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The BRST charge for the N = 2, 0(2)  superstring theory is given. The 0(2) algebra is realized a la Kac-Moody, which 
would seem to cause problems in the BRST formulation, however, the BRST charge is nilpotent due to the supersymmetry 
of the model. The nilpotency of the BRST charge determines the critical dimension of the model to be D = 2, and the in- 
tercept of the Regge trajectory becomes zero, making the model tachyon-free. We use the BRST charge to construct a free 
field theory of the model. 

1. Introduction. A covarlant approach to the quan- 
tization of string theories based on BRST invariance 
has been proposed recently [1,2]. An alternative and 
equivalent approach is to use exterior differential cal- 
culus over the Virasoro algebra [3]. Using the BRST 
charge it is possible to build a covariant free string 
lagrangian [1,2]. The same ideas work in the case of 
N = 1 superstrings [4]. It is plausible to assume that 
the full interacting covariant string field theory can be 
formulated and constructed based on a nonlinear ex- 
tension of the BRST charge [5 ]. 

The technique is to build a nilpotent BRST charge, 
i.e. to first quantize the string theory using the BRST 
method. Next, use the BRST charge to construct a 
BRST lnvarlant kinetic operator for the field theory. 
The gauge lnvarlant string field theory action is then 
given as the BRST invariant measure on the space of 
string functlonals [1 ]. 

In this paper we work out a BRST charge for the 
N = 2 supersymmetric, O(2) charged string theory [6]. 
The O (2) symmetry is realized as an abelian K a c -  
Moody symmetry. Based on the result of ref. [7] one 
would expect that the BRST formulation of the mod- 
el suffers from a problem that stems from the Kac -  
Moody part, making it appear as if it were not possible 
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to construct a nilpotent BRST charge. If this 1s the 
case then the enforcement of the mlpotency of the 
BRST charge would make the theory fall into the un- 
physical sector (for example the states no longer form 
the unitary representations of the Kac-Moody sym- 
metry and consequently, the energy is no longer 
bounded from below [8]), or to become inconsistent. 
Fortunately, this is not true due to the supersymmetry 
of the model. By a different kind of analysis [6,9] it 
was shown that the critical dimension of the model is 
D = 2. This enables us to see the subtle way of how the 
supersymmetry takes care of the anomaly problem for 
the O (2) group. 

Once the nilpotent BRST charge is constructed in 
the Neveu-Schwarz (NS) and Ramond (R) sectors of 
the theory it becomes possible to construct a covan- 
ant string field lagrangian. Next one could try to find 
a nonlinear generalization of the BRST charge in order 
to formulate the interacting theory. The analysis pre- 
sented here could be relevant to understanding the 
structure of  compactified strings, and to resolving the 
problems of the BRST formulation of Kac-Moody al- 
gebras. 

Our paper is orgamzed as follows. In section 2 we 
briefly review the two-dimensional N = 2 supergravity 
theory that defines the 0(2)  string and give the BRST 
charge. We show that it is nilpotent provided that the 
critical dimension of the model is two and the inter- 
cept parameter is zero. In section 3 we show that the 
ghost structure introduced to make the BRST charge 

69 



Volume 179, number  1,2 PHYSICS LETTERS B 16 October 1986 

nflpotent also makes the partition function equal to 
one in each sector of  the model. This means that there 
is only one physical state in each sector. In the NS sec- 
tor it is a ground state scalar and m the R sector it is a 
ground state fermion. Therefore we must conclude 
that the free 0 (2 )  string theory is trivial. We also give 
the BRST mvariant kinetic operators and construct a 
gauge-fixed free string action and list its invariances. 

2. The BRST  charge o f  the 0 ( 2 )  string. Let us first 
give a brief review of the first quantized formulation 
of the O (2) string. The actmn of a two-dimensional, 
N = 2, 0 (2) symmetric supergravlty (gravlton, two 
Majorana gravitinos, vector particle) interacting with 
D complex (0,1/2) matter  multiplets (complex scalar, 
two Majorana spinors, complex auxiliary field) that de- 
fines the model is given by [10] 

s = fd2  * + ½i T u I ) v *  

+ (aucb + ~ )  ~Tv'yuXv - ½FF*] , (2.1) 

where D u = Ou + ½w#75, Xu = (1/x/2)(X 1 + ix2), ~b = 
¢1 + icb2, ~ = (1/X/~)(~I  + i~2) ,  and other conven- 
tions are as m ref. [9]. 

The action (1) is invariant under coordinate, 
Lorentz, N = 2 supersymmetry, Weyl, vector gauge, 
chiral gauge and super-conformal transformations 
[9,10]. As usual, we choose the gauge: eu _ 6a, Xu = O, 

A u = 0, in order to linearize the action (2.1). This 
gauge chome is possible due to the symmetries cited. 
The lineanzed version of  the action thus becomes 

S = f d Z ~ ( ~ a u . a u * *  + ½ , ~ ¢ g u ' V -  ½FF*). (2.2) 

Together with (2.2) one needs a set of  constraints and 
appropriate boundary conditions. They follow from 
(2.1). The constraints, written in terms of real fields, 
are given by 

2 
1 i p t 

O# v = [ ~ t ~ l ~ # r b  i _ sg#v~p  ¢ ~ dp 

+ ¼iv~i(Tua v + 7vOu) xifi] = 0 ,  (2.3a) 

2 
S~ = ~ (8 q ~ j p l  _ e~jOv~2 ) ~vTu~l = 0 ,  (2.3b) 

I=1 

2 
T= ~i ~ etT~i~ tj = 0 .  (2.3c) 

i,]=l 

The constraints (2.3a), (2.3b) describe conformal in- 
variance and N = 2 supersymmetry respectively and 
(2.3c) is a consequence of  the O (2) symmetry of  the 
model. 

The constraints form a closed algebra, the symme- 
try algebra of  the model. This means they are first 
class. Quantlzation can be implemented by construct- 
m g a  Fock space reahzation of this algebra. In the 
0 (2 )  model this can be accomplished by  using two 
sets ofbosonlc  and two sets of  fermionic ladder opera- 
tors: 

i ,a " Ot n , Ot~ b] = rt~tl ~n+m,otTab , 

L r ;bi 'a  ~I,b~ _ ~z]~ ab 
, u  s j - - u  V r + s , 0 q  , 

where I , ] =  1 ,2 ; a ,b  = 0,1 .... , D -  1 ; n , m  @ Z in the 
NS sector, and r, s C Z + ½ in the R sector. The vacu- 
um is defined by 

  al0>=b 'al0>= 0 (n,r>0).  
As a consequence of  ordering ambiguities the al- 

gebra of  constraints acquires central charges, and be- 
comes 

[Ln, Lm] = (n - m)Ln+m + ¼D(n 3 - n) ~n+m,0,  

(G~, G~) = 28t]Lr+s + 2Ie*J(r - s) rr+ s 

+ ¼D(4r 2 - 1) 8r+s, 0 , 

[Ln, G[] ( In  i = - r )  G .+r ,  [Tn, Tml=~Dn~n+m,O,  

[Ln, T m ] = - m T n + m ,  [Tn, Gtr] =~,ex' i],,t~n+r. (2.4) 

The L ' s  generate conformal symmetry,  G 's  supersym- 
metry and the T's  generate the 0 (2 )  symmetry.  Note 
that the algebra (2.4) is the N = 2 super-Vlrasoro al- 
gebra, with an abehan K a c - M o o d y  subalgebra. Physi- 
cal states are defined by 

(L n - f lfn,0)lphys) = Tn Iphys) = Gr~ Iphys) = 0 

(n, r t> 0 ) .  (2.5) 
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Given the algebra (2.4) one can use a standard pre- 
scription [11 ] for forming BRST invariant hamilto- 
nmns of  constrained systems. 

Let H 0, Ca (a = 1 ... . .  k) be the origmal hamiltoman 
and the first class constraints of  some system satisfy- 
mg the Poisson bracket relations 

- -  C 

{~ba ' ~bb)P.B. _ Uab d~c, {Ho,  ~ba}P.B. b = v , , 4 ~ b  • 

Here we allow q~a to be bosonic or fermionic, which 
means that the Poisson brackets are defined with the 
appropriate Lorentz grading ,1 (0 for bosons, 1 for 
fermions). (For our purposes it is enough to assume 
that the structure constants ucab and v a are ordinary 
c-numbers.) Then there exist classes of  quantum 
hamiltonians H invariant under fermiomc (BRST) 
transformation satisfying nilpotency: 

H = H 0 + C b Oba Ca + [QBRST, ~21, 

t-,a . l t" "~?a. C ~c  Cb C a QBRST = dPa w - "~ ~.--) Uab 

[H, QBRST] = 0 ,  

where C a and Ca are ghost and antighost fields, respec- 
tively (corresponding to q~a) satisfying 

[ca(x),  Cb(Y)}l xo=y o = 6ab8 (x -- y )  . 

Physical states are given by a single condition: 

QBRST I phys) = 0 ,  (2.5') 

together with the requirement that they do not con- 
tain ghosts, 1.e. they are annihilated by the ghost and 
antighost annihilation operators. This reproduces con- 
straints (2.5). Note that the ghost fields are of  the op- 
posite Grassmann type to their corresponding con- 
straint operators. 

Applying this formulation to the Vlrasoro algebra 
[12] and N =  1 super-Virasoro algebra [4] it has been 
shown that imposing nilpotency on the BRST charge 
leads to the cancellation of  the conformal anomaly, 
i.e. determines the critical dimension and the Regge in- 
tercept of  the string. For the algebra (2.4) we have 

,1 The Poisson bracket is deemed by 

= (-) • 
-A 'B-p 'B"  i \ a q i  bp l Op t 

where PA is called the Lorentz grading. 

QBRST = Q1 + Q2,  

with 

(2.6) 

Q1 = ~ ( L n  - flSn,0) r/-n + ~ TnX-n 
n n 

2 
+ ~  i i  

Gr~-r  , 
r i=1 

1 ~ (n - m)  :~n+mr/-mr/-n:  
Q z = ~ n , m  

- ~ m : y ` n + m ~ . _ m r l _ n  : 
n)m 

+ (½. ,) -i , 

- :~n+r~-rr/-n: 
n,r  

1 ~  - i  I - i i 
4 n,r eij :~n+r~-rX-n: -- ~ :r/r+s~-r~-s : 

r,s  

+ ( r -  s) d / :X,+sg-,g-s : , 
r)s 

where/3 is the undetermined parameter present due to 
normal ordering ambiguitxes in L 0. We use symbols 
r~, X(~, Y )̀. for fermmnic ghosts (antighosts) and sym- 
bols ~r l (~r l) for bosonic ghosts (antighosts). They satis- 
fy 

{r/n, ~m) = {~'n, y`m) = 8n+m,0,  [~[, ~{] = 8i]Sr+s,O , 

and all other combinations are zero. The colons : : 
denote normal ordering with respect to the ghost vac- 
uum defined by 

(ghost) m 10) = (antighoSt)m [0) = 0 ,  for m > 0 .  

We use the convention where r/, if, k, Y  ̀and ~[ are her- 
mitian and ~r ~ are antihermitian. 

Alternatively we can write the BRST charge (2.6) 
in the NS sector as 

Q = d + 6 + L r/0 + T~'0 + A ~0 + BY'0, (2.7a) 

and m the R sector as 

Q = d  + 8 +Lr/0 + TX 0 +A~0+BY`  0 

+ G i ~  + c i - ~  + P ,  (2.7b) 
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where 

L = L 0 +  ~ n(rl_n~n+rl_n~n+X_nXn+K_nXn) 
n>0 

+ G r(~i_._r~tr - i - i  
r>O 

T = To + i ~ e0 (~ t_ r~_  ~l_r~) ,  
4 r>O 

G i G~)+lr~>O -i  = 4 (~_r ~Tr + rl_r ~r) ] 2 [r(~-r~r -- ~i-r~r) -- i - - t 

+ i G e'f[(X r ~ X r ) -  8r(~ ] rXr + • r ~ ) l ,  
4 r>0 - - - 

A =-2( G nrl_n~ n + G ~l_r~i, 
\ n > 0  r>0  ! 

B -2(n~>on(r?_nXn+ X _ n r / n ) - 2 i ~  / ] ' J  ~])  = r e  ~-r~r  , 
r>O 

Ci= 3- ~ r(n_r~ ~ - ~i__rr b) 
2 r>O 

4 r > 0  

3 ~ . t l F t  ~ . l 'x  - i i 
P =  - a  '~ ¢ 0 ¢ 0 " 0 -  3r~0~0~0 • 

The expressions for d and 6 are very complicated and 
we will not display them. d is defined as the operator 
that creates a net ghost number and 6 IS the operator 
that destroys a net antighost number. Nilpotency of 
the BRST charge Q implies a number of  relationships 
between various terms in (2.7). Since they are easy to 
obtain we will not write them down. The forms (2.7) 
of the BRST charge are useful when constructing the 
field theory. 

A very long, but straightforward calculation of  the 
square of  the BRST charge gives 

Q2 = 1 ~ [(D - 2) n 3 - (D - 2 - 8t3) n] ~7-n r/n 
4 n>.0 

1 i i 
+ - ~ [(D - 2) 4r 2 - (D - 2 - 8/3)1 ~-r  ~r 

4 r>0 

1 
+ -  ~ ( D -  2) n)~_nX n • 

4 n > 0  

Therefore the BRST charge is nilpotent (Q2 = 0) if the 
following two equations hold: 

D - 2 = 0 ,  D - 2 - 8 / 3 = 0 .  

These conditions gwe the solution D = 2,/3 = 0. There- 
fore the model is free of  superconformal anomaly if it 
lives in two-dimensional spacetime and if the Regge in- 
tercept is equal to zero. 

It is interesting to note that it is the ggX term m 
the BRST charge (2.6) which cancels the K a c - M o o d y  
anomaly for D = 2. This term is present because the 
algebra (2.4) is supersymmetric. If  this was not the 
case the K a c - M o o d y  anomaly [7] would persist and a 
modification [13] in the construction of  the BRST 
charge would be necessary. This kind of  cancellation 
of the K a c - M o o d y  anomaly is exactly as expected 
from the work of Fradkin and Tsetyhn [9]. 

3. The field theory for the 0(2) string. We begin 
the section by  calculating the partition function of  
the model. We will use the covariant formalism intro- 
duced in the previous section. The knowledge of  the 
pamt ion  functmn allows us to count the number of  
the propagating (physical) fields at each mass level of  
the string theory. At this point we ignore the degener- 
acy due to ghost zero modes. The calculation of the 
partition function is the same in both sectors of  the 
model. 

Let the number of  propagating fields at the mass 
level N be TD(N). The number TD(N) is generated by 
the function 

fD(x) = ~ x 2N = Str(x2N),  (3.1a) 
N=0 

where 
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7V= ~ (^it ^t. + nrlt ~n +nFTtnrln + n~#n~.n+n~#nXn) n>O I'°~n' ta tXn 

i t  l,~ + r~>O r(br,ubr + ~#t fir_ ~#t-~#). 

An easy calculation gives 

oo [1 +x 2n ~2(D-2)] .  

fD(X)=[n~=l ~ 1 _ - - ~  ' _J (3.1b) 

Therefore, in the critical dimension (D = 2) we have 
fD=2(x) = 1. This implies that there is only one propa- 
gatmg state m each sector of  the theory because from 
(3.1a) and (3.1b) T 2 ( N >  0) = 0. In the NS sector of  
the theory the propagating state is a ground state 
scalar and in the R sector it is a ground state fermion. 
This result ~s in a full agreement with conclusion of 
Ademollo et al. [6]. 

In the remainder of  this section we describe the 
construction of  the covarlant gauge fixed field theory 
for the model. We closely follow refs. [1,14]. The 
field theory thus constructed will have an enormous 
invariance which allows only one propagating state in 
each sector as expected. We have to treat each sector 
of  the model separately due to the different ghost 
zero mode structure. We will give the details only for 
the NS sector because the construction goes the same 
way in the R sector once the ghost zero mode vacuum 
is specified. 

In the NS sector the ghost zero mode sector is four- 
fold degenerate (there are four zero mode operators: 
770, X0, ~/o, X0). In order that the condmon (2.5') on 
the physical state reproduces all the constraints (2.5) 
we must require that the string field is annihilated by  
the antighost zero mode operators if0 and ~0. Defining 
the ghost zero mode vacuum states by: ~0(X0)[0n(x)) 
= 0 and (0n(~)[~70(X0)10n(~)) = 1 we can write the string 
field vacuum state as 

IOsTRING) = 10) ® l0 n) ® 10n). (3.2) 

The BRST invariant kinetic operator is given by  

D = ½{X 0 [r~0, g0], Q} 

= X0r/0L - X0~0A + ½B(2~/0F70 - 1) .  (3.3) 

Expanding the string field functional in ghost zero 
modes: 

I~> = [1~>+ nolO>+ Xolx>+ noXolw>] 

® O n) ® 0x) ,  (3.4) 

the BRST invariant lagrangian is given by £ = 
-&(~  IDI~) .  When written in components It reads 

£ = -½(~ IL  I~) - ½(ff IA I~k) - ¼(xIBI if) - ~(~k Inl×)  

- ¼(6o IBI¢) + -~(O[B [w).  (3.5) 

From the expression (3.5) we see that the fields X and 
60 are the Lagrange multiplier fields enforcing gauge 
conditions B hb) = B lff) = 0. The lagrangian (3.5) is 
mvariant under the transformation 

6El ~)  = Q IE).  (3.6) 

Expanding IE) = [ l e )+  r~olf) + X0lg) + rl0X01h>] ® 
l0 n) ® 10 x) the transformahon (3.6) reads 

6E1¢) = (d+  6 ) [ e ) + A  l f )  + B i g ) ,  

6El 4)  = - ( d  + 6)If )  - B Ih) + L l e ) ,  

6EIx) = - (d  + 8)lg) + A [h) + Tie), 

6EICo)=(d + 6)lh)+ L Ih ) -  TIf). 

Using the gauge invarlance (3.6) it is only a straight- 
forward exercise to confirm that the only propagating 
state in the NS sector is the ground state massless 
scalar. 

In the R sector there are additional ghost zero 
modes ( ~ ,  ~ ) .  Since the supersymmetry ghosts (anti- 
ghosts) satisfy the commutator  rules, their vacuum is 
infinitely degenerate. Again we require that the string 
field functionals are annihdated by the antighost zero 
mode operators. That lifts half of  the infinite degener- 
acy. The remaining degeneracy can be lifted as in ref. 
[4] by  choosing the commuting ghost zero mode vac- 
uum at the value ~ = 0. This implies that the string 
field functional will have only a finite number of  com- 
ponents when expanded in ghost zero modes (cf. ref. 
[4]). Like in the NS sector we can define the BRST 
invariant kinetic operator and write down the covan- 
ant, gauge-fixed lagrangian. The only propagating state 
is the massless ground state fermion. 

It is possible that the spectrum of  states of  the 
model is supersymmetric but in order to confirm that 
one has to study the appropriate vertex operators. 
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4. Conclusion. In th:s paper we have quantized the 
0 ( 2 )  string in a BRST mvarlant way. The BRST charge 
(2.6), (2.7) is nilpotent only if the dunenslon of  the 
space- tune  m which the string hves is D = 2 and the 
Regge intercept parameter fl = 0. This follows from 
the requirement that the corresponding two-dimen- 
sional superconformal theory is anomaly free. Our re- 
sult is in agreement with the previous ones [6,9,15] 
obtained in a different way. Naively, based on the cal- 
culat:on in ref. [7] one might expect that the K a c -  
Moody subalgebra would spoil the nilpotency of  the 
BRST charge and that the BRST invariant quantlza- 
tton may not be possible in the standard way. This :s 
not so because the two-dimensional conformal theory 
is supersymmetric (cf. ref. [16]). Furthermore we 
have shown using the covariant method that there are 
only two propagating states m the model. They are 
the massless ground states in each sector. Since the 
ground state in the NS sector is bosonic and the 
ground state in the R sector is fermiomc it is possible 
that the spectrum has the space- t ime  supersymmetry.  
To examine the space- t ime  supersymmetry in this 
trwial model  one has to construct the appropriate ver- 
tex operator.  We have learned that this construction is 
under way [17]. 

It is easy to understand the triviality of  the model  
because it lives in two-dimensional space- t ime.  Imag- 
ine we go to the light-cone gauge. This removes two 
longitudinal components.  In two dimensions this is 
all we have. Therefore there is no room left for the 
transverse modes to oscillate. Consequently the only 
modes that can survive are the ground states, which 
are the scalar and the spmor respectively. 

We would hke to thank A. Jevlcki and V. Perival 
for discussions and to M. Ninomiya and K. Yamaglshi 
for pointing the mistake in the early stage of  the work. 
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