generalized forces associated with(charged particle with spin than the model based otmgac-
Euler's anglesp, x, and ¥: roscopi¢ current loop. The relative motion of a charge and
mass is an important characteristic of the loop.

23

dU; d [ dU;
_ int ( int L a=ed. (42)

90, VI. THE ANSWER TO QUESTION #66

Jq, dt
By choosing the complex components of Cartan's Spinor grom the results in this paper, an answer follows to ques-
for the set of four onentgmon coordinates which satisfy onejjon #66 raised by Griﬁith£“Why is the Hamiltonian of a
constralr;ltées_gl\l/lar:jctettﬁl. applied t_method (ii). Both  magnetic dipole-m-B?” The question was raised because
approac ead fo the same equation the interaction term of a magnetic dipole derived in the field

ds theory (by the reasonintf quoted at the beginning of this
a vSXB (43 article) has a positive sign. Our answer contains two parts.
The first part of our answer is as follows: From the Lor-
for the canonical spin angular momentum, deffhiegd entz force law and from the dipole approximati30') of
the interaction potential energy of an extended charge in mo-
s=lw+ yIB. (44)  tion (14), it follows that the term—m-B, which represents

the interaction energy of the intrinsic magnetic moment in an
electromagnetic field, has a negative sign.

In the field theory, the plus sign arises because the inter-
T=vysXB. (45) action energy is defined by the intedral

The equation(43) of spin motion is the so-called torque
equation’ because on its right-hand side is the torque

543 Am. J. Phys., Vol. 68, No. 6, June 2000 D. Arsenoaiwd M. Boic 543
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1 The internal Hamiltonian may be written in the form
W,.=— | By-Bdx, 46
int Lo f d X ( ) (S_ KB)Z SZ K282
. , : . . . Hn=———=5;~# B+ ——, (50
whereBy is the field of the dipole itself. Using the relations 2l 2l 2|
B=VXA, VXBy=puj, (47  where
the integral(46) is then transformed to M=vSs=m+ ykB (51

1 ] is the canonical magnetic moment. Hetle, contains three
Wint:%f (VXBg)-Adx= f j-Adx. (48 terms: the first is the constant of motiif, and the third is
) ) o constant in the case of a homogeneous time-independent
If we compare the latter integral with the first integrali®)  field. The second term has the same form as the Hamiltonian
we conclude that they differ Only in Sign. Therefore, this of a magnetic d|p0|e in quantum theo@au” tern)_ How-
shows that them-B term, derived in the field theory from ever, we point out thaﬁ in (50) is a canonical magnetic
(46), has + sign and why the-m-B term, derived in me-  moment related to the magnetic momentby the relation
chanics from(14), has— sign. (52).
The second partof our answer to question #66 deals with  The results obtained in this paper, together with the results
the construction of the Hamiltonian from the Lagrangianef Barutet al.® show that the explanation of the linear rela-
(39), of an extended charge in motion. The interaction po-jon between magnetic moment and spin, postulated in quan-

tential energy(30) is dependent both on external and internaltym theory, could be based on the classical electrodynamics
velocities, which means that the Hamiltonian of an extende@f an extended charge in motion.

charge in motion is not equal to the sum of kinetic and po-
tential energy. Its form has to be determined from the ex-
plicit dependence of the interaction energy on velocities and
coordinates. ACKNOWLEDGMENTS
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APPENDIX: COMPACT FORM OF THE POTENTIAL TERMS

The transformations of the termi$ defined in(18) into the forms(27):

Ulz—f Q(x))'(-A(X)dX=—)'(-Af (x) dV=—QX-A(X),
V V

B . A _ - A e dA
Uz—_fVQ(X)X'O.)_Xi(x—x)idX—_jVQ(X)X'(9_Xi(R'Xo)idX——X'&_KJVQ(X)(R'Xo)idX

5. A RJ (Xo)%o d
=—X. — . Xn )X X, =
X VOQO 0)Xp 0Xp

A X (pVIA
- '(9—Xipi—— “(PV)A,

Ug=— fv 0(X)(}—X) - A(X) dx= fvmx)(R-xO)-Am dx=—A(X)- fve<x)<ﬁe-x0> dx
=—A(X)-R-po=—A(X)-p,
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A _ .
fe(x )(x— X) (X X); dx=— fQ(X)(R Xo) - ax(R Xo); dx= % f ndiv(er(n) 7)) dy
RVq
A . _ .
=—-f W er(n) n-grady; + »; div(er(n) n)] dy
(9X| RVO
T 20X J {or(m) 9 n-E)— n(or(m) - E)— nn; div(er(n n)} dy
_IA £ d 1 9A i g
ST ey 2(77><QR(17)77) ”+2ax Rvonm iv(er(m)m dn
_AA c 1(9Af i -
——&—xi-(m>< DTS o Rvormi iv(er(m) n)dny
B A 1 9A f d g
=-—m-rot 29X, RVO’VIiEQR(’?) Uj
B 5 1 9A f P .
=TmBooIx RVO”WiEQR(”) n,

Us= f (0 ¢(X) dx=g(X) f 0(x) dx=Qe(X),
\Y Vv

_ 9% (%=X dx= 7 Rox) dx=2%.. o) dxe 22
Uﬁ—fvg(x)ax(x X) dx jvg(x)aX(R Xg) dXx X fg(x)(R Xg) dx X p.
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DEMONSTRABLE LIES

Since history always involved too many versions and misunderstandings, it had never had
much attraction for T. He preferred the demonstrable truths of mathematics and the demonstrable
lies of quantum physics that sometimes hid stupendous truths.

Gore Vidal, The Smithsonian Institution—A Nou&andom House, New York, 1998. 86.
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