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The BRST transformations, given by gauge-fixing Witten’s string field theory m the Stegel gauge, are applied to the string
measure It 1s shown that the simple measure (just the product of differentials of all the fields) 1s BRST 1invariant, thus maintain-

1ng the 1nvariance of the gauge-fixed action at the quantum level

1 Introduction Recently, Witten’s gauge invariant
string field theory [1] has been gauge fixed {2,3] 1n
the linear gauge proposed by Siegel [4] The prob-
lem of fixing the gauge in an interacting gauge 1n-
vanant string field theory 1s highly non-trivial due to
the 1ssue of ghost of ghosts. The gauge-fixing was ac-
complished by Bochicchio using the procedure de-
veloped by Batalin and Vilkovisky [5,6]
Independently, plausibility arguments for the form
of the gauge-fixed action were given by the Kyoto
group [7,8], and by Thorn {9] The gauge-fixed ac-
tion was found to be invariant under a non-linear
generalization of the BRST transformations of the
free theory The problem of finding a correct mea-
sure that would lead to a BRST invariant generating
functional for Witten’s string theory was stul left
open

The Feynman rules for Witten’s theory were de-
rived 1n the first-quantized formalism [10-12] In
order to complete the proof of the equivalence of first-
and second-quantized formalisms 1t must be shown
that they lead to the same Feynman rules. To be able
to do this the string field measure must be specified
In ref [9] some indication was given that by using
the simple measure (product of differentials of all
the fields) the correct Feynman rules can be derived

In this letter we examine the string jacobian cor-
responding to the BRST transformation of the sim-
ple measure and find that 1t 1s 1dentically equal to
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one Throughout, a parallel comparison with Yang-
Mills theories 1s grven

2 The BRST jacobian For a set of fields {4,} with
a Z, grading (—)* the jacobian of the measure
I1,dA, with respect to an arbitrary transformation
A,— A, 15 given by

J=det(M,?),

where

M,%"=0A4,/04, 1f4,1seven,
=dA,/dA4; 1f A, 15 odd

It 1s easy to see that 1f the fields of opposite grading
do not mix we get back the familar result

J=det(even fields) [det(odd fields)] !
In general, a BRST transformation 1s of the form
A, A=A, 48,4, ,

where 8,4, 1s proportional to a Grassmann param-
eter 8 Using the fact that =0 we find that

0
b_Sby(__\la
Ma —6a+( ) aA), (89Aa)
Finally, we get
5}
—_ .
J~exp<§ (=) A (BgAa)) (21)

The vanishing of the graded trace (called a super-
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trace) 1n the exponent above enforces BRST invar-
1ance of the simple measure

In Yang~Mills theories we are given a Lie group
with generators {¢} such that

[t4, 1" =f°" <. (22)

Using the fact that the gauge group 1s semi-simple we
can construct a Killing form

Tr(tt"y =g, (23)

where the generators can be chosen so that g% has
I’'s and —I’s on the diagonal, while all the other
components vanish The Kilhing form 1s used as a
metric to raise and lower group indices From the
BRST transformations in Yang~Mills and (2 1) we
find the jacobian to be

Jym =exp[(g—D) abaChG] s (24)

c=c,t" being the ghost field The BRST invariance of
the measure follows directly from the group property
(2 3) We find that for all g and &

P = T, 111) =0,

The last step follows from the cyclic symmetry of the
trace. The sum 1n the exponential in (2 4) thus van-
1shes since all of 1ts terms vanish

3 The BRST jacobian for strings Witten’s gauge
nvariant string field action [1] 1s given by

Swaen=y | A+Qa+3 [ Aedra

The string operations [ and * satisfy the following
axioms

Ax(BxC)=(A*B)+C,
JA*B:(—)”'BJB*A ,

Q(A*B)=QA*B+(—)'4+QB,
fQA:O forall4,

g(AxB)=g(4) +g(B)+13,
JA*B:O unless g(4) +g(B)=0,

where g1s the first-quantized ghost number operator
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g:z C_nbn _%

The gauge invariance of Swiyen 15 thus
0 A=QA+[A4, 4]

Imposing the Siegel gauge b4 =0, the authors of
refs {2,3,9] derived the gauge-fixed action

S=%J. (D*Q(D+%J. ¢*(D*¢—Jboﬂ*¢ ,

invariant under the BRST transformations

80P, =(bof)+ 0,

8P _=(QDP+D+xD)_ b,

d48=0 (31)

@ 15 just a sum of string fields of all ghost num-
bers, 1.e @=3,9, In @, the sum is restricted to
positive g, and 1n @ _ to negative g It 1s easy to show
that the associated (second-quantized) BRST charge
Q 15 nilpotent only on-shell

The operator g can be used to classify states in the
Fock space spanned by the «, ¢ and . We write a
basis 1n this space as

{1ty geZ—13}

(1 represents all other quantum numbers) The string
fields are written as general kets in this Fock space

¢=I¢>=Z [te>4q.

There 1s a simple relation between the second-quan-
tized ghost number G and g

G=—%—g.

The easiest way to see this 1s to look at the free the-
ory gauge-fixing procedure (this has been nicely re-
viewed 1n ref. [ 13], where the onginal references are
also listed). As we see from this @ _,,=4

String fields are taken to be overall odd, thus the
ghost number g induces the following Z, gradings

|, > has grading (— )%~ 2
A, has grading ( — )+ 12

From the Fock space expressions for the interaction
vertices of Gross and Jevick [14,15] we see that |
carries a (—) and * a (+) Z, grading
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The BRST jacobian for strings follows from these
gradings, eq (3 11), as well as the general result (2 1)

Jslrmg=exp( Z Z (__)g’+1/2 d 804‘1“,) (3 2)
y<0 aAg/

To every basis state |7,> we associate 1ts ~dual
state |1,,)

[y~ 1ty =11, .
[ty,>= " 1, >=1t,> .
defined so that

155wy =0, (33)

Using the (V5| vertex of refs [14,15] 1t 1s pos-
sible to exphicitly calculate the 7. We find that, up to
a normalization constant, ~duality, in the oscillator
bass, Just corresponds to the interchange of the b and
¢ (as well as the |+ > and |~ ) vacua) As a con-
sequence of this g(7,)=—g

Using (3 1) we find for g< 0 that

8()Ag'/=j l[:f1>*(¢e*¢—3/2+(p—3/2*¢2) 0

+ (p1eces without @)

Dafferentiating this expression with respect to 4, , we
get

4
94

g1

(140, [ 1R85, @30, (34)

SHAI{I

where [ , | represents the usual graded commu-
tator Using (3 2), (3 4), as well as the (ant1) cyclic
property of the | given in the axioms, we find the
string BRST jacobian to be equal to

Jslrmg=exp< Z Z (__)g+l/2 (1 +5g’—3/2)

g<0

Xj[ltl,%ltm*fb_m 0) (35)

The above formula can also be found in ref. [3]
Let us note here the formal similarity of this result
with eq (2 4) for Yang-Mills theories In both cases
only the ghost fields are present in the jacobian There
1s, however, an important difference between the two
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In Yang-Muills theories the gauge algebra 1s a semi-
simple Lie algebra, and this directly led us to BRST
mvariance of the measure The string algebra 1s dif-
ferent, 1t can be written as

[te. t5]1=1"1(8 h) tsinssn

For the string algebra, the integration | serves as
a generalization of the trace, as can be seen from the
string overlap conditions [ 1,14,15] through which 1t
1s defined The natural analogue of (2 3) would be
to use [1, x4}, however, this object always has zeros
on the diagonal, and thus 1s no good This can be
fixed, as we can see from eq (3 3), by instead using

jwt;)*ﬂh (36)

Here. 1n fact, 1s the most important difference be-
tween the gauge algebras of strings and Yang-Mills
theories To be able to use the object introduced
above to show BRST invariance of the string mea-
sure, we would have to be able to move the nlde op-
erator () under the integral in (3 5) from one of
the 7 to @ _;,, We are not able to perform this kind
of “partial integration” since

<V|~lolal¢0,

where ~ ' 15 the sum of ~’s acting 1 all the cor-
responding string spaces As a consequence, 1n string
theory we cannot find as elegant a proof of BRST
invariance of the measure as was the case in Yang—
Mills theories

4 BRST invariance The = algebra has an 1dentity
element .#, 1¢ a string field such that

Fx X=X+ =X forallstring fields X

From the axioms and the assigned gradings we see
that .# 1s an even, g= — 3 string field. The Fock space
realization of .# can be found in refs [14,15], where
1t 15 called the integration vertex (this 1n fact proves
the existence and uniqueness of .#) From (3 5) we
get

JOg)=1,

where 4 1s an arbitrary Grassmann number This 1s
an indication of the BRST invariance of the string
measure

The simplest way for this invariance to hold (and
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the one most reminiscent of Yang-Mills theories)
would be to have vanishing of integrals of the form

[ 07, 1010100 1)

for all g<0, : and ; The way to calculate these 1n-
tegrals 15 to take the ¢ to be elements of the oscillator
basis, and to use the three-string vertex of Gross and
Jevicki [14,15]

Unfortunately, 1t 1s rather easy to construct a
counter-example to the above claiam Let us take
fte>=|—>aswellas |/ ;3,>=b_,| —)> The ~ dual
of |—>1s |+, so we have

Jues =101

=(V3|b2, |+, — =>=(1<2)
=(=nN}¥)—(1+2)

Instead of using the explicit values of the Neumann
coefficients N we wili use the following symmetries

N NPT s+ 12 +n1 AT13
NP =N 3 Nmn=(—')n mNnm

We see that the above integral does indeed vanish for
even, but not for odd values of »

From a few examples like this, 1t soon becomes ev-
1dent that viewed 1n this basis BRST invariance (if
1t 15 to exist at all) comes about through a very com-
plicated (infinite) cancellation procedure of inte-
grals (41) involving (all powers of) the
corresponding Neumann coefficients So rather than
have each integral (4 1) vanish, we must try to prove
that

S 1501601410525 =0, (42)

for all g<0, and arbitrary @ _5,,. At first hand there
seems to be little hope of showing this in the oscil-
lator basis Eq (4 2) 1s a kind of trace, so we may
look for a basis 1n which 1t takes the sitmplest form

The string integration takes on 1ts sitmplest form 1n
the coordinate representation. The basis vectors are

25
| X(a) )= HO |x*(a) > 1¢(a)> ,

H=
where ¢(g)=x2%(o) 1s the bosonized ghost coordi-
nate [1,14,15] Witten’s interaction was first for-
mulated 1n this basis and 1s represented by a product
of delta functions enforcing the correct string over-
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laps. Ignoring mid-point nsertions, for the moment,
we have

J1ixwr
= JI 6[X(a)=Y(n—0)] 6[Y(0)

—~X(r—0)]
= J] d[X(o)-Y(n~0)].

O<o<m

Thus,
T X(o) ) =|X(rn—0)) (43)

Using the appropriate mode expansions for x“(g)
and ¢(0), and treating the zero modes 1n the stan-
dard way, gives us

| X(0)) =1x5, 6,5 10", 8>

Eq. (4 3) can now be written as

T1X(0) > =1(=)"xh, (=)"da> D", —&>
In this basis (4 2) 1s just

oo 25
[1 11 tax1(as,]
X[ =)0t (=)7,5, 13, 6,5 101930

(44)

This integral vanishes since

| acfn-xn= | aep-0n0,

- o

even if f{x) and f{ —x) do not commute

Eq. (4 4) implies invariance of the measure It
represents a ‘“naive” proof in the sense that the ver-
tex 1s expressed 1n terms of delta functions, and be-
cause zero modes should be treated more carefully

We now give an exact proof of BRST invaniance
using the vertex overlap equations Let us first note
that the two-string vertex V, has the property

M|ty =L1],

for our whole basis This just means that V, gives us
the inner product. Using this we find

Vallg oy 187 Y2 =Lty [ th> =040

However, we also have
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[; <?,Alz<t¢|1]|?g,>l [t >2 =040
Thus

<V2|12=/2A<z7k|z<t¢|1 (45)

Taking the projection of this equation with J,,
where ple¢ =g' 15 just the ghost number of the first
string, we find

<V’2||2‘=‘<Vzl|z5p5{,/=;<l~fA12<fH1, (46)
as well as
<V2_,|12=Z,<t;i|z<?r/\|1 (47)

Using this we find
2[R 180101000

=D 5[V =<Vl V3>

The requirement of BRST invariance can now be cast
in the compact form

(<Vz_e||2—<V§llz)l Vi>i123=0, forallg
(48)
The two- and three-string vertices of Witten’s the-

ory satisfy the following overlaps (in the spaces of
strings 1 and 2)

V2l [x'(6) =x*(n—0)] =0

forall e [0, ] , (49)
V3l [x!'(0) =x*(rm—0)] =0
foralioe[0, n/2] (4 10)

The g-projection of the two-string vertex 1s

<V§]=<V2'5p£6e

Tdi
= j 5, XD(—14) (V2 [exp(1ip ) (411)

For convenience we define
(V3| =< V2|exp(1Aple)

This obviously satisfies the overlap
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(VA [xu(0) —Xa(m~0) ~An, 2] =0

forall [0, 7] (412)

We now look at the following matrix element
(V3lx(0) —xi(n—0)]1V3)

Choosing =26 as well as any ge [0, #/2], and using
the overlaps for V; and V4 we find

AV5|V3>=0 foralld
Thus

(VilVsdoct 0(4), (413)

giving us
T R
1 ~ | == _ —_-
(Vi V3)= j 2nexp( 14g) .V O(4) I

Since this does not depend on g we have proven eq
(4.8), and thus established that J,.,,=1,1¢ that the
measure

I11d4,.]

1s invanant under the BRST transformations (3 1)
We point out a few subtleties The constant .§ in

eq (4 13) 1s mnfinite We get a 3(1) in (V3| V3) for

every ge[0, n/2], so

VA Vsya [ 6(4)=3d(4) [T4(0)

e[0 n/2]

This does not affect our result since . ¢ does not de-
pend on g Another point that should be mentioned
1s the effect of the mid-point ghost insertion It 1s easy
to see that 1t does not alter our result since to get the
g-dependence of (V5| V5> we used any point 1n [0,
n/2] We can thus safely avoid the mid-point and the
insertion 1n it

We have proven eq (4 8) in yet another way uti-
lizing the formula for the vacuum expectation values
of products of exponentials of quadratic forms 1n the
oscillators [17]
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(Ofexp[3(alM:|a)+(alL,)]
xexp[3(a'|M,|a")+(a"[L)]10)
=[det(1-MM,)] ™"

L)

1 1
Xexpl: 5 <L1

1-M,M,
1
+5<L2

L)

+{ L |———|L
{ 1 —Mng 2 ’

where N 1s equal to the number of values the index
1 takes, so N=D+1 due to the bosonized ghost co-
ordinate We will not give this proof here, but will
just note that the crucial &(4) dependence of
(V4| V3D comes here through expressions of the form

M,

1

M, 1-M.M,

1
Iim —~exp(—A2/¢) ,
D e exp(=ATe)

where ¢ 15 a regularization parameter needed since
det(1 -M,M,)=0

Finally, let us establish a connection with the for-
malism of Batalin and Vilkovisky In this formalism
[5,6], the requirement of BRST invariance of the
generating functional leads to the equation

(W, W) =1hAW,

where the “full action” W acts as a generator of BRST
transformations The Poisson-like bracket ( . ),
as well as the “laplacian™ A are defined 1n ref. [5]
in terms of all the fields 4,, as well as the so-called
anti-fields A* Wrniting W=S+aW,+#>W.+ , we
obtain the “master equation” for the action S

(s,8)=0,

as well as a set of equations for the W, which can be
thought as contributing to the measure. Our gauge-
fixed string action was constructed so that the master
equation 1s satisfied The solution W=.5 (which cor-
responds to using the simple measure) 15 possible
only 1f

As=y -0

8y4,,=0.
g,aAg, [7AEl4

which 1s precisely what was shown above

484

PHYSICS LETTERS B

3 December 1987

5 Conclusion To recapitulate, we have shown that
the simple string field measure, represented by the
product of differentials of all the fields, 1s invariant
under the same BRST transformations as the gauge-
fixed action of Bochicchio The invariance 1s thus
maintained at the quantum level

As has been pointed out by Bochicchio [3] the la-
grangian formalism (unlike the hamiltonian) does
not uniquely determine the measure of the gener-
ating functional. BRST invariance 1s not enough We
could obtain another candidate for the measure by
multiplying the simple measure by a manifestly BRST
invariant expression For every such measure, we
would have to check umitarity order by order 1n per-
turbation theory Luckily, 1n string theory we know
the correct Feynman rules from the first-quantized
formalism [ 10~12]. Together with the work done by
Thorn [9], this indicates that the simple measure 1s
the correct one 1n string field theory

The main difference between Yang-Mills theories
and strings that has been seen 1n this work, comes
about due to a basic difference in their gauge alge-
bras Further study of the properties of the string
gauge algebra 1s of central importance, especially 1n
looking for non-perturbative solutions The search
for these types of solutions 1s the prime motivation
for constructing a field theory of strings in the first
place Perturbative solutions are of interest mainly
1n showing equivalence of first~- and second-quan-
tized formalism.

The BRST nvariance discussed 1n this letter works
only on-shell, and the extension to an off-shell 1n-
variance 1s not as trivial as was the case in Yang-Mills
theories, and is not yet known In fact, the full inter-
pretation of the gauge-fixing procedure of Witten’s
theory 1s not yet fully understood. This (and some
related problems) is presently being looked into [ 18]
The resolution of these problems 1s 1nteresting 1n 1ts
own right, and 1s of central importance for under-
standing the connection with the hght-cone formal-
1sm of Kaku and Kikawa [19,20], as well as the work
of Stromunger [21,22] on closed string field theory,
centering around the cubic action [23]

At the end let us also mention the work of ref [24]
where the BRST invariance of the measure was
looked into 1n the case of the light-cone-like string
field theory
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