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The phase diagram of a quantum Hall bilayer at total filling ν = 1 contains an incom-
pressible superfluid for small distances d between the layers, as well as the compressible
phase corresponding to two uncoupled Fermi liquids for large d. Using exact diagonal-
ization on the sphere and torus geometry, we investigate a long-standing question of the
nature of the transition between the two regimes, and the possibility for the existence
of a paired phase in the transition region. We find considerable evidence for a direct
transition between the superfluid and the Fermi liquid phase, based in particular on the
behavior of the ground state energy on the sphere (including appropriate finite-size cor-
rections) as a function of d. At the critical distance dC ≈ 1.6ℓB the topological number
(“shift”) of the ground state changes, suggesting that tuning the layer separation d in
experiment likely leads to a direct transition between the superfluid and the Fermi liquid
phase.

Keywords: Fraction quantum Hall effect; quantum Hall bilayer; Chern–Simons theory;
exact diagonalization; superfluid disordering.
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Quantum Hall bilayer (QHB) is a semiconductor structure that consists of two

quantum wells spatially separated by an insulating barrier that is of the same

order of magnitude as the width of each of the wells. When QHB is placed in

the perpendicular magnetic field, adjusted in such a way that that the ratio of the

number of electrons in the system (N) and the magnetic flux quanta (Nφ) is exactly

ν = N/Nφ = 1, remarkable manifestations of quantum-mechanical coherence take

place on the macroscopic scale.1 These interesting effects occur upon varying a

single parameter, d/ℓB, the ratio of the center-to-center distance between the wells
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d to the magnetic length ℓB =
√

~c/eB. Much of the QHB physics has been well

established in the extreme cases when d is (1) much smaller, or (2) much larger

than ℓB.

When d≪ ℓB, i.e. the Coulomb interaction between electrons in the same layer

and in the opposite layers is of about the same magnitude, a good starting point

for the physical description is the Halperin state Ψ111,
2 explicitly defined below in

Eq. (1). The physics contained in Ψ111 is that of exciton binding:1,3 an electron

in one layer and a correlation hole directly opposite to it in the other layer, are

in a coherent quantum-mechanical superposition dictated by the form of the Ψ111

wave function. This exciton description can be a viewpoint of the phenomenon of

superfluidity found in these systems,4 and is closely connected to the concept of

composite bosons (CBs)5–7 that can be used as natural quantum Hall quasiparticles

in the small d/ℓB regime.

On the other hand, when d≫ ℓB we have the case of the decoupled layers and

the ground state (GS) is a product of two Fermi seas, each described by the Rezayi–

Read wave function ΨRR,
8 defined below in Eq. (3). The underlying quasiparticles

in this case are composite fermions (CFs), the usual quasiparticles of the single-layer

quantum Hall physics.9

To address the range of intermediate d, when the system is a disordered su-

perfluid, one may try to capture the basic physics by interpolating between the

two limits described above. In other words, one may describe the physics by using

mixed states of CBs and CFs.10 This is a phenomenological approach in which we

start from the identical underlying electrons, split them into a group of those that

correlate as CBs, and a group of those that correlate as CFs. The wave function

for the superfluid state at small d will involve mainly CBs; the disordering of the

CB superfluid can be viewed as caused by “nucleation” of CF quasiparticles as d is

increased.

In the remainder of this paper, we first introduce and systematically review

the construction of mixed states of CBs and CFs,11,12 paying special emphasis on

the kind of pairing between CFs that might be relevant for the bilayer system to

produce a paired state. After presenting the analytic arguments that motivate the

existence of a paired state in the transition region between superfluid and Fermi

liquid phases, we present the results of exact diagonalization calculations on the

torus and sphere, and conclude by discussing some of their implications.

The basic ingredients for the construction of mixed CB/CF states are the

Halperin 111 state, describing the bilayer ground state for very small distances

d, and the Rezayi–Read wave function that describes the Fermi liquid state in a

single-layer quantum Hall system at ν = 1/2. The 111 state is given by

Ψ111({z↑, z↓}) =
N↑
∏

i<j

(z↑i − z↑j )

N↓
∏

k<l

(z↓k − z↓l )

N↑
∏

m=1

N↓
∏

n=1

(z↑m − z↓n) . (1)
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Here zσ = xσ + iyσ is the complex 2D coordinate of an electron in the layer σ ∈
{↑, ↓} (containing Nσ particles), and we have set the magnetic length ℓB equal to 1,

supressing the spinor part of the wave function and the ubiquitous lowest Landau

level (LLL) Gaussian factors. Because it describes identical electrons, this wave

function is subject to the constraint that there is the same number of magnetic flux

quanta per particle. This translates into the following flux-counting relation

Nφ = N↑ − 1 +N↓ = N↓ − 1 +N↑ , (2)

which necessitates N↑ = N↓ = N/2.

On the other hand, the Rezayi–Read CF-sea state8 at ν = 1/2 is given by

ΨRR(z) = PLLL F(z, z)
∏

i<j

(zi − zj)
2 , (3)

where F stands for the Slater determinant of free waves. Because F contains the

terms involving z, we need to project those by PLLL to obtain a holomorphic LLL

wave function. The wave function for two decoupled layers is then simply given by

the product ΨRR(z↑)×ΨRR(z↓).

Possible corrections to the 111 state, resulting from increasing the distance d

that leads to superfluid disordering, have been the subject of numerous previous

works in the literature. For example, an approach based on the traditional Chern–

Simons theory7 of CBs in the RPA approximation finds the following correction to

Ψ111:
13

Ψph = exp

{

−1

2

∑

k

√

VS(k)
ρ/m

|k| ρS
k
ρS−k

}

Ψ111 , (4)

where ρSk ≡ ρ↑
k
− ρ↓

k
is the difference of the densities of two layers, VS(k) =

V↑↑(k)−V↑↓(k)
2 is the interaction in the neutral channel, m is the electron mass and ρ̄

is the uniform total density. As usual, the bilayer problem at ν = 1 has been decom-

posed into the charge and neutral channel, and the latter reduces to the problem

of an ordinary superfluid with the phonon contribution, hence our notation for the

correction Ψph. In the small d limit VS(k) = πd, and we can expand the expression

Ψph as

Ψph = Ψ111 −
(

∑

k

c
√
d

|k| ρ
S
−k
ρS
k

)

Ψ111 + · · · , (5)

where c is a positive constant. The terms after the first one represent corrections,

in the order of importance, to the Ψ111 ansatz as d increases. The form of the

correction is fixed by the basic phenomenology and sum rules for a superfluid in

two dimensions.14

The previous correction can be recovered as a special case of the mixed CB-CF

ansatz, as we now show. For small distances d, it was argued in Refs. 10–12 that the

low-energy physics of the bilayer should be captured by the following mixed state
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of CBs and CFs:

Ψ1 = A↑A↓

{

Ψ111(z↑, z↓)ΨRR(w↑)ΨRR(w↓)
∏

i,j

(zi↑ − wj↑)
∏

k,l

(zk↑ − wl↓)

×
∏

p,q

(zi↓ − wq↑)
∏

m,n

(zm↓ − wn↓)

}

, (6)

where Aσ stands for the anti-symmetrization in the layer σ, and we omitted the

projection to the LLL. By using the expressions for the densities of electrons in

each layer, ρσ(η) =
∑

i δ
2(η− zσi )+

∑

i δ
2(η−wσ

i ), we can further rewrite the wave

function in the following way:12

Ψ1 =

∫

∏

n∈CF

d2ηnσ

{

∏

k<l(ηk↑ − ηl↑)
∏

p<q(ηp↓ − ηq↓)
∏

i,j(ηi↑ − ηj↓)
F(η↑)

×F(η↓)× ρ↑(η1↑) · · · ρ↓(ηn↓)Ψ111(z↑, z↓)

}

, (7)

where n is the total number of electrons that correlate as CFs. This expression is

exactly equivalent to Eq. (6) (up to an unimportant numerical factor).

Let us compare the first phonon corrections in both approaches to find out

which possibilities for the pairing are allowed amongst the most simple choices for

the (weak) pairing function. Based on the usual Chern–Simons approach, the first

phonon correction is ∼∑
k

1
|k|ρ

↑
k
ρ↓−k

. On the other hand, the mixed wave function

including pairing suggests the following simplest correction when there are two CFs:
∫

d2η1↑

∫

d2η2↓
1

(η1↑ − η2↓)
g(η1↑ − η2↓)ρ

↑(η1↑)ρ
↓(η2↓) , (8)

where g is the pairing function. If we choose g(z) = 1/z, we obtain no correction

whatsoever to the 111 state. Among other simple choices, the next candidate for

the pairing function could be g(z) =
√

z/z̄ (z̄ is the complex conjugate of z). When

substituted in Eq. (8), this reduces to the form of the first phonon contribution in

the long-distance limit with the 1
|k| singularity, Eq. (5). Thus g(z) =

√

z/z̄ accom-

modates the usual (on the level of RPA) superfluid description given in Eq. (5). It

can be shown that g(z) = const. i.e. no pairing, also produces a trivial correction;

see Table 1 caption. We can continue exploring the simple choices for pairing, e.g.

the next possibility in the order of weakness of the pairing that retains the same

angular momentum for the pairing as g(z) =
√

z/z̄ is g(z) = 1/z̄. The phonon

contribution in this case turns out to be ∼ ∑

k
ln(|k|ℓB)ρ↑kρ

↓
−k

.12 Our results can

be summarized as in Table 1.

Having identified some simple pairing functions allowed in the bilayer system

starting from Ψ1 and at small d/ℓB, we can ask whether any of those may lead to

a paired phase in the intermediate range of d/ℓB and can we find a simple wave

function to describe this phase. If the translation symmetry remains unbroken as we
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Table 1. Phonon corrections for different choices of the pairing

function. The functions f1, f2 and f3 define the weight of each cor-
rection in terms of the bilayer distance d. In the first case (no pairing)

the correction is proportional to
∑

k

1
(kx+iky)

ρ↑
k
ρ↓
−k

, but we expect

that with no constraint on the number of CFs [as in Eqs. (4) and (5)],
this will correspond to

∑

k

1
(kx+iky)

ρS
k
ρS
−k

i.e. zero (no correction)

due to the anti-symmetry under k → −k exchange.

g(z) = const. (no pairing)
∑

k
f1(d)

1

(kx + iky)
ρ↑
k
ρ↓
−k

g(z) = 1/z no correction when multiplies Ψ111

g(z) =
√

z/z̄
∑

k
f2(d)

1

|k|
ρ↑
k
ρ↓
−k

g(z) = 1/z̄
∑

k
f3(d) ln(|k|ℓB)ρ↑

k
ρ↓
−k

increase d, one of the viable candidates is the mixed CB/CF wave function with the

pairing g(z) = 1/z̄. This pairing has the same angular momentum as g(z) =
√

z/z̄,

but it also has an additional amplitude factor to it. If we take the choice g(z) = 1/z̄

and examine the final form of the mixed state when there are no CBs, we are lead

to its following forms (see Ref. 12 for details),

Ψ2 = det

(

1

z̄i↑ − z̄j↓

)

∏

i<j

(zi↑ − zj↑)
2
∏

k<l

(zk↓ − zl↓)
2

= det

(

1

z̄i↑ − z̄j↓

)

det

(

1

zk↑ − zl↓

)

Ψ111 , (9)

where we used the Cauchy determinant identity in going from the first to the second

line. The neutral part of Ψ2 (i.e. the two determinants which do not carry a net flux

through the system as Ψ111 does) can be viewed as a correlator of vertex operators

of a single nonchiral bosonic field. According to Ref. 15, CFT correlators not only

describe quantum Hall ground state wave functions, but can also be used to find

out about the excitation spectrum and connect its edge and bulk theories. Using

CFT analogy, one can construct the neutral excitations for Ψ2 in terms of the

vertex operators that multiply the ground state wave function (see Ref. 12 for the

precise form of these operators). These vertex operators are parametrized by the

exponents β1 and β2; if the low-lying spectrum were consisting only of β1 = 1
2 and

β2 = 1
2 quasiparticle excitations, our system would be described by the so-called

BF Chern–Simons theory or the theory of the 2D superconductor.16 Combining

the analysis with the charge part (Ψ111) in which only charge-1 excitations are

allowed (half-flux quantum excitations are strongly confined17), we arrive at the

conclusion that the degeneracy of the system’s ground state on the torus must be

four.16,18 However, the vertex operators yield a single-valued expression acting on

the ground state also for any real β1, including β1 = 0 (no excitation), and therefore

one can expect a gapless branch of excitations parametrized by a continuum of β1,
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and compressible (gapless) behavior of the system in the neutral sector (the charge

channel, being described by Ψ111, is incompressible).

In the following, we explore the prospects for the paired phase in finite-size sys-

tems using exact diagonalization for different choices of boundary conditions. There

have been many numerical studies of the quantum Hall bilayer at ν = 1.10,19–27

In particular, elaborate studies in Refs. 10 and 20 demonstrated the relevance of

CB/CF constructions for the clean systems (no impurities). Trial wave functions of

this kind describe a continuous crossover between the CB superfluid and the two

decoupled CF liquids via a possible intermediate p-wave paired phase that in our

analysis corresponds to Ψ2, Eq. (9). Here we would like to focus on addressing the

question whether such a phase has a clear signature in small finite systems that can

be studied numerically. This question is relevant in light of the new experimental

results which indicate that the CF liquid phase in the usual samples is partially

spin-polarized.28 Since the 111 state is a QH ferromagnet, the experiments appear

to preclude the possibility of a smooth crossover and instead suggest a first-order

transition .29 For larger Zeeman fields, the transition becomes smooth and the

critical point drifts to larger values of d.28,30

The topological content of Ψ2 is the four-fold ground state degeneracy on the

torus. In Ref. 20 this degeneracy was analyzed as a function of d, and different

shapes of the torus unit cell, but no definite conclusion was drawn due to the strong

finite-size effects. We corroborate this finding by diagonalizing a larger system of

N = 16 particles, Fig. 1. N electrons are placed on the surface of a torus i.e. we

impose periodic boundary conditions in the presence of Nφ = N/ν = N quanta of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

∆E
 [e

2 /ε
l B

]

d/lB

(8,8)
(8,0)
(0,8)
(0,0)

Fig. 1. (Color online) Energy spectrum of the quantum Hall bilayer at total filling ν = 1 on the
torus. The system contains N = 16 electrons in a rectangular domain a× b with the aspect ratio
a/b = 0.99. Spectrum is plotted relative to the ground state at each d/ℓB , and special symbols
denote the momentum sectors where the paired phase is expected to be degenerate.
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the perpendicular magnetic field. The interaction between the electrons in the same

layer is given by V ↑↑
c (r) = e2/ǫr and between those in opposite layers V ↑↓

c (r) =

e2/ǫ
√
r2 + d2. Note that, for simplicity, in numerical calculations we consider a

fixed number of electrons in each layer (negligible interlayer tunneling). However,

the CF/CB construction in Eq. (6) can easily accommodate the charge imbalance

by a redistribution of CBs, which was also revealed in experiments. On the other

hand, it can be shown12 that compressible states cannot easily accommodate such

a redistribution.

The bilayer Hamiltonian is numerically diagonalized for each d/ℓB, and eigen-

energies are plotted in Fig. 1. Four seemingly degenerate states can be identified in

the lowest-lying spectrum starting from d = 1.4ℓB, but the gap decreases smoothly

with the increase of d, which suggests that these states belong to the compressible

CF liquid. Two decoupled CF liquids are allowed to display a four-fold degeneracy

due to their center-of-mass motion.31 This degeneracy, contrary to the one of Ψ2,

has no topological content, but in a finite system it may nonetheless persist for some

variation of the aspect ratio or other parameters i.e. it may appear quasi-robust.

However, since the gap of the system smoothly decreases as a function of d, it is

unlikely that there is a third phase, distinct from the 111 state and the decoupled

CF liquids.

We can also change the boundary condition and place N electrons on the surface

of a sphere32 with a magnetic monopole in the center. In order to probe a given

many-body state ψ at the filling factor ν, the number of flux quanta generated by

the monopole has to be adjusted in such a way that Nφ = N/ν − S, where S is

the shift, a topological number that characterizes each ψ. Since the Hilbert space is

defined by (N,Nφ), two different states ψ1 and ψ2, which describe the same filling

factor ν1 = ν2 = ν, may be realized in different Hilbert spaces if S1 6= S2. As an

example, take Ψ̃2 which is characterized by the shift S = 1, like the 111 state,

whereas CF liquid state occurs at S = 2. Therefore, one cannot directly compare

e.g. the overlaps of the exact ground state with the 111 state and CF liquids for a

fixed N . Instead, one must perform an extrapolation to the thermodynamic limit to

discriminate between phases. Overlaps are not useful from this point of view because

they would extrapolate to zero in the thermodynamic limit, however ground state

energy is an example of a quantity that is meaningful in this sense. It defines the

transition point dC between the 111 state and CF liquids as the value of d above

which the ground state energy is lower at the shift S = 2 than at S = 1. We estimate

dC from the crossing point of the ground state energies for the two shifts, S = 1

and 2, for various system sizes N = 6 − 16, Fig. 2. In doing so, it is essential to

include the background charge correction and rescale the magnetic length in order

to carefully compare the energies of the systems living on two slightly different

FQH spheres.33 It can be shown33 that beyond d ∼ 1.5ℓB, which we identified as

the critical value for the appearance of the four-fold degeneracy on the torus, one

should no longer describe the system at the shift of S = 1. Therefore, it is likely

that the 111 phase goes directly into the CF liquids even at this finite value of d,
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 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0  0.04  0.08  0.12  0.16  0.2

d C
/l B

1/N

Fig. 2. Critical bilayer distance dC defined as the crossing point of the ground state energies at
shifts S = 1 and S = 2 on the sphere. Linear extrapolation for N → ∞ yields dC ∼ 1.6ℓB and
does not involve the smallest system N = 6 which shows strong finite-size effects.

and not via the p-wave paired state. Nevertheless, the two energies remain very

close to each other and the paired wave function such as Ψ̃2 is not conclusively

ruled out as a candidate for the description of the system. It may either describe

an excited state of the CF liquid or a phase with a tiny gap that would be hard to

discern from an ordinary compressible state in the experiment.

Our estimate of critical dC ∼ 1.6ℓB roughly agrees with that obtained by com-

plementary methods in the literature, e.g. in Ref. 21 where dC was estimated by

measuring the change in the pseudospin expectation value at a fixed shift S = 1

and zero tunneling. Although the obtained dC is in reasonable agreement with the

experiments, it does not imply that we have proved a direct transition between the

two shifts for the ground state (S = 1 versus S = 2). In order to do that, one

would want, for each fixed d, to diagonalize the Hamiltonian for all the available

system sizes and make the thermodynamic extrapolation of the energies (with the

appropriate corrections) as a function of 1/N . While this works nicely for the shift

of S = 1, in the case of CF shift S = 2 the ground state energy has a nontrivial

dependence on 1/N which reflects the shell-filling effect33 The dependence of en-

ergy on 1/N is somewhat similar to that reported in Ref. 34 for the single layer at

S = 2, except that the energy minima occur for N/2 = n2, n = 2, 3, . . . . In between

the minima, the energy has a local maximum. Therefore, in order to perform a reli-

able extrapolation, a few minima/maxima would be required, but since we are only

able to diagonalize up to N = 16, that gives us a single minimum n = 2. However,

the fact that for all the available systems we consistently obtain lower ground state

energy at S = 2 for sufficiently large d strongly suggests that the transition involves

a change in shift at finite d.
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Disordering of the Correlated State of the Quantum Hall Bilayer

In conclusion, we discussed how the ground state of the quantum Hall bilayer

at ν = 1 evolves with the changing distance between the layers in the light of

trial wave functions describing the mixed states of CBs and CFs, as well as using

numerical diagonalization on the sphere and torus. The study of the ground state

energy on the sphere gives considerable support for the direct transition between

superfluid and Fermi liquid phases. Paired state may only exist in the regions of

the phase diagram where the interaction is significantly different from the pure

Coulomb repulsion studied in this work.
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