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We construct, to all levels, the operator connecting the Caneschi-Schwimmer-Veneziano 
vertex with the Witten vertex. This gives the explicit conformal transformation linking these two 
interactions in both their coordinate and ghost sectors. 

1. Introduction 

Recently the operator construction of Witten's interacting string field theory [1] 
was given [2], and the symmetry properties were established [2, 3]. The theory was 
defined in terms of 8-function overlaps which were represented in Hilbert space by 
constructing the Neumann functions on the nontrivial scattering domains. This was 
achieved through conformal mappings [2-4]. 

The fact that the problem was related through conformal mappings to the dual 
model implies that there exists an explicit operator transformation to the dual 
model vertex of Caneschi, Schwimmer and Veneziano (CSV) [5]. The existence of 
this t ransformation assures that all physical couplings of the vertex operators are 
identical, and it furthermore offers a nontrivial computational tool. 

In  this paper  we give a general procedure for evaluating the coefficients in this 
operator  mapping. Originally the transformations were considered in the light-cone 
case [6]. We apply our computation scheme to Witten's interaction. We consider 
explicitly the ghost effects and derive recursion formulas for the calculation of the 
coefficients to all levels. 

This paper  is organized as follows. In sect. 2 the operator linking the coordinate 
sectors of the two theories is found. Useful commutation relations in the coordinate 
sector are derived. In sect. 3 the work of sect. 2 is extended to the ghost sector as 
well. The full operator representing the connection between the CSV and Witten 
interactions is found. Further useful commutators are derived. In appendix A we 
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give tables of relevant coefficients used in this work. Finally, in appendix B, we 
write our conformal operator in an alternate form. 

2. Construction in the bosonic sector 

The vertex of Witten's covariant, gauge invariant theory [1] is given by [2] 

( v W i t t e n  I = (0,0,0}exp(½a;N/~a~),  

where n, m label the modes and take on the values 0, 1, 2 . . . . .  while throughout this 
paper, if not otherwise specified, r, s stand for string labels and take the values 
1, 2, 3. The Neumann coefficients N that determine this interaction are given in 
ref. [2]. 

The other vertex we consider here was derived by Caneschi, Schwimmer and 
Veneziano [5] as the operator governing interactions in the dual model 

(vCSV I = {0 ,0 ,0 lexp(½arM~,as) .  

The CSV coefficients M have a specially simple form 

n 

M 12 = M 23 = M 31 , 

while all the other M's  vanish. From these expressions we derive the equations 

~ v x W i t t e n ( o d r  n - -  nNr~a~m ) = O, (1) 

< v f s v l  _ = O,  

n = 1 , 2 , 3  . . . .  , m = 0 , 1 , 2 , . . . .  

(2) 

Eqs. (1) and (2) are equivalent to the defining relations for the vertices (in the sense 
that they determine the coordinate piece of the corresponding vertex), however, for 
our purposes they will be easier to work with. 

Physical on-shell states in the bosonic string are given by the well-known 
conditions 

(L~ - 6,,o)lphys ) = 0 ,  n = 0,1,2 . . . . .  

Thus, the statement that both vertices give the same coupling for all physical 
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on-shell states implies the existence of an operator 

O =  e x p [ A ~ ( L ~ -  1) + A ~ L ]  +A~zLr  2 + " "  ] ,  (3) 

such that 

(vCSV I O = (v~Witte" I . (4) 

Eqs. (2) then give us the relations 

0 = (vxWitteno--l(ar_ n -- . M r ~ a ~ ) O .  (5) 

Due to the completeness of (1) this is some linear combination of relations (1) for 
different values of the indices n and r. To work out (5), and calculate this linear 
combination, we will need to figure out the following commutators 

~ _  1 " a  • The Virasoro generators are given in terms of the a 's  by L n ~F~k- ~-k ak:, 
which yields the commutation relations 

[Ln,am] = - m a . +  m. (7) 

OQ O0 Since exp(-Em=0AmLm)a.exp(~m=0AmLm) is some function of the commutators 
[L . ,  am], commutators of these commutators etc., eq. (7) then gives us 

a~,exp X ~ A m L  m =exp  X Bk(X)a  k , 
m ~ 0  

where we have introduced a parameter X. By differentiating this parameter we will 
get a set of differential equations for the coefficients B(X). So, after differentiating, 
we find 

dB k 
- E 

dX ,. =0 

Bk(O) = 0 ,  

which immediately tells us that B k <.  = 0. For the rest of the B's  we get a compact 
equation 

d/~.+s 
= As_ (n + 

dX k=o 

B~÷~(0) = ~,o,  s = 0 ,1 ,2  . . . . .  
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We have, for convenience, now introduced a new set of coefficients by 

B,+,  = B,+,  + ~5,. o . 

By looking at the first few of these equations it is not hard to see that the general 

solution will be of the form 

D,,+,(X) = £ C~p, le ("+k)A°x. 
k=0 

By substituting this solution into eq. (10) we determine the coefficients C to be 

v s - l r ' [ " l gn  + I ) A ,  t 
c7;1 = - , - , : , - - , k  , - - ( s  > k ) ,  

s - k  

s 1 

Cs ~2~ = ~, ,o- E Cst, °~, (8) 
I=0 

where we have introduced the reduced coefficients A m = A , , , / A  o. This gives us all 

the B's .  After setting X = 1 we find that 

o-lo~rnO~.ertAo[loLrnd f- ~ ~_ /'~[n]~kAo~r 1 
s:l~=o~S~ ~ . , + , ] .  (9) 

Finally, eq. (5) becomes 

- nM/,,,,er" ,,.% a,,," + E C~'leaA°a~m+c . (10) 
c = l  d = 0  

As we see this is a linear combination of the first n equations in (1). Let us also note 
here that since both the M ' s  and N ' s  have cycling symmetry in the string indices it 

_ 2 _ 3 follows that A ~ -  A m - A  m. This is why we have dropped the string label on the 

A's.  
The simplest equation we retreive from (10) is for the n = 1 mode. As we shall see 

later we will be able to determine our operator O completely from this equation 
alone. The higher mode equations that follow from (10) will then become con- 
sistency conditions. The existence of the conformal mapping between the dual 
model and the covariant, gauge invariant theory automatically will guarantee that 
these consistency conditions will be met. We will also set r = 1, with no loss of 
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generality due to the cyclic symmetry in string indices. For each m and s we find 

--lVlmOlm -- "~ab "~ ~a-1 
a = l  b=O 

--lt/ils~'(m+l)A°( O l s m + " ' l m ~  c=1 ~ d=0 ~ C[~]edA°aSm+c) . (11)  

For m - 0, using momentum conservation, we find 

1 

(M1 xl - M1 x3) eA° - (N• 1 - N:o 3) = E C~-1]ebA°, 
b=0 

( M , ~ -  Mx~)e A°-  (N:o 2 -  N)o 3) = 0 .  

The Neumann coefficients needed are 

Nl1~ = 0, 

N)g= -N13= 

M 11 = Mll03 = 0 ,  

12~ M10 - 1. 

The first few C's  (as functions of the A_'s) have been calculated from (8), and can be 
found in table 1 of appendix A. The C's  needed here are C~o II = - C~ -11 = A_ 1. We 

get 

Ao=  - ln (#¢3- ) ,  

AI=- 1123 ~i~v~-. (12) 

The CSV coefficients M are remarkably simple, and in order to calculate the rest 
of the A's we will exploit the fact that all the M ' s  diagonal in string indices vanish, 
i.e. M ~ ' =  O. This simplifies (11) for s = 1 to 

m+l  
Nilm 1= - E c,[-ll ,,bAo • , . . m + l b  ~ , m = 1,2,3 . . . . .  (13) 

b~O 

Using the second equation in (8) this becomes 

11 ~m [-,[-1] {o(m+l)AÙ__ - Nlm + ~..,b=l'~.-.m+ l b \ W  e bA° ) 
C [ - I ]  m+10 = I - e (m+l)A° 
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From (8) it also follows that 

(m+ l)C[m-+]]o=A_m+l - £ C[o l]( l-1)A,n I+,, 
l f f i 2  

giving us a recursion relation for the .4's 

Am+l= £ C/oil( l-1)dm /+1 + 
1=2 

m + l  

1 - -  e ( m + l ) A °  

X [ £ t-'I-'] t,.(m+')&--ebAo)--Ni~] 
" " m  + 1 b k  ~" 

b = l  

m = 1,2 . . . . .  (14) 

We note here that the r.h.s, of (14) is a given function (via eqs. (8)) of A0, A 1 . . . . .  A m ,  

and can with (12) give us all the A's. 
As an illustration of the use of (14) we calculate the next two coefficients of our 

conformal  transformation operator. From tables 1 and 6 of appendix A we get the 

necessary information to construct (from (14)) the recursion relations 

A 2 = f ( A  o, A1), 

A3=g(Ao, dl,&). 

Taking the values of A 0 and A 1 from eq. (12) we find 

d 3  2 3 " 5 - 5 9  2 " 3 " 5 , / ~ -  (15) 
11 - 13 • 109 13 • 109 v ~ • 

Similarly, the rest of the A's  follow by straightforward use of the recursion relations 

(14) and (8). 
To conclude this section we recapitulate the calculation scheme. The C ' s  

are determined to ruth level through recursion relation (8) as functions of A 0, A x, 
A2 , . . .  , Am. These are put in the r.h.s, of eq. (14), which then determines A_m+ 1. 
Repeating this procedure we generate the next A etc. In this way we can calculate 

the A 's  to any specified level. 

3. Ghost sector equations 

In ref. [2] the Fock space representation of the full Witten vertex was derived, and 
the symmetries of the vertex were analyzed. The ghost sector was treated in its 
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bosonized form. For calculational reasons it was of interest to recast the ghost 
sector in its original fermionic form. This has been achieved in ref. [3], using ghost 
overlap equations, and BRST invariance has been proven. The equivalence of the 
fermionic and bosonized forms of the ghost vertex has been shown [7]. 

The CSV vertex, while originally a vertex of a theory with only a bosonic sector, 
has been given an appropriate ghost piece [8] by imposing BRST invariance on the 
full vertex. Taking this approach, and assuming BRST invariance of Witten's 
theory, the form of its fermionic vertex was recently "guessed at" in ref. [9]. The 
Fock space representation of the fermionic vertices is given by 

(Vc Witten = < -{-, + ,  q-lexp( c.~n./~.~,?~), 

(V~ csv] = ( + ,  + ,  + ]exp(c~n. .Ct ' ;~) ,  

n = 1 , 2 , 3  . . . . .  m = 0 , 1 , 2  . . . . .  

where the + ghost vacuum is the one defined by 

c.:.ol + > = 0, 

~.>ol + > = 0 .  

The coefficients .#" for the Witten ghost vertex can be found in ref. [3], while the 
CSV ghost vertex coefficients ./g were derived in ref. [8]. Given this, it is a simple 
matter to write down the equations 

r rWi t ten t"  r mJV'~,.cm) = 0, (16) v C t , c  . -  ~r s 

(vcCSV(c2, - m./K~r,c',,,) = O, (17) 

n = O , 1 , 2  . . . . .  m =  1 , 2 , 3 , . . . .  

these equations are equivalent to the defining relations for the two Again, 
vertices. In this they are analogous to eqs. (1) and (2) in the bosonic sector. The 
ghost vertices also give the ~ equations 

+ = 0 ,  (18)  

(v¢CSV(?~. + n..CC;~g~,) = 0, (19) 

n = 1 , 2 , 3  . . . . .  m = 0 , 1 , 2  . . . . .  

Finally, we mention a third set of equations satisfied by the full vertices 

-- rs ^s  (vWitte"l( Lr , + n.Ar~mLm) O, (20) 

( v C S V ]  ( £ r _  n _~._ rs ^s  n..Cf,,,L,,) = 0 ,  (21) 

n =  1,2,3 . . . . .  m - 0 , 1 , 2  . . . . .  
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Eqs. (20) and (21) can also be derived from certain overlap equations, and this has 
been shown in ref. [3]. We note that the assumption of BRST invariance determines 
these equations only up to a possible nontrivial center contribution which has been 
shown by explicit calculation [10] to be absent. 

The L 's  in eqs. (20) and (21) represent the full Virasoro generators, i.e. L = L + L c. 

L ~  = Y'~(n - m ) " ? m + , C _ , ' - -  Ot~m, 0 . (22) 
n 

In the critical dimension of the model, which is D = 26 for the bosonic string, the 
algebra of the L's  closes (the centers of the coordinate and ghost contributions 
cancel)*. 

[ L , , L , , ]  = ( n - m ) L , +  m. (23) 

Using (22) we can also easily show 

[L, ,c , , ]  = - ( 2 n  + m ) c , +  m, (24) 

[£n,Cm] = ( n - m ) c n +  m . (25) 

Eqs. (23)-(25) are central for our calculation of the commutators of 0 with £,  c 
and ~. The full operator 0 follows from O by replacing the L's  with the full 
Virasoro generators L's. At the end of this section we will show that 0 is the 
operator of the conformal transformation linking the full Witten and CSV vertices, 
i.e. that the following equation holds 

(vCSV[ 0 = (vWitten[ . 

Let us note that the commutators (7) and (23)-(25) are of the same form, which 
allows us to use similar derivations as in the previous section. We find 

r 
-1 r ^ enAo [ c , O  = c~ + 

[ c , O  = e "A° ?~ + 

O -  1LrnO = e nA° [ £ r  n + 
[ 

~ D~;lekAoc;+~], (26) 
s=l k=0 

~ D~;lekAo?;+,], (27) 
s=l k=0 

~ D}~IekAoL~+,], (28) 
s=l k=0 

* QBRST is the central object in string theory. For the bosonic string we have [11] 

Q.Rs~=~(L.-aS.,0)e- .+~(n-m):~.+me mc o:. 
n n m  

The full Virasoro generators can be determined from QaRs'r by L k = { ?k, QaRs-r }. The nilpotency of 
the charge (Q~Rs'r = 0) determines the critical dimension and Regge trajectory intercept of the theory 
(D = 26, a = 1), and makes the Virasoro algebra of the /?.'s anomaly free. 
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where the coefficients D and D play the same role as the C's  did in the previous 
section. D and D are given by 

"-l=k~lkV~-lnt'lt'-- l + 
~ "-j)~ :. l = _  

S R  s - k  
( ~ > k ) ,  

and 

s -1  
D~ "1 = 8~,0- E D~tP 1 , (29) 

/=0 

~s-  l ' ~ [ , l t ,  t=k'-'tk ~" + 2l--  s)As_ I 
~j ; l  = _ 

s - k  
( s > k ) ,  

s-1 
D~;* = a,,0- E D~;J- (30) 

I=0 

We note that the same coefficients (D)'s are used in calculating the similarity 
transformation with the conformal operator of the g's and L's. This is due to the 
fact that the structure constants in the commutators (23) and (24) are the same. This 
parallel between ? and L extends, as we see, also to the vertex equations (18), (19) 
compared to (20), (21). 

Assuming that O is the full conformal operator, we will use formulas (26)-(28) to 
derive consistency conditions that will validate our assumption. 

The/_, equations in (21) give us 

r s  ^ S ^ 0 = (vWit tenlO-l(Lr_ . + r l ~ n m L m ) O ,  n = 1 , 2 , 3  . . . . .  m = 0 , 1 , 2  . . . . .  

(31) 

As before we conclude that this is a linear combination of the first n equations in 
eq. (20), the simplest of which is for n = 1. 

m+l m--1 m - k  
"~ilm s~-" E ~[-l]~m+l b ~'bA°Rl's-l-~lsme(m+l)A°q-v E E ~'*/~¢ls~tkllk ~rn- k d e(k+d+l)A°" (32) 

b=0 k=O d=0 

For  m = formula (32) gives the consistency conditions 

,,,/~101 - -  e A o . ~  11 ----. - -  
10 D [ o l J ( 1 - e A ° ) ,  

w #  - - ~ o  , . , ~  = c "~10 O, 



390 A.R.  Bogojevi6, A. Jevicki  / Caneschi-Schwirnmer-Veneziano and Witten vertices 

Reading off D[o 1] from table 4 of appendix A, and using (12) we find that 
- -  22 
D[o~1(1 - e A°) = - 3~7~-. Using the following ghost vertex coefficients 

= 0 ,  

Xlo -wag = 

J-tlo I= 1, 

~t,~02 13 _ 
= - - J ~ 1 0  - -  1 ,  

we find that these consistency conditions are indeed met. 
For  m = 1, 2, 3 . . . .  the CSV ghost vertex coefficients og~ 1 vanish, so that eq. (32) 

reduces to the much simpler form 

m + l  
11 _ q_ eA0 "A/'i m -  Z ~m~[-ll+ 1 b ~'~bA° "~ [0] °dA°~ma" • (33) 

b=O d=O 

Let us note in passing the similarity of (33) and eq. (13) derived in the coordinate 
sector. The essential difference between these two is that in the ghost CSV vertex 
there exists a nonzero coefficient (Jt'~01) diagonal in string indices, while in the 
coordinate part  of the CSV vertex all such coefficients vanish. 

Using tables 4 and 7 in appendix A we have checked the consistency condition in 
(33) for m = 1 and 2. We find a quite nontrivial cancellation process at work. For 
m > 2, eq. (33) has to be checked numerically. 

The ? equations are the same as the L equations, so they do not give us any new 
information. The c equations, however, do give rise to new consistency conditions. 
Eq. (17) gives 

0 <gWittenlO-l(cr, ,  sr s ^ = - - m c g m , C m ) O ,  n = 0 , 1 , 2  . . . . .  m =  1,2,3 . . . . .  

(34) 

Again, this is a particular linear combination of the first n equations (16). The 
simplest equation we get now is for n = 0, giving us 

m - l m  k 
__~sl,,nO m. = *-...rob ~13[O]'~bAO'~s'lv __gmO ms1  e,,,Ao _ ~ ~_, ..~.¢ZSlkO~,nZ'n[kl_ ~ a ~°(k+d)A° . (35) 

b=O k=l  d=O 

These consistency conditions were examined for m = 1, 2 and found to work. The 
equation for n = 1, m = 1 was also checked. As in the L(? )  case the cancellation 
procedure is far from trivial. The higher level equations again can be checked only 
numerically. 
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As a final check of the internal consistency of our procedure in the ghost sector 
we looked at the commutator of 0 with the total BRST charge 

QBRST= £r . c r n -n"  

Using £k = (ck, QBRST) we find 

[ £ k ,QB R sT]  = [ (Ck,  QBRST}' QBRST] = 0 ,  

where we have used the nilpotence of the BRST charge to derive this. It follows that 
independent of the A's we have 

= o  

On the other hand, working with formulas (26)-(28), after a long but straightfor- 
ward calculation we find that 

O-IQBRsr O = QBRST + Y'~ ~ ~c[n]LrnCr-n+c, 
n c=l 

where the coefficients ~tnl  are given by 

~ 0  ( min(a,d} "~[n-a]l-l[-n+a] 1 
~cctn] = D[dnl .  %[,-c] + ~ Y'~ ~a, ~c-ad-,] edA° "~" c d 

= a = l  l=max(O,d+a-c) 
(36) 

Combining these two results we get that independent of the A's the following 
relation must hold 

o~]"l=0.  (37) 

Eq. (37) tells us that D and D are in some sense "reciprocal" to each other. This 
result should not, perhaps, sound so strange, considering that the D's  are associated 
with ghost, and D's  with antighost fields. We have checked (37), using coefficients 
given in tables 2-5 of appendix A, for the first 3 levels. 

In this section we have found that the conformal operator connecting the full 
vertices of Witten and of Caneschi, Schwimmer and Veneziano can be constructed 
from the operator linking the coordinate pieces of these vertices by simply replacing 
the coordinate Virasoro generators by the corresponding full generators. The 
byproducts of this work are the commutators of a, c, ~ and L, with this conformal 
operator 0 as given by relations (8, 9) and (26)-(30). These commutators will be of 
central importance in all uses of the explicit conformal transformation operator just 
constructed. 
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4. Conclusion 

The operator giving the conformal transformation between the full (coor, 
and ghost) interaction vertex of Witten's interacting string field theory and tt 
dual model vertex has been constructed. The commutators of the fields wit 
conformal operator have been given. Together they represent the basic tool 
will be needed in order to exploit the connection between the two theories 
explicit connection is of interest for two basic reasons. First, the vertex of Can 
Schwimmer and Veneziano is much easier to work with due to the remaJ 
simplicity of the coefficients M and J / / o f  its coordinate and ghost sectors. S~ 
the dual model is a template for all string theories, and the existence of the e: 
connection to Witten's theory will be of use since it will enable us to " t ran  
many of the important old results of the dual models into the language of covz 
gauge invariant string field theory. The main goal of this program is to lit 
Feynman rules of Witten's theory to the "Feynman-like" rules of dual model 

The procedure used in this paper can also be applied to constructing the op  
of the conformal transformation linking the light-cone vertex to the dual mod, 
the operator linking Witten's vertex to the light-cone vertex. The latter operato 
prove to be very interesting in that it may help us to learn how to fix gauges : 
gauge invariant theory. 

One of us (A.R.B.) would like to thank Zvonomiri Hlousek for discussions. 

Note added 

During the completion of this work we have learned of another attempt [ 
constructing the conformal operator. Using a different procedure and workin~ 
in the bosonic sectors of the corresponding theories, the conformal operate 
calculated up to second level. The procedure used failed to give a general con 
tion to all levels. 

Appendix A 

In this appendix, in tables 1-5, we list the C, D, and D coefficients (as calc~ 
from the recursion relations (8), (29) and (30)) that were used in the paper. Ill 
6 we list (for the first four levels) the Neumann coefficients of Witten's coor, 
and ghost vertices that are used in eqs. (14) and (33). In table 7 the first ten __4 

given. 
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TABLE 1 

T h e  l o w - o r d e r  b o s o n i c  coe f f i c i en t s  C,k 

393 

C~I~ 11 k = 0  k = l  k = 2  k = 3  

s = O  1 

s = 1 A 1 - A  1 

s = 2  0 ~_A2 1 -~A2 
S ~  3 1 1 1 ~A 3 -- ~mlm 2 0 ~A1A 2 

1 1 
- ~A_3 - ~A_IA_2 

TABLE 2 

G h o s t  coef f ic ien t s  f o r  n = - 1 

Ds[k 1] k = 0  k = l  k = 2  k = 3  

s = 0  1 

s = 1 - A  1 A 1 
s = 2 3 2 _ 2 A  2 3 2 - i_a 2 +_A~ ~d2 +_A~ 
s = 3  s 17 _ ~ A 3  __ ~ A 1 A 2 _ A  3 _ 2 A 1 A 2  + 3A 3_ _ ~Al_A29 3A3_ 

TABLE 3 

G h o s t  coef f i c i en t s  fo r  n = 0 

D~ °] k = 0 k = 1 k = 2 

s = 0  1 

s = 1 - 2 A  1 2,41 

s = 2 - 2 A  2 + 3A12 -6A12 2A 2 + 3A12 

TABLE 4 

A n t i g h o s t  coe f f i c i en t s  fo r  n = - 1 

~ 1  k = 0  k = l  k = 2  k = 3  

s = 0  1 

s = 1 2_A 1 - 2A_ 1 

s = 2  ~ d 2  + d ?  - 2 A •  - 3 A 2 + A  ~ 

s = 3 4 + 4 - 2A1A z 0 ~A 3 ] A I A  2 
4 2 
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TABLE 5 

Ant ighos t  coefficients for n = 0 

~ lo l  k = 0  k = l  k = 2  

s = 0  1 

s = 1 __A 1 - A  1 

s = 2 A 2 0 - A  2 

TABLE 6 
The Neumann coefficients for the bosonic  and  ghost vertex 

m NI~ sV'(, 1, 

i __ 5 11 
3 3 3 3 

2 0 0 
2 5 2 4 • 5 

3 
3 6 3 6 

4 0 0 

TABLE 7 

N u m e r i c a l  values  for the first few coefficients in  the conformal  operator transformation 

m _A m 

i - 1.67203 

2 + 0.90909 
3 +0 .18808 
4 +0 .14369 

5 - 0.14743 
6 +0.25667 
7 - 0 . 1 2 5 9 7  

8 +0 .18019 
9 - 0 . 1 0 9 6 8  

10 + 0.19065 

Appendix B 

In this appendix we will use a generalized form [12] of the well-known Baker- 
Hausdorff formula in order to write the conformal operator derived in sects. 2 and 3 
as a product of exponentials of the Virasoro generators L 0, L 1, L 2 . . . . .  Although 
the form given in eq. (3) is much more useful for applications, this alternate form 
may still be of some interest. The formula we will use here states that 

e% s =  exp(A +£o. [B + (coth.Sa) • B] + . . - ) .  (38) 
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This expression contains all the terms linear in the operator B. The Lie derivative 
is defined as 

The hyperbofic cotangent is understood through its power series expansion. 
If we use this formula for operators A and B such that 

then we get the result 

[A, B] =aoB,  (39) 

eAe 8 = e A + )~ (a° )  B , (40) 

where )~(ao) is given by the expression 

)~(ao) - _ _  
a 0 

1 - e - a °  
(41) 

If we now look at a set of three operators A, B, C satisfying the commutation 
relations 

[A, B] = aoB, 

[A,C] = 2aoC, 

[ B, C ] . . . .  (42) 

(where the dots indicate that the commutator is a linear combination of operators 
other than A, B, C), then by using eqs. (40)-(42) it is easy to show that 

e%% c =  exp(A + ) ~ ( a o ) B + ) ~ ( 2 a o ) C +  . . .  ) .  (43) 

The operators we use are 

^ r  A= -aoE(L0-1 ), 
r 

W = - a l E L ~ ,  
r 

C ~  ^ r  -a2~.,L2. (44) 
r 

It is very easy to check that the commutation relations (42) are indeed satisfied. 
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We have 

<vCSV] < v W i t t e n l e x p ( _ a o E (  ^r 1 ) _ A l Y ' L [ _ A 2 X L  ~ . . . .  ) = g o -  
r r r 

where the coefficients A,, are given in sect. 2. Using formulas (41)-(44) we find that 
up to level n = 2 we have 

<vCSV' = < vWitten ' exp ( -  a °)-"~ ( L ° - - r  1 ) ) e x p ( -  a l ~ r  L ~ ) e x p ( -  a z ~ ] L  ~ r  "'" )" 

The  new coefficients a0, a I and a 2 are related 
following way 

a 0 = A  0 , 

to our  old coefficients in the 

a 1 = A I ( 1  - e-A0) ,  

a2 = ½A2(1 - e-2Ao).  

Us ing  eqs. (12) and (15) we find 

a 0 =  -- l n ( ~ v ~ - ) ,  

1 

a l =  ~ , 

5 
t~2 16 " 
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