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We investigate the structure of gapless edge modes propagating at the boundary of some
fractional quantum Hall states. We show how to deduce explicit trial wavefunctions from
the knowledge of the effective theory governing the edge modes. In general, quantum
Hall states have many edge states. Here, we discuss the case of fractions having only
two such modes. The case of spin-polarized and spin-singlet states at filling fraction
ν = 2/5 is considered. We give an explicit description of the decoupled charged and
neutral modes. Then we discuss the situation involving negative flux acting on the
composite fermions. This happens notably for the filling factor ν = 2/3 which supports
two counterpropagating modes. Microscopic wavefunctions for spin-polarized and spin-
singlet states at this filling factor are given. Finally, we present an analysis of the edge
structure of a non-Abelian state involving also negative flux. Counterpropagating modes
involve, in all cases, explicit derivative operators diminishing the angular momentum of
the system.

Keywords: Fractional quantum Hall states; edge modes; composite fermions.

1. Introduction

Electrons confined in a plane and subjected to a quantizing magnetic field

may display under appropriate circumstances, the fractional quantum Hall effect

(FQHE). These FQHE states are gapped liquids without long-range order with

unconventional properties like fractionally charged quasiparticle excitations. Our

understanding of this phenomenon is largely based on explicit first-quantized many-

body wavefunctions. Historically, the first of these wavefunctions was introduced

by Laughlin1 to describe electrons when the magnetic field is tuned so that the

lowest Landau level (LLL) has a 1/3 filling. It was soon discovered that these liq-

uids also form for other filling fractions, including the sequence of filling factors

ν = p/(2p + 1) which is experimentally prominent. Some of these states can be
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described accurately in the framework of so-called composite fermions (CF).2 In

this scheme, one considers that an even number 2p of fictitious flux tubes is at-

tached to each electron, leading to a composite object called a CF. This implies

that the CF now feel a reduced flux which is equal to Beff = B − 2pnφ0 where

φ0 = hc/e is the flux quantum and n the electron density. Since the magnetic field

is reduced, the degeneracy of the Landau levels also changes and there are magic

fillings at which an integer number of Landau levels of CFs are filled. We then

expect formation of a FQHE state. This heuristic scheme allows construction of

highly precise microscopic wavefunctions for many of the quantum Hall states.3–5

It also nicely explains why there is a compressible state at filling ν = 1/2 where

Beff = 0 and the ground state is essentially a Fermi sea of CFs (albeit interacting).

The simple CF states, however, do not explain all FQHE states observed so far.

The most studied exception is the fraction ν = 5/2 observed in the second orbital

Landau level. Due to the energy scales of the problem it is reasonable to write this

fraction as ν = 2+1/2 and to consider that there is an essentially inert background

of electrons fully occupying the LLL with filling ν = 2 and, on top of it, a half-filled

Landau level with interactions between electrons renormalized by the presence of

the background. So while this is again a half-filled Landau level with zero effective

magnetic field acting upon the CFs, the interaction has been changed with respect

to the LLL case. This change of interaction is observed to destroy the CF Fermi

sea which is an apt description of ν = 1/2 in the LLL and lead to formation of

an incompressible state which is of a different kind of those already observed. This

picture assumes complete spin polarization of electrons which seems to be the case

at ν = 5/2. The best wavefunction candidate to describe this new state so far is the

so-called Moore–Read Pfaffian state.6,7 This is a microscopic wavefunction that in-

cludes some kind of pairing and that has been constructed from correlation functions

of operators that belong to a simple two-dimensional conformal field theory. Recent

experiments have given evidence for many new fractions that do not fit easily in

existing CF scheme.8,9 These include filling factors ν = 4/11, 5/13, 4/13, 6/17, 5/17

and there is some weak evidence for some even-denominator states at ν = 3/10 and

3/8. The state at filling 3/8 is also observed in the second orbital Landau level,

i.e., at ν = 2 + 3/8. When the filling factor is an odd-denominator fraction it is

plausible to argue that a hierarchical mechanism à la Halperin–Haldane is at work.

For example, the filling ν = 4/11 corresponds to an effective filling factor 1+1/3 for

CFs and the pseudo-Landau level at filling 1/3 may also form a conventional Laugh-

lin liquid. However, as in all hierarchical constructions for fermionic constituents,

there is no room for even-denominator states.

There is an interesting family of wavefunctions generalizing the Pfaffian state

that are called the Read–Rezayi states.10,11 When written for elementary bosonic

particles, they are given by an explicit polynomial that vanishes when k + 1 par-

ticles are at the same point in space. For k = 1, one finds simply the Laughlin

wavefunction for bosons at ν = 1/2 for k = 2, one has the (bosonic) Moore–Read
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Pfaffian state with filling factor ν = 1. Other members of this series have ν = k/2.

Multiplication by an antisymmetric Jastrow factor leads to fermionic candidate

states at ν = k/(k + 2). If we allow an arbitrary odd power M of the Jastrow

factor, this can be extended to a family of states at ν = k/(Mk + 2). It has been

noted12,13 that such states may be candidates even in the case where the effective

CF flux Beff is negative. This leads then to a generalized family of candidate states

at ν = k/(3k ± 2) which, surprisingly, includes all the new fractions. There is even

some limited evidence from numerical diagonalization of small systems of electrons

that these states have to do with the true ground state of electrons in the LLL.

While these new candidates are given by explicit formulas, there are some techni-

calities that prevent immediate analysis. First, the formulas involve an extensive

number of derivatives due to a projection onto the LLL, rendering analytical ma-

nipulations difficult beyond N = 6 particles. Then there is no Hamiltonian whose

ground state reproduces these wavefunctions, contrary to the Read–Rezayi family.

This precludes straightforward counting of quasiparticles states or edge modes. It is

known that the effective theory describing the low-energy physics of a given quan-

tum Hall state is encoded into the edge mode structure. For a generic hierarchical

state this edge structure is intricate and involves several fields. However, we need

to understand the edge structure in order to find this effective theory.

In this paper, we construct explicit wavefunctions describing the edge struc-

ture of FQHE states involving negative flux in the CF sense. In the case of the

Laughlin state, it is well-known that the one-quasihole wavefunction can be used

as the generating function for the edge modes. We use a similar construction for

the conventional fully spin-polarized CF state at filling ν = 2/5. The two kinds

of quasiholes leads then to two copropagating edge modes. There is also a similar

picture in the case of the spin-singlet state which can be constructed also at the

same filling by coupling spin-1/2 quasiholes edge modes. The simplest example of

a state with negative flux is the fraction ν = 2/3. While it can be considered as

the particle–hole symmetric of the Laughlin state at ν = 1/3, it can also be viewed

as two filled pseudo Landau levels of CF in a negative effective field. Wavefunc-

tions constructed along this line of thought are as successful as those with positive

flux.14 We give an explicit construction of the two counterpropagating modes from

a quasihole construction. The edge modes that propagate in the “wrong” direction

involve derivative operators instead of the symmetric polynomials that generate the

global charge mode. We next apply this construction to the simplest non-Abelian

state with negative flux which a Pfaffian state with bosonic filling ν = 1, but has a

relation between flux and number of particles different from the conventional Pfaf-

fian state. The edge theory is now given by a bosonic mode — the charge mode —

and a Majorana fermion that moves in the opposite direction.

In Sec. 2, we discuss the appearance of negative flux in the CF framework.

Section 3 is devoted to the study of Abelian states with positive CF flux at filling

factor ν = 2/5, both spin-polarized and spin-singlet. In Sec. 4, we discuss the
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simplest Abelian state with negative flux, the fraction ν = 2/3. Then we apply the

formalism developed in this section to the case of the Pfaffian with positive and

negative flux state in Sec. 5. Our conclusions are given in Sec. 6.

2. Composite Fermions and Negative Flux

In this section, we discuss the appearance of negative flux states within the CF

scheme. We consider states of two-dimensional electrons in the LLL. If we use the

symmetric gauge, then the one-body orbitals are given by:

φm(z) =
1√

2πm!2m
e−|z|2/4 , (1)

where z = x + iy is the complex coordinate in the plane and the positive integer

m gives the angular momentum of the state: Lz = m~ (we have set the magnetic

length to unity). A general N -body LLL quantum state can thus be written as:

Ψ(z1, . . . , zN ) = f(z1, . . . , zN )e−
∑

i
|zi|

2/4 . (2)

In the remainder of the paper, we will always omit the (universal) exponential

factor. In an arbitrary Landau level, the one-body eigenstates now involve both z

and z∗. A completely filled LLL state, ν = 1, is the Slater determinant obtained

by filling all orbitals, Eq. (1), up to some maximum m value. This (Vandermonde)

determinant has the following closed form:

Ψν=1({zi}) =
∏

i<j

(zi − zj) . (3)

This special antisymmetric product will be referred to as a Jastrow factor in the

paper. In the CF construction,2,5 since CFs feel a reduced flux they occupy higher

Landau levels. Hence a generic CF wavefunction is:

ΨCF = PLLL







∏

i<j

(zi − zj)
2sχν∗







. (4)

In this equation, PLLL is the LLL projector, and
∏

i<j(zi−zj)
2s, 2s an even integer,

is the Jastrow factor that describes the flux attachment procedure. The filling factor

if the CF state is then 1/ν = 2s+ 1/ν∗. When we have ν∗ = p an integer number

of pseudo-Landau levels then χp is just a Slater determinant of filled orbitals up

to the pth Landau level. This leads to candidate wavefunctions for the prominent

series of incompressible states at ν = p/(2sp+1). The effective magnetic field acting

on the CF is then Beff = B − 2spnφ0. If we fix integers s and p it is clear that

one can have negative flux acting upon the CFs. For example, the simplest case is

s = 1 (we are thus dealing with 2CFs in the notation of Jain5) and p = 2, i.e., at

filling factor ν = 2/3. In the CF formalism there is nothing that prevents the use

of wavefunctions χν∗ with negative flux since they are simply given by the complex
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conjugate of those of positive flux χν∗ = χ∗
ν . Note that in the case of ν = 2/3 there

is no necessity of using the negative flux CF wavefunction since ν = 2/3 can also

be viewed as the particle–hole conjugate of the positive flux state at ν = 1/3. In

fact, both approaches, negative flux or particle–hole symmetry, give equally good

wavefunctions.14

Finally, we note that negative flux constructions also appear in multicomponent

systems. Some convenient states with two components are those introduced15 by

Halperin:

Ψmm′n =
∏

i,j∈A

(zi − zj)
m

∏

k,l∈B

(zk − zl)
m′

∏

a∈A,b∈B

(za − zb)
n , (5)

where the respective two-component indices belong to subsets A and B. This gives

spin-polarized states. Concerning possible spin-singlet quantum Hall states, we note

that there is evidence for an incompressible state at ν = 2/3 in the vanishing-

Zeeman-splitting limit.16,17 Numerical studies18 are in agreement with a spin-singlet

ground state for which the most prominent candidate is a state19 with negative flux

attachment:

Ψ
(S=0)
2/3 = PLLL







∏

i<j

(z∗i↑ − z∗j↑)
∏

k<l

(z∗k↓ − z∗l↓)
∏

p<q

(zp − zq)
2







, (6)

where p, q indices run over both spin values and we have omitted the spin part of

the wavefunction.

3. Abelian States with Positive Flux

In this section, we explain how the consistent description of the edge of negative

flux Abelian states requires the inclusion of edge states with derivative operators.

Besides Abelian one-component states, we will consider spin-singlet, i.e., multi-

component states for which we will explicitly demonstrate that the existence of

derivative operators in the neutral sector is still compatible with the charge —

neutral sector separation that is expected and exists on the edge of a fractional

quantum Hall system. This will facilitate our discussion and conclusions on the

nature of non-Abelian negative flux states, which we will consider in the following

section using their multicomponent formulation.

3.1. Laughlin case

For N fully polarized fermions at filling 1/m the physics of the FQHE ground state

can be captured by the Laughlin wavefunction:

ΨL({zi}) =
∏

i<j

(zi − zj)
m , (7)
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where m is an odd integer for antisymmetry and i, j = 1, . . . , N . Above this ground

state one finds gapped excitations including charged quasiparticles. The quasihole

excitation is given by the following formula:

Ψqh({zi};w) =
N
∏

i=1

(zi − w)ΨL , (8)

where w is the complex coordinate corresponding to the spatial location of the

quasihole. One should think of Eq. (8) as a coherent state of a quasihole. This

coherent state can be expanded as a superposition of definite angular momentum

states:

Ψqh({zi};w) =
N
∑

n=0

(−w)N−nsnΨL({zi}) , (9)

sn =
∑

i1<···<in

zi1 · · · zin , (10)

where sn are elementary symmetric polynomial of degree n. It is known20 that the

edge states are precisely given by the products snΨL;n = 1, 2, . . . . This means

that the quasihole wavefunction, Eq. (8), can be considered as a generating func-

tion for the edge states. Multiple quasihole constructions generate all combinations

(products) of symmetric polynomials, which correspond to all possible edge states.

They also emerge from the single boson effective description of the edge of the

Laughlin state.20 Since ΨL is the unique highest density zero-energy state of the

hard-core interaction with interactions only for relative angular momentum unity

between electrons (for m = 3), these edge states are also zero-energy states. They

will smoothly transform in a low-lying manifold of states in the presence of realistic

interactions, provided the Laughlin-like physics is preserved.

3.2. The spin-singlet CF state at filling ν = 2/5

Next in complexity, we consider the CF state which is spin-singlet for filling ν =

2/5. We can fill the pseudo-LLL of the CFs by spin-singlet pairs only. Since we

accommodate twice as many electrons as in the polarized construction, we obtain

a global spin-singlet state at total filling ν = 2/5. If we only write the orbital part

of the wavefunction, it is given by:

ΨS=0
2/5 =

∏

i<j

(zi↑ − zj↑)
3
∏

k<l

(zk↓ − zl↓)
3
∏

p<q

(zp↑ − zq↓)
2 . (11)

This is a multicomponent Halperin (332) state in the notation introduced in Sec. 2.

With the spin degree of freedom, it is clear that we can now have two simple

generalizations of the quasihole:

Ψσ
qh =

N/2
∏

i

(ziσ − w)ΨS=0
2/5 , (12)
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where σ =↑ or σ =↓. Each wavefunction generates a set (ring) of symmetric poly-

nomials that we note sσn defined as in Eq. (10). The two sets describe the excita-

tions of two chiral bosons on the edge of the system. For each pair of symmetric

polynomials of degree n: {s↑n, s↓n} we can define charge and neutral superpositions:

{scn = s↑n + s↓n, s
s
n = s↑n − s↓n}, which are in one-to-one correspondence with two-

boson states that describe charge and neutral excitations on the boundary of the

spin-singlet system. This construction has been introduced first by Balatsky and

Stone.21

Let us now consider the case of two quasiholes of opposite spin at locations w1

and w2. The wavefunction involves a global factor given by:

Ψ2qh =
∏

i

(zi↑ − w1)
∏

k

(zk↓ − w2)×ΨS=0
2/5 . (13)

If we expand the two-quasihole factor we find:

∏

i

(zi↑ − w1)
∏

k

(zk↓ − w2)

=
∑

m

s↑mw
N/2−m
1

∑

n

s↓nw
N/2−m
2

=
1

4

∑

m,n

(s↑ms↓n + s↓ms↑n)(w
N/2−m
1 w

N/2−n
2 + w

N/2−m
2 w

N/2−n
1 )

+
1

4

∑

m,n

(s↑ms↓n − s↓ms↑n)(w
N/2−m
1 w

N/2−n
2 − w

N/2−m
2 w

N/2−n
1 ) . (14)

We thus have a sum of two kinds of superpositions of angular momentum eigenstates

of w’s, each with a definite symmetry under the coordinate exchange w1 ↔ w2.

Quasiholes in the case of the spin-singlet state at ν = 2/5 can be considered as

spin-1/2 fermions.21,22 Therefore, the first superposition is a spin-singlet (S = 0),

because it is symmetric under exchange and the second superposition is a triplet

(S = 1) state with Sz = 0 as it is antisymmetric under exchange.

The important point is that the spin-singlet superposition:

∏

i

(zi↑ − w1)
∏

k

(zk↓ − w2) + (w1 ↔ w2)

=
1

2

∑

m,n

(s↑ms↓n + s↓ms↑n)(w
N/2−m
1 w

N/2−n
2 + w

N/2−m
2 w

N/2−n
1 ) , (15)

generates only edge states of the charge sector exactly as a single Laughlin (spinless)

quasihole. Indeed as we take w1 = w2 in Eq. (14) the coefficients in terms of z’s do

not change — they are the same as those that we get in the expansion of a single

spinless quasihole that generates edge states in the charge sector. Therefore, the
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family of quantities:

S(w1, w2) =
∏

i

(zi↑ − w1)
∏

k

(zk↓ − w2) + (w1 ↔ w2) , (16)

may be used as generators of the charge sector. In the case of four quasiholes we

can use again:

S(4)(w1, w2, w3, w4) = S(w1, w2)S(w3, w4)− S(w1, w4)S(w3, w2) , (17)

as generators of the edge charge sector. This is similar to the spin-singlet construc-

tion of the BCS state or in general in the case of a many-body spin-singlet state

built out of spin-singlet pairs. Strictly speaking, in the case of the Abelian state at

ν = 2/5, we do not need antisymmetrization as in Eq. (17) to generate edge states,

but to keep the discussion general and applicable to the cases that we will discuss

later, we emphasize that the charge sector can be generated through spin-singlet

(S = 0) constructions of quasiholes that are made of collections of spin-singlet

pairs.

The two kinds of states that appear in Eq. (14) are in fact orthogonal to

each other. Therefore, the associated symmetric polynomials: (s↑ms↓n + s↓ms↑n) [resp.

(s↑ms↓n − s↓ms↑n)] can be expressed through scm(resp. ssm) only, because they belong

to charge (neutral) sector. The superposition that is antisymmetric in the quasihole

coordinate exchange:

T (w1, w2) =
∏

i

(zi↑ − w1)
∏

i

(zi↓ − w2)− (w1 ↔ w2), (18)

[the last line in Eq. (14)], creates triplet (S = 1) excitations that change the spin

number of the ground state and thus generate edge states that belong to the neutral

sector. Therefore, we infer that all possible collections of triplet pairs generate the

neutral sector. For example, in the case of four quasiholes we can use the following

combination:

T (4)(w1, w2, w3, w4) = T (w1, w2)T (w3, w4)− T (w1, w4)T (w3, w2) , (19)

that maximizes the spin of four quasihole construction to Smax = 2.

The important conclusion is that the edge states of the neutral sector of ν = 2/5

state and, in fact, of any two-component spin-singlet state can be generated through

maximum spin superpositions of coherent states of spin-1/2 quasiholes.

3.3. The spin-polarized CF state at ν = 2/5

In the case of the Laughlin state the deg modes are exact zero-energy eigenstates

of the special hard-core pseudopotential for which the Laughlin itself is the densest

zero-energy state. But in the case of Jain’s states at ν = p/(2p+ 1); p > 0 the CF

wavefunctions are not unique zero-energy ground states of special Hamiltonians.

Nevertheless, we expect that the quasihole constructions will still lead to generators
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of edge states. For the spin-polarized CF state at ν = 2/5, Jain state can be written

as:

Ψ2/5 = PLLL







∏

i<j

(zi − zj)
2 · χ2







, (20)

where χ2 represents the Slater determinant of two filled pseudo-Landau levels:

χ2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

z1 z2 · · · zN
...

...
...

z
N/2
1 z

N/2
2 · · · z

N/2
N

z∗1 z∗2 · · · z∗N

z∗1z1 z∗2z2 · · · z∗NzN
...

...
...

z∗1z
N/2
1 z∗2z

N/2
2 · · · z∗Nz

N/2
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

As in the Laughlin case, we can now construct two kinds of quasiholes, w1 and w2

by modifying the determinant in the following way:

Ψ2qh(w1, w2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(z1 − w1) (z2 − w1) · · · (zN − w1)

(z1 − w1)z1 (z2 − w1)z2 · · · (zN − w1)zN
...

...
...

(z1 − w1)z
N/2
1 (z2 − w1)z

N/2
2 · · · (zN − w1)z

N/2
N

(z1 − w2)z
∗
1 (z2 − w2)z

∗
2 · · · (zN − w2)z

∗
N

(z1 − w2)z
∗
1z1 (z2 − w2)z

∗
2z2 · · · (zN − w2)z

∗
NzN

...
...

...

(z1 − w2)z
∗
1z

N/2
1 (z2 − w2)z

∗
2z

N/2
2 · · · (zN − w2)z

∗
Nz

N/2
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(21)

These two kinds of quasiholes correspond to the two possibilities to create a hole

in an empty shell in the CF scheme: we can make a hole either in the pseudo-

LLL or in the first excited orbital pseudo-LL. When w1 = w2 = w we recover the

ordinary Laughlin quasihole construction: one can factor out
∏

i(zi−w) in front of

the ground state in Eq. (20).

The CF state at ν = 2/5 can be viewed as a state at integer filling factor, ν = 2,

of CFs. It is then natural to assign a pseudospin degree of freedom to CFs; those

in the pseudo-LLL and those in the second pseudo-LL carry distinct values of Sz ,

the pseudospin number. The excitation of two quasiholes in Eq. (21) represents two

holes of CFs in their respective LLs. Because the lowest-energy excitations of the
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state at ν = 2/5 can be classified as excitations of CFs in two LLs, the pseudospin

Sz quantum number can be used to classify excitations. Thus, exactly as in the case

of the spin-singlet state at ν = 2/5, we can consider symmetric and antisymmetric

superpositions of two quasiholes and conclude that they carry pseudospin equal to

S = 1 and S = 0, respectively. Now the presence of spin is tied to a charge excitation

and if a particular configuration of quasiholes has maximum spin value, it belongs

solely to the charge sector. Therefore, the symmetrized state of two quasiholes:

SJ(w1, w2) = (1 + e12)Ψ2qh(w1, w2)

= Ψ2qh(w1, w2) + Ψ2qh(w2, w1) , (22)

where eij denotes the exchange operation, i ↔ j, is a generator of symmetric

polynomials just as a single Laughlin quasihole. We can convince ourselves that

this is true by examining the terms in the expansion of the determinants. The

antisymmetric combination:

T J(w1, w2) = (1− e12)Ψ2qh(w1, w2)

= Ψ2qh(w1, w2)−Ψ2qh(w2, w1) , (23)

generates the edge states of the neutral sector (S = 0). These states cannot be

represented as symmetric polynomials multiplying the Slater determinant of the

ground state. The following simple example of one electron in the LLL and one

electron in second LL is an illustration of this (we write only the determinantal

part of the wavefunction):

∣

∣

∣

∣

∣

(z1 − w1) (z2 − w2)

(z1 − w2)z
∗
1 (z2 − w2)z

∗
2

∣

∣

∣

∣

∣

= z1z2(z
∗
2 − z∗1) + w1(z1z

∗
1 − z2z

∗
2)− w2(z1z

∗
2 − z2z

∗
1) + w1w2(z

∗
2 − z∗1) . (24)

In the symmetric combinations of two quasiholes, the second and the third term

in the expansion of the determinant combine to give ∼ (z1 + z2)(z
∗
2 − z∗1), which

demonstrates the factorization, a symmetric polynomial× Slater determinant in the

charge sector, which is not possible in the neutral sector: we get (z1 − z2)(z
∗
2 + z∗1).

Therefore, all collections of spin-singlet pairs of quasiholes generate edge states

of the neutral sector of Jain’s 2/5 state. We can, for example, use the pseudospin-

singlet combination of four quasiholes:

S(4)
S=0(w1, w2, w3, w4)

= [(1− e12)(1 − e34) + (1− e14)(1− e32)]Ψ4qh(w1, w3;w2, w4) , (25)
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where we use the following definition:

Ψ4qh(w1, w3;w2, w4)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(z1 − w1)(z1 − w3) · · · (zN − w1)(zN − w3)

(z1 − w1)(z1 − w3)z1 · · · (zN − w1)(zN − w3)zN
...

...

(z1 − w1)(z1 − w3)z
N/2
1 · · · (zN − w1)(zN − w3)z

N/2
N

(z1 − w2)(z1 − w4)z
∗
1 · · · (zN − w2)(zN − w4)z

∗
N

(z1 − w2)(z1 − w4)z
∗
1z1 · · · (zN − w2)(zN − w4)z

∗
NzN

...
...

(z1 − w2)(z1 − w4)z
∗
1z

N/2
1 · · · (zN − w2)(zN − w4)z

∗
Nz

N/2
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (26)

Contrary to the previous case of neutral edge states for the ν = 2/5 spin-singlet

state, there is no factorization property of the form: a symmetric polynomial odd

under ↑ and ↓ exchange × the ground state.

With respect to the spin-singlet state at 2/5, we did not have a transparent

spin structure from which we could deduce edge sectors; we used S number as

effective charge number of the U(1)×U(1) edge theory. In this case of Jain’s state

at 2/5, besides the insights from the spin-singlet state, we also used the knowledge

of effective theories20,23 to argue for the existence of two sets of generators; without

going into a detailed description of the edge states that they generate in the neutral

sector, we were able to identify them. The generators represent charge and neutral

sector, also because, as we put all quasiholes at the same point in any generator

(w1 = w2 in Eq. (22), etc.) we get a charge hole in the charge sector, but in

the neutral sector any expression (Eqs. (23), (25), etc.) vanishes as it cannot be

connected to any charge excitation.

4. Abelian States with Negative Flux

4.1. Fully polarized CF state at ν = 2/3

We know14 that the fully polarized state at ν = 2/3 can be described by both

particle–hole conjugation of ν = 1/3 state and negative flux CF wavefunction and

thus, the edge theory should be the same in both descriptions. To perform the

particle–hole transformation onto the parent Laughlin ν = 1/3 state, one needs a

background droplet with filling ν = 1 of a size larger than that of the Laughlin

droplet and one then makes the transformation in the interior region.20,24,25 This

leads to an inner region of filling ν = 2/3 separated from the vacuum by a ring

with filling ν = 1. As a consequence, the edge is now composite. One can have

edge modes on the exterior boundary at ν = 1: they will be generated by the

symmetric polynomials we have described in Sec. 3.1 and the associated effective

theory is a free boson.20 There are also edge modes associated with the boundary

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
0.

24
:5

49
-5

66
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 W

A
SH

IN
G

T
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
01

/2
4/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 3, 2010 9:19 WSPC/INSTRUCTION FILE S0217979210055081

560 M. V. Milovanović & Th. Jolicœur

between the ν = 2/3 core and the ν = 1 annulus. These modes should propagate in

the opposite direction from the outer modes. This microscopic picture has received

detailed confirmation from numerical and experimental studies.26–32 There are thus

two counterpropagating modes that interact probably in a nonuniversal manner

depending on the details of the confining potential.32 The inner modes have angular

momenta which are less than the total angular momentum of the droplet as a

whole. Since its structure is exactly that of a free boson generated by symmetric

polynomials, then explicit wavefunctions for the edge modes generators are obtained

by replacing z factors by derivatives in the generating functional, Eq. (10). They

are not exact eigenstates but are expected to be satisfactory trial wavefunctions.

We now discuss the edge modes as seen from the negative flux CF picture. Here

we have two filled pseudo-Landau levels of 2CFs. A naive reasoning based on the

results for the fraction ν = 2/5 would lead to two copropagating modes. However,

writing trial wavefunctions is in general not enough to guarantee that their energies

are as expected. For example, in a general Jain state with p filled levels, it is

immediately clear what are the lowest-lying quasiholes or quasielectrons since there

are many possibilities for excited states. Here, we know from the reasoning of the

previous paragraph that the counterpropagating mode is generated by derivative

operators; this means that it has to be found amongst the modes generated by the

quasielectron operator:

Oqe(w) =
∏

i

(2
∂

∂zi
− w∗) . (27)

Expansion in powers of w∗ leads to the same modes as proposed in the previous

particle–hole approach (we will not use Jain’s quasielectron construction2,33 because

it is harder to implement in the case of many excitations and, as we consider

only effective, lowest-energy physics of edge states, the Laughlin construction is

adequate). Of course, this operator does not always generate low-lying modes. For

example, if applied onto the Laughlin state all modes derived from it are gapped.

For example, action of
∑

i(∂/∂zi) will lead to state with an excitation energy of

the order of the quasielectron itself. It is only when we act on some special states

that one generates low-energy states. Hence, the operator itself does not contain

all the information on the edge theory; this is also encoded in the ground state

wavefunction.

With our identification of edge modes derived from the quasielectron, we con-

clude that we can use antisymmetric combinations of pairs of quasiparticles with

pseudospin S = 0 to generate the neutral sector that moves in the opposite direction

of the charge sector.

4.2. Spin-singlet state at ν = 2/3

We now discuss the spin-singlet state ν = 2/3. We know from effective theories20

that there is a chiral boson in the edge theory that describes a neutral sector and
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moves in the opposite direction with respect to the chiral boson of the charge sector.

With the insight gained considering the edge states for two-component spin-singlet

2/5 and one-component Jain’s 2/5 and 2/3 ground states, we conclude that the

edge states in the neutral sector of this negative flux spin-singlet state at 2/3 can

be constructed by the action of derivative operators — symmetric polynomials of

derivatives:

s̃sn = s̃↑n − s̃↓n, (28)

where we define:

s̃σn =

N/2
∑

i=1

∂n

∂zniσ
, n = 1, 2, 3, . . . (29)

that act on the ground state. They create excitations of the neutral sector that move

in the opposite direction from the charge excitations. The generators of this neutral

sector are in fact the maximum spin coherent states of spin-1/2 quasiparticles.

As emphasized in Ref. 21, at the edge of the ν = 2/5 spin-singlet state, we have

spin-charge separation and the separation is expected in any gapped spin-singlet

state. In the case of the ν = 2/3 spin-singlet state the existence of the spin-charge

separation implies that scn and s̃sm commute. Indeed, they do commute provided

we confine our description to the lowest-energy sector of the system, i.e., the edge.

This conclusion comes from the following simple algebra:

[scn, s̃
s
m] = [s↑n, s̃

↑
m]− [s↓n, s̃

↓
m] = [ssn, s̃

c
m]. (30)

Here by ssn and s̃cm we mean ssn = s↑n − s↓n and s̃cm = s̃↑m + s̃↓m. Because the last

expression does not belong to the lowest-energy sector, when the projection to the

edge sector is done, we find that scn and s̃sm commute.

5. Edge Modes of Pfaffian and Negative-Flux Pfaffian States

5.1. The Pfaffian state in multicomponent formulation and

its edge

We now study the edge mode structure of the simplest non-Abelian quantum Hall

state, the so-called Pfaffian state introduced by Moore and Read.6,7 We consider

the bosonic case with no loss of generality since it can be multiplied by one or more

odd powers of the Jastrow factor to give an antisymmetric trial state. For bosons,

its filling factor is ν = 1 and the wavefunction is explicitly given by:

ΨMR = Pf

(

1

zi − zj

)

·
∏

i<j

(zi − zj) , (31)

where the Pfaffian symbol stands for the following sum over permutations of N

indices:

Pf

(

1

zi − zj

)

=
∑

σ∈SN

signσ
1

zσ(1) − zσ(2)
· · · 1

zσ(N−1) − zσ(N)
. (32)
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There is an alternate way34 to write this wavefunction:

ΨMR = S







∏

i1<j1

(zi1 − zj1)
2
∏

i2<j2

(zi2 − zj2)
2







, (33)

where the sum is over all possible partitions of N particles into two groups denoted

by 1 and 2. It is this expression that admits a generalization with grouping particles

in k subsets.10,11

The equivalence between these two formulas can be proved by the following

manipulations:

ΨMR = S







∏

i1<j1

(zi1 − zj1)
2
∏

i2<j2

(zi2 − zj2)
2







= S
{

∏

i1<j1
(zi1 − zj1)

∏

i2<j2
(zi2 − zj2)

∏

i1<i2
(zi1 − zi2)

}

·
∏

i<j

(zi − zj)

= S
{

Det

(

1

(zi1 − zi2)

)}

·
∏

i<j

(zi − zj)

∝ Pf

(

1

(zi − zj)

)

·
∏

i<j

(zi − zj) , (34)

where we used the Cauchy determinant identity and the fact that a sum of deter-

minants gives a Pfaffian.

In the “pairing” formulation with the explicit Pfaffian equation (31), edge states

are neutral fermion excitations created by breaking some of the pairs:

Ψ
(np)
MR = A

{

zm1

1 · · · zm2np

2np

1

z2np+1 − z2np+2
· · · 1

zN−1 − zN

}

·
∏

(zi − zj) , (35)

where 0 ≤ m1 < m2 < · · · < m2np
are integers, np denotes the number of bro-

ken pairs and A stands for antisymmetrization as in the Pfaffian definition. These

states can be obtained35 from the non-Abelian quasihole constructions6,7 for two

quasiholes at positions w1 and w2:

Ψ2qh
MR =

∏

i<j

(zi − zj) · Pf
(

(zi − w1)(zj − w2) + (w1 ↔ w2)

zi − zj

)

. (36)

In addition to these neutral fermion modes, there is the usual charge sector gener-

ated by symmetric polynomials as we have seen in all previous examples.

The multicomponent formulation, Eq. (33), suggests that the quasihole factors

can be introduced in each of the two groups of particles before symmetrizing the

whole expression. This leads to the following alternate generating functional:

G(w̃1, w̃2) = S







∏

i1

(zi1 − w̃1)
∏

i2

(zi2 − w̃2)
∏

i1<j1

(zi1 − zj1)
2
∏

i2<j2

(zi2 − zj2)
2







.

(37)
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One can also construct the neutral sector from the multicomponent formulation:

Ψ
({ni})
MR = S







ssn1
· · · ssnk

∏

i1<j1

(zi1 − zj1)
2
∏

i2<j2

(zi2 − zj2)
2







, (38)

where we have inserted ssn = s1n − s2n. The generators — quasihole coherent con-

structions of the states of the form given by Eq. (38) can be easily specified in

analogy with how it was done in our discussion of the two component ν = 2/5 case.

In fact, these two sets of edge states are exactly the same. The set, Eq. (38),

seems to be overcomplete if we count the number of edge states at fixed ∆M — the

increase of the angular momentum with respect to the ground state. But there are

linear dependencies among set members, Eq. (38), that will reduce their number

to the number derived from Eq. (35) at fixed ∆M . To show that this is true, we

come back to the string of equivalences in Eq. (34). Any quasihole construction

inside the Pfaffian (at the end of the string) [like Eq. (36)] is also a valid quasihole

construction for each determinant in the sum over partitions. Now we have to

use the relationship between this quasihole construction and the usual Laughlin

quasihole constructions, for each determinant, explained in Ref. 35, from which it

follows that the spaces of edge states generated in these two ways are the same. This

follows from the Abelian nature of the Cauchy determinant pairing. This assertion

for the Cauchy determinants automatically translates in the same assertion for

the Pfaffian: the two kinds of quasihole constructions in the case of the Pfaffian

are different but they are superpositions of zero-energy states — edge states that

belong to the same subspace of states. Both can be used to generate this subspace

and its neutral sector. Besides Eq. (35), the neutral sector can be also represented

by Eq. (38), although one should remember that this set is overcomplete.

5.2. Negative flux Pfaffian

We now discuss the simplest non-Abelian state with negative flux. The basic idea

is quite simple: we start from the CF definition, Eq. (4) and we note that the

wavefunction χν∗ need not necessarily be a Slater determinant. It may be itself a

state with non-Abelian correlations as advocated in Refs. 12 and 13. The simplest

example is to use a Pfaffian state for bosons. If the flux of this state is taken as

positive then we simply pile up powers of the overall jastrow factor but a more

interesting possibility is to use a negative flux state which is non-Abelian. For

example, the simplest example is given by χν∗=−1 = Ψ∗
MR, leading to:

Ψneg.flux
MR = PLLL



S







∏

i1<j1

(z∗i1 − z∗j1)
2
∏

i2<j2

(z∗i2 − z∗j2)
2







∏

i<j

(zi − zj)
2



 . (39)

This state has filling factor ν = 1 but is different from the usual Pfaffian, for

example, if written on the sphere, it has a flux–particle relationship given by Nφ =

N−1 while the Pfaffian requires a different tuning: Nφ = N−2. Not much is known
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about these states; some of them have interesting overlap properties as measured in

exact diagonalization of small systems.12,13 In this section, we construct the edge

modes of the negative flux Pfaffian. We define a set of edge states which is complete

and support charge–neutral sector separation. Our proof follows from the formalism

developed in Sec. 3. We first note that the edge states in the neutral sector can be

obtained by inserting derivative operators in the multicomponent formulation:

PLLL



S







s̃sn · · · s̃sm
∏

i1<j1

(z∗i1 − z∗j1)
2
∏

i2<j2

(z∗i2 − z∗j2)
2)







∏

i<j

(zi − zj)
2



 . (40)

This set is obtained by a quasiparticle coherent state construction: this is similar to

the case of the neutral sector of the two component ν = 2/5 state. The projection

onto the LLL, PLLL, does not induce any extra linear dependencies among the

states because the symmetrization process is analogous to Eq. (38) where every

coordinate is replaced by a derivative. The number of edge states at fixed −(∆M)

is then the same as the number of modes at +∆M for Eq. (38). Therefore Eq. (40),

though overcomplete, describes edge states corresponding to a massless Majorana

fermion CFT, associated to a neutral mode moving in the opposite direction with

respect to the charge mode. We argue next that the set of modes, Eq. (40), allows

charge–neutral sector separation on the edge. Indeed, as in the multicomponent

Abelian case, we have the following commutation:

[scn, s̃
s
m] = 0 . (41)

We also expect that the quantities scn, after commuting with s̃sm’s, act on the charge

part of the ground state which is separate from the spin part on the edge.21 From

the multicomponent formulation of the non-Abelian negative flux state, we can thus

conclude that the separation between modes occurs because we can express the

Pfaffian as a sum of Cauchy determinants and each of them represents an Abelian

multicomponent construction that has complete separation between the modes. So

the conclusion is that we expect one usual charge mode and one counterpropagating

Majorana mode.

6. Conclusion

In this paper, we have given explicit expression for some edge state wavefunctions

for fractional quantum Hall states involving more than one mode. We discussed

spin-polarized as well as spin-singlet states when there are only two edge modes.

Explicit expressions are based on the knowledge of the effective field theory of the

edge.20 Indeed, if one guesses a candidate wavefunction it is not clear that it has

to do with the edge properties. For example, if we start from the simple Laughlin

state at ν = 1/3 and act upon the wavefunction with derivative operators proposed

for the counterpropagating mode at ν = 2/3, one simply generates states that have

a gap of the order of the quasielectron gap. It is only the quasihole that generates

edge excitations. So the knowledge of the ground state wavefunction is not enough,
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one should also have some knowledge of the effective theory. We have also studied

the case of negative flux states: some of them belong to experimentally prominent

quantum Hall fractions like ν = 2/3. While they were already studied by effective

theory approaches26–28,30 and exact diagonalizations,24,25,32 no microscopic expres-

sion for the wavefunction was proposed before our work. Finally, we have studied

the case of a negative flux state build upon the Moore–Read Pfaffian whose edge

modes can be constructed in a straightforward way from the formalism we devel-

oped. The edge states are given by a bosonic charge mode and a counterpropagating

Majorana fermion.

Of course, the true electronic system is very complex due to interactions be-

tween modes. In the case of ν = 2/3, it has been shown32 that there is a regime

with clear separation between the two counterpropagating modes. This depends

notably on the confining potential that may reconstruct the edge. However, our

explicit wavefunctions give precise guidance to detailed numerical studies of the

edge phenomena.
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