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The BRST transformations, given by gauge-fixing Wltten's string field theory in the Smgel gauge, are apphed to the string 
measure It is shown that the simple measure (just the product ofdlfferennals of all the fields) ~s BRST mvarlant, thus maintain- 
mg the lnvanance of the gauge-fixed action at the quantum level 

1 Introductzon Recently,  Wi t ten ' s  gauge invar lant  
string field theory [ 1 ] has been gauge fixed [2,3] in 
the l inear  gauge proposed  by Smgel [4] The prob-  
lem of  fixing the gauge in an interact ing gauge m- 
var iant  string field theory is highly non-tr ivial  due to 
the issue o f  ghost o f  ghosts. The gauge-fixing was ac- 
compl ished  by Bochlcchm using the procedure  de- 
veloped by Batahn and Vflkovlsky [5,6] 
Independent ly ,  p lausibi l i ty  arguments  for the form 
of  the gauge-fixed act ion were given by the Kyoto  
group [7,8] ,  and  by Thorn [9] The gauge-fixed ac- 
t ion was found to be i nvanan t  under  a non- l inear  
generahzatmn o f  the BRST t ransformat ions  of  the 
free theory The problem of  f inding a correct mea-  
sure that  would lead to a BRST lnvar lant  generating 
functmnal  for Wl t ten ' s  string theory was still left 
open 

The Feynman  rules for Wi t ten ' s  theory  were de- 
r ived in the f i rs t -quant ized fo rmahsm [10-12]  In 
order  to complete the proof  of  the equivalence o f  first- 
and  second-quant lzed  formal isms it must  be shown 
that  they lead to the same Feynman  rules. To be able 
to do th~s the string field measure  must  be specified 
In ref  [9] some lnd~catmn was given that  by using 
the s imple measure  (p roduc t  o f  different ials  of  all 
the fields) the correct Feynman  rules can be der ived  

In this let ter  we examine  the string j acob ian  cor- 
responding to the BRST t ransformat ion  o f  the sim- 
ple measure  and find that  it is ident ical ly  equal to 
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one Throughout ,  a paral lel  compar ison  w~th Yang-  
Mills  theories is given 

2 The BRSTjacobtan For  a set o f  fields {Aa} with 
a 7/2 grading ( - ) 4 ~  the j acob lan  of  the measure  
H~dA~ w~th respect to an arb i t ra ry  t r ans fo rma tmn  
Aa--*A~, is given by 

d = d e t ( M a  ~'), 

where 

Ma b = OA'JOA;, l fAa is e v e n ,  

=OAa/OA; lfA~ is odd 

It is easy to see that  i f  the fields o f  opposi te  grading 
do not  mix we get back the famlhar  result 

J = d e t ( e v e n  fields) [ t ie r (odd f i e l d s ) I - l  

In general, a BRST t ransformat ion  ~s of  the form 

An ~A'a=Aa + 8oAa , 

where 6oAa is p ropor t iona l  to a Grassmann  param-  
eter 0 Using the fact that  0 2 = 0  we f ind that  

0 
M . ~ = ~ + ( - )  'o O--y~ (8oAo) 

Finally,  we get 

J = e x p  ( - ) ' ~  -~a(~oAa)  (2 1) 

The vanishing o f  the graded trace (cal led a super- 
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trace) m the exponent above enforces BRST mvar-  
mnce of  the simple measure 

In Yang-Mflls theories we are given a L~e group 
with generators {t ~} such that 

[t ~, tb]=f~h,t' . (2 2) 

Using the fact that the gauge group ~s seml-s~mple we 
can construct a Kllhng form 

Tr(t~t ~') =g~' , (2 3) 

where the generators can be chosen so that gab has 
l 's  and - l ' s  on the dmgonal, whde all the other 
components  vanish The Kllhng form ~s used as a 
metric to raise and lower group radices From the 
BRST transformatmns in Yang-Mflls and (2 1 ) we 
find the jacobmn to be 

JvM =exp[(g--D)f~baC,,O] , (2 4) 

C=CJ' being the ghost field The BRST mvarmnce o f  
the measure follows d~rectly from the group property 
(2 3) We find that for all a and b 

f"t'.=gl---yg Tr( t~[ t", t h ] ) = 0 .  

The last step follows from the cyclic symmetry of  the 
trace. The sum xn the exponentml m (2 4) thus van- 
lshes since all of  ~ts terms vamsh 

3 The BRSTjacobmn for stmngs Witten's  gauge 
lnvarmnt string field action [ 1 ] is g~ven by 

1 

The string operatmns f and • sausfy the following 
axioms 

A , ( B , C ) = ( A , B ) , C  , 

f A , B = ( - ) ~  f B ,A ,  

Q ( A , B ) = Q A , B +  ( - ) 4 A , Q B ,  

f QA = A ,  0 for all 

g(A,B) = g ( A )  +g(B) + 3, 

f A , B = O  unlessg(A)+g(B)=O, 

where g ~s the first-quantlzed ghost number  operator 

g=Z c_~bn --½ 
n 

The gauge mvanance  o f  Sw,~te. IS thus 

8,1A = QA + [A, A] 

Imposing the Siegel gauge boa = 0, the authors of  
refs [2,3,9] derived the gauge-fixed action 

s = l f  ~ * Q q ~ +  3 f  ~ * ~ * ~ - ~  b°//*q~ ' 

invariant under the BRST transformations 

8orb+ = (bo//) + 0 ,  

~ o ~ _  = (Qq~+ ~ , q ) ) _  0 ,  

8o f f=0  (3 1) 

is just a sum of  string fields of  all ghost num- 
bers, i.e tb=2~q~g In q~+ the sum is restricted to 
positive g, and m q~_ to negative g It xs easy to show 
that the associated (second-quantlzed) BRST charge 
Q is nflpotent only on-shell 

The operator g can be used to classify states m the 
Fock space spanned by the a,  c and b. We write a 
bas~s in th~s space as 

{It'g) g~Z-½} 

(z represents all other quantum numbers) The stnng 
fields are written as general kets in this Fock space 

g /  

There is a simple relatmn between the second-quan- 
t~zed ghost number  G and g 

G =  - ½ - g .  

The easiest way to see th~s xs to look at the free the- 
ory gauge-fixing procedure (th~s has been mcely re- 
viewed in ref. [ 13 ], where the original references are 
also hsted).  As we see from this ~ _ l / 2 = A  

String fields are taken to be overall odd, thus the 
ghost number  g reduces the following Z2 gradlngs 

I tg ) has grading ( - ) e- 1/2 , 

A~ has grading ( - )g+ 1/2 

From the Foek space expressions for the lnteractmn 
vertices o f  Gross and Jewck~ [ 14,15 ] we see that f 
carries a ( - ) and • a ( + ) Z2 grading 
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The BRST jacoblan for strings follows from these 
gradmgs, eq (3 11 ), as well as the general result (2 1 ) 

Js,r,ng = exp(, .~ /~ ( - - )  g+l/2 0 ~om~. t )  ( 3 2 )  
o OA e , 

TO every basis state ItS) we associate its -dual  
state [t'e, ) 

defined so that 

f l / 'e , )* ItS) =dj  (3 3) 

Using the ( ~ I vertex o f  refs [ 14,15] it is pos- 
sible to explicitly calculate the T. We find that, up to 
a normahzat lon constant, -duali ty,  in the oscillator 
bas~s, just corresponds to the interchange of  the b and 
c (as well as the I + )  and I - )  vacua) A s a c o n -  
sequence o f  this g(t'e) = - -g  

Using (3 1 ) we find for g <  0 that 

a ,,Ae , = f ] g"e t ) * ( ( l )e  * (l) _ 3/2 -~ l~  _ 3/2 * (I)e ) 0 

+ (pieces without qb)  

Differentiating this expression with respect to Ae, we 
get 

0 
OA~, 

=( l+Oe_3 /2 )  f [ ~ , , ) * [ I t ~ ) ,  ~_3/2} 0 ,  ( 3 4 )  

where [ , } represents the usual graded commu-  
tator Using (3 2), (3 4), as well as the (anti)  cyclic 
property of  the f given in the axioms, we find the 
string BRST jacobmn to be equal to 

j~t~mg =exp(e~o  ~ (_)g+l /2  (1-~-~g--3/2) 

x f [,T~,), lt'~) ],cl)_v2 O) ( 3 5 )  

The above formula can also be found in ref. [ 3 ] 
Let us note here the formal similarity o f  this result 
with eq ( 2 4 )  for Yang-Mllls theories In both cases 
only the ghost fields are present in thejacoblan There 
~s, however, an important difference between the two 

In Yang-Mllls theories the gauge algebra is a semi- 
simple Lie algebra, and this directly led us to BRST 
mvanance  o f  the measure The string algebra is dif- 
ferent, it can be written as 

[t'~. t{] =f'J ~(g, h) ~ tg+h+3/2 

For the string algebra, the integration f serves as 
a generahzatlon o f  the trace, as can be seen from the 
string overlap conditions [ 1,14,15 ] through which it 
is defined The natural analogue of  ( 2 3 )  would be 
to use ft'~,t~,, however, this object always has zeros 
on the diagonal, and thus is no good This can be 
fixed, as we can see from eq ( 3 3 ) ,  by instead using 

f-(t'~)*t/h (3 6) 

Here. m fact, is the most important  difference be- 
tween the gauge algebras o f  strings and Yang-Mllls 
theories To be able to use the object introduced 
above to show BRST mvarmnce of  the string mea- 
sure, we would have to be able to move the tilde op- 
erator ( - )  under the integral m (3 5) from one of  
the t to @-3/2 We are not able to perform this kind 
of  "partial lntegratmn" since 

( VI ~ total :~ 0 ,  

where -~ota~ is the sum of  - ' s  acting in all the cor- 
responding string spaces As a consequence, in string 
theory we cannot find as elegant a proof  o f  BRST 
mvanance  of  the measure as was the case in Yang-  
Mills theories 

4 BRST mvarlance The • algebra has an idennty 
element J ,  1 e a string field such that 

J .  X =  X ,  Y = X for all string fields X 

From the axioms and the assigned gradmgs we see 
that J is an even, g =  - 3 string field. The Fock space 
realization o f  J can be found in refs [ 14,15 ], where 
it is called the integration vertex (this m fact proves 
the existence and uniqueness ofo¢) From ( 3 5 )  we 
get 

J ( ~ J )  = 1, 

where 2 is an arbitrary Grassmann number  This is 
an mdlcanon of  the BRST lnvarlance o f  the string 
measure 

The simplest way for this mvanance  to hold (and 
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the one most reminiscent of Yang-Mllls theories) 
would be to have vanishing of integrals of the form 

f lit'e,>, It'~>l*ltZv2>, (4 1) 

for all g<  0, t and j The way to calculate these in- 
tegrals ~s to take the t to be elements of the oscillator 
bas~s, and to use the three-string vertex of Gross and 
Jevlckl [ 14,15 ] 

Unfortunately, it ~s rather easy to construct a 
counter-example to the above claim Let us take 
ItS> = I - > as well as [ tJ_3/2> =b_.l - > The ~ dual 
o f l - >  is [ + >, so we have 

f [ l + > ,  I - > ] * b _ . l - >  

=<r3lb3_nl+,-.- > -  (1 ,--, 2) 

~ 3 1  =(-nN.o)-(1 ~ 2) 

Instead of using the explicit values of the Neumann 
coefficients N we will use the following symmetries 

~ 1  "~ ~ n + m  ~ ' 1 3  N"' =N"+ ~ '+ ~ , N n ; . = ( - ,  . . . . .  

We see that the above integral does indeed vanish for 
even, but not for odd values of n 

From a few examples like th~s, it soon becomes ev- 
ident that wewed in this basis BRST invarxance (if 
it is to exist at all) comes about through a very com- 
plicated (infinite) cancellation procedure of inte- 
grals (4 l) revolving (all powers of) the 
corresponding Neumann coefficients So rather than 
have each integral (4 1 ) vanish, we must try to prove 
that 

~ f [ I ~ , ) ,  I t ; )  ]* I~b_3/e ) = 0 ,  (42 )  

for all g<0 ,  and arbitrary ~-3/ : .  At first hand there 
seems to be little hope of showing this in the oscil- 
lator basis Eq (4 2) is a kind of trace, so we may 
look for a basis in which it takes the simplest form 

The stung Integration takes on its simplest form in 
the coordinate representation. The basis vectors are 

25 

I X ( a ) > -  H Ix"(a)> 1O(a)> , 
11=0 

where 0 (a )=x26(a)  is the bosonized ghost coordi- 
nate [1,14,15] Wltten's interaction was first for- 
mulated in th~s bas~s and is represented by a product 
of delta functions enforcing the correct string over- 

laps. Ignoring mid-point insertions, for the moment, 
we have 

f lX>*lY> 

= H ~[x(a)-Y(rc-a)] ~[Y(a) 
O<cr  <~r /2  

- x ( ~ - c r ) ]  

= H a[x(a)- Y(~-~)]. 
0 ~ r  < rC 

Thus, 

IX(a) > = I X ( n - a ) >  (4 3) 

Using the appropriate mode expansions for x*' (a) 
and ¢(a) ,  and treating the zero modes in the stan- 
dard way, gives us 

IX(a) > = Ix~, 0. > IP", g> 

Eq. (4 3) can now be written as 

IX(a) > = I ( - ) " x ~ ,  (-)"¢n> IP u, - g >  

In this basis (4 2) is just 

1-[ [dx~][d¢.] 
n =  1 J~=O 

x J  [ l ( - ) " x ~ ,  ( - ) " O . > ,  I x ~ , 0 . > l * l ¢ - 3 a >  

(44 )  

This integral vanishes since 

; dx f ( x ) f ( - x )=;  dxf(-x)f(x) ,  
- o c  - -  o o  

even l f f (x )  and f ( - x )  do not commute 
Eq. (4 4) lmphes invariance of the measure It 

represents a "naive" proof m the sense that the ver- 
tex is expressed in terms of delta functions, and be- 
cause zero modes should be treated more carefully 

We now give an exact proof of BRST mvariance 
using the vertex overlap equations Let us first note 
that the two-string vertex V2 has the property 

<g21t>=<tl , 
for our whole basis This Just  m e a n s  that V2 gives us 
the inner product. Using this we find 

<V2l~g,,>~ IthJ>2=(~,[t~}=aghg j, 
However, we also have 
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Z (t'~ 12 (t~l,  ] I~g, 2, ItS, 22 =dehO j, 
-1 

t / ,  A 

Thus 

(V21~2=Z (#~ 12(t~l~ ( 4 5 )  

Taking the projection o f  this equanon with @ ~ / ,  
where P~6 -m-g I 1S JuSt the ghost number  of  the first 
string, we find 

( V~ 1 ,2 -  ( ~ 1 ,2f ip~. /=~ (Tr~12(t) I~ , ( 4 6 )  
/, 

as well as 

( V F / I , 2  =~]  (t~ 12 < ~  [, ( 4 7 )  

Using this we find 

= ( ¢rgk_ 3/2 [ 3[ ( V~"c l12 - ( vg l12] l V3 )123 

The requirement o fBRST lnvarlance can now be cast 
in the compact  form 

( ( V 2 e I I 2 - ( V ~ I I 2 ) I V 3 ) I 2 3 . ~ - O ,  for all g 
(48) 

The two- and three-string vertices o f  Wltten's the- 
ory sausfy the following overlaps (m the spaces o f  
strings 1 and 2) 

( ~1 [x' (a) -xZ(~r-a)]  --0 

for all a e  [0, z~] , (4 9) 

( V3 1 [x' (a) -x~(z~-a)]  =0 

for all a ~ [ 0 ,  z~/2] (4 10) 

The g-projection o f  the two-string vertex is 

( V~l = ( ~ I~,,_~ ~ 

= ~ e x p ( - 1 2 g ) ( V 2 l e x p O 2 p ~ 6 ) .  (4 11) 

For convenience we define 

( V~l - ( V2 lexp(utp~6) 

This obviously satisfies the overlap 

( v~ r [x~' (a) -x~ , (~-  ~) -2~,, 26] =0 

for all a~ [0, ~] (4 12) 

We now look at the following matrix element 

( v~ I [x~(a) - x ~ ( ~ - a ) ] l  v3 > 

Choosing# = 26 as well as any a e  [0, ~/2] ,  and using 
the overlaps for V3 and V~ we find 

2(V~l  V3) = 0  for all 2 

Thus 

( V ~ f V 3 ) o c . )  d ( 2 ) ,  (4 13) 

giving us 

( V ~ I V 3 ) =  e x p ( - ~ g )  ,~ d ( 2 ) - 2 ~  

Since this does not depend on g we have proven eq 
(4.8), and thus established that Jst.~g= 1, 1 e that the 
measure 

Fl [dA~,] 
g~ 

is mvanan t  under the BRST transformations (3 1 ) 
We point out a few subtleties The cons tan t .  ~ in 

eq (4 13) is mfimte We get a d(2) in ( V~l V3) for 
every a e [ 0 ,  zc/2], so 

<v~Iv~>oc I]  6(~)=6(~) I~6(o) 
a e  [ 0  7r/2] 

- ~  ~I-i ~(o) 

This does not affect our result since ~ f does not de- 
pend on g Another point that should be mentioned 
is the effect of  the mid-point ghost insertion It is easy 
to see that ~t does not alter our result since to get the 
g-dependence of  ( V~l V3) we used any point in [0, 
~z/2 ] We can thus safely avoid the mid-point  and the 
insertion in it 

We have proven eq (4 8) in yet another way Utl- 
hzlng the formula for the vacuum expectation values 
o f  products of  exponentials of  quadranc forms an the 
oscillators [ 17 ] 
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(0 lexP[½ (alM2 la) + (al L2)] 

×exp[½(a+[M~ [ a * ) + ( a + ( L t ) ] [ 0 )  

= [det (1 -M~M, )] -N/2 

Xexp[ l ( L t l l _ ~ M  M2 Lt) 

+ 2 ( L 2  M, l_12M L2) 

+ ( L ,  I _ I M ,  L 2 ) ] ,  

where N is equal to the number of values the index 
takes, so N=D+ 1 due to the bosomzed ghost co- 

ordinate We will not give this proof here, but will 
just note that the crucial 6(2) dependence of 
( V~ I V3) comes here through expressions of the form 

+hum + ~ exp(-+3+"/~_), 

where ~ is a regulanzation parameter needed since 

det(1 -M+Mt)  = 0  

Finally, let us establish a connection with the for- 
mahsm of Batahn and Vilkovlsky In this formalism 
[5,6], the requirement of BRST mvariance of the 
generating functional leads to the equation 

( W, W) ~-- lfiA W, 

where the "full action" Wacts as a generator of BRST 
transformations The Poisson-hke bracket ( ), 
as well as the "laplacian" A are defined mref .  [ 5 ] 
in terms of all the fields Aa, as well as the so-called 
anti-fields A* Writing W=S+hWt+fi:W2+ , we 
obtain the "master equation" for the action S 

( s , s )=0 ,  

as well as a set of equations for the IV,, which can be 
thought as contributing to the measure. Our gauge- 
fixed string action was constructed so that the master 
equation is satisfied The solution W=S (which cor- 
responds to using the simple measure) is possible 
only if 

--~-0 BOA+,=0 AS= Y 7";, OA ~ , 
which is precisely what was shown above 

5 Concluston To recapitulate, we have shown that 
the simple string field measure, represented by the 
product of differentials of all the fields, is mvanant 
under the same BRST transformations as the gauge- 
fixed action of Bochlcchlo The lnvanance is thus 
maintained at the quantum level 

As has been pointed out by Bochxcchio [ 3 ] the la- 
granglan formalism (unlike the hamlltonxan) does 
not uniquely determine the measure of the gener- 
ating functional. BRST invariance is not enough We 
could obtain another candidate for the measure by 
multiplying the simple measure by a manifestly BRST 
mvarlant expression For every such measure, we 
would have to check unltarity order by order in per- 
turbatIon theory Luckily, in string theory we know 
the correct Feynman rules from the first-quantlzed 
formalism [ 10-12 ]. Together with the work done by 
Thorn [ 9], this indicates that the simple measure is 
the correct one m string field theory 

The main difference between Yang-Mllls theories 
and strings that has been seen in this work, comes 
about due to a basic difference In their gauge alge- 
bras Further study of the properties of the string 
gauge algebra IS of central importance, especially in 
looking for non-perturbative solutions The search 
for these types of solutions is the prime motivation 
for constructing a field theory of strings m the first 
place Perturbatlve solutions are of interest mainly 
in showing equivalence of first- and second-quan- 
txzed formalism. 

The BRST invanance discussed in this letter works 
only on-shell, and the extension to an off-shell in- 
variance is not as trivial as was the case in Vang-Mllls 
theories, and is not yet known In fact, the full inter- 
pretatlon of the gauge-fixing procedure of Witten's 
theory is not yet fully understood. This (and some 
related problems) is presently being looked into [ 18 ] 
The resolution of these problems is interesting in its 
own right, and is of central importance for under- 
standing the connection with the light-cone formal- 
ism of Kaku and Klkawa [ 19,20 ], as well as the work 
of Strommger [21,22] on closed string field theory, 
centering around the cubic action [23 ] 

At the end let us also mention the work ofref  [24] 
where the BRST mvariance of the measure was 
looked Into in the case of the hght-cone-hke string 
field theory 
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