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The Greensite—Halpern stabilization technique is applied to d=0 Euclidean field the-
ories. The effective action is calculated using WKB as well as a variational approach.
For a set of free theories with non-trivial measure the effective action is computed ex-
actly, and a comparison is made with the results of approximate techniques. The effect
of stabilization on the measure is to bring in a “centrifugal barrier” term that breaks
parity invariance. A model with quartic interaction of wrong sign is also analyzed in the
limit of large coupling.

1. Introduction

There has been a great burst of interest recently in the matrix model approach
to gravity (see Refs. 2 and 3 and references therein). The success in extracting
the Painlevé equation gave the possibility of understanding the non-perturbative
contributions to the partition function. It is now known that acceptable solutions of
Painlevé get complex non-perturbative contributions.®® This is not very surprising
since the equation follows from formal manipulations on an ill-defined partition
function — coming from a theory whose action is not bounded from below. We
refer to such actions as unstable. In strings each surface appears with positive
weight and so we necessarily get a perturbation theory that is not Borel summable,
and follows from an unstable action.

For this reason it is essential to understand how quantum theories will make sense
based on unstable actions. The general approach to “stabilizing” such theories was
developed by Greensite and Halpern! six years ago. It was recently rediscovered by
Marinari and Parisi.® Here we shall study in detail certain d = 0 unstable theories
where the stabilization program can be carried out in closed form. We shall also look
at two approximate techniques that one may use: WKB and variational calculations.
‘We shall compare their predictions to the exact results. For a set of unstable free
theories with non-trivial measure we discover a symmetry breaking mechanism that
comes about as a consequence of stabilization.
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Stabilization of matrix models has been investigated numerically.®” It was found
that the stabilized theory correctly gives only real non-perturbative contributions.
It is very important to get some analytical results about stabilized matrix models.
An initial investigation in this direction has begun by Karliner and Migdal.® The
results given here are used in Ref. 10 to give a derivation of a stabilized Painlevé
equation.

2. Stabilization

The usual definition of an Euclidean partition function of a d-dimensional theory
is

Z= / [dgle= #5191 (2.1)

This expression is ill-defined if the action is not bounded from below.
Greensite and Halpern! have given a prescription of how to make sense of such
unstable theories. They define the partition function as ‘

Z=(py), (2.2)

where |1)) is the ground state wavefunction of an associated (d + 1)-dimensional
theory governed by the Fokker—Planck Hamiltonian

1 82
= [ax( - S+ V) 9
where the potential is given by
1 /65 \2 1 68
Vidl = 5 (6¢(x)) T T @4

For the case of stable theories this is equivalent to the usual definition of the parti-
tion function. To show this note that we can write the Fokker—Planck Hamiltonian
as

H= / dzR(z)* R(z) | (2.5)

where

i 6 1 6§
R(z) = — ———+———). 2.6
@ =75 (5 * 258 24)
From this it follows that the energy eigenstates satisfy £ > 0. On the other hand,
o = e~ /PS5 gatisfies Ryg = 0, so that

Hio=0. (2.7)

For a stable action S it follows that 1 is normalizable, hence it is a state, and by
virtue of (2.6) the ground state. Equation (2.2) then reduces to the usual definition
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of the partition function (2.1). Note, however, that the expression (2.2) is well-
defined even when we are dealing with an unstable theory. In this case 1, is not
normalizable, hence not a state. The true ground state 1 has an energy slightly
larger than zero. If we write it as

¢ = e~ WSent (2.8)

then the partition function takes the more familiar form
7= [lase-tsmisl, (29)

given in terms of a (stable) effective action Seq. The problem of finding this effective
action is just related to a (d-+1)-dimensional quantum mechanics problem of finding
the ground state of the Hamiltonian (2.3). Similarly for correlators we get the
stabilized result

(U6 = 5 [1ds1Qiglemtswtel. (210)

As shown by Greensite and Halpern the stabilization technique we have outlined
satisfies three very important requirements. First, S and S.g give the same pertur-
bation theory. Second, both have the same classical equations of motion. Third, the
large-N expansions of the two theories are identical. The last two requirements are
quite restrictive and there is no other stabilization technique known that satisfies
them. It would be very important to prove that Greensite—Halpern stabilization
is the unique one satisfying the above requirements. Another very important open
question is the extension of this procedure to Minkowski theories.

3. Free Theory with a Wrong Sign

The simplest example of an unstable action is free theory with the wrong sign,
1le.,

1 _
So = —5#:iKijd; = =5o . (3.1)
By virtue of Egs. (2.3) and (2.4) we have

=~ 1
H=H+ §K“ s (32)

where H(H) represent Fokker-Planck Hamiltonians corresponding to the actions
So(S’o). The two Hamiltonians differ by just a constant, so they share the same
ground state wavefunction. Since Sy is a stable theory we know that we have
Set = So. Therefore, the effect of stabilization is simply to flip the sign of the free
action to

Ser=—-S0=25 . (3.3)

This conclusion obviously holds for any Euclidean free field theory regardless of the
number of dimensions.
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V(z)

Fig. 1. Stabilizing potential.

Let us next concentrate on a less trivial example when a non-trivial measure
term present in (2.1). We shall look at d = 0 theories given by

400
Z =/ dzz?te k50 (3.4)
—o0
where n € Z and Sy = —1/2 z2. We apply the stabilization technique to the action
S= —%1:2 ~nhlnz? . (3.5)

This action is obviously unstable for all values of n. Dropping a trivial constant
term, the stabilizing potential is simply

V(z) = -5;—2:2 + == ;15 . (3.6)

Note that V(z) is invariant under n — 1 — n, so that
Sest(z,n) = Ser(z,1—1n) . 3.7
As an example of this we have Sea(z,1) = Sea(z,0) = 1/2 z2. We therefore need
only look at the cases n = 2,3,4,... . The stabilizing potential V{(z) is shown

in Fig. 1. Note that if we write n — 1 = I, then we see that stabilization has
brought about a “centrifugal barrier” term. For n = 2,3,4,... the “orbital angular
momentum” takes on the values [ = 1,2,3,... and it becomes impossible to tunnel
through the barrier at the origin. We thus have a symmetry breaking. Assuming
hereafter that we are in the right well the ground state wavefunction is as in Fig. 2.
The corresponding effective action is shown in Fig. 3.
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¥(z)

Fig. 2. Ground state wavefunction.

Sess(z)

Fig. 3. Effective action.
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The Schrodinger equation reads

a2y 2(.,. 1, n2-nhk?

This may be solved exactly. We shall do this at the end of this section. Let us first
determine S by the use of approximation techniques at our disposal. These are
essential once we look at models with interactions. The exact solution will then
allow us to gauge the validity of various approximations.

Let us use WKB to determine the ground state. The classical turning points

are given (for z > 0) by
zy3=Va*F D, (3.9)

where a? = 4A’E,b* = 4h%(n? — n) and D? = a? — b* are all positive quantities.
For z < 0 the turning points are —z,/3. It is easy to see that there is no tunneling
through the barrier at z = 0, since the integral ff;l V2V — 2F dz is infinite.

The ground state energy is determined by the condition

z3
/ V2E =2V de = 3’2. . (3.10)
T1
The integral on the right may easily be evaluated in terms of elementary functions.
We get
2_ ¥

2—t
1 {\/2azt—~t2—b4—a2 arcsin (a D )—b2 arcsin (a D t )} , o (3.11)

4h

evaluated between the limits ¢/, = a®? ¥ D. This leaves us with the simple result
1/4h (a® — b?)7, and so the ground state energy is given by

E= 2_17{(1 Iy n> . (3.12)
For z > z5 the ground state wavefunction is just

- [, x()dy

1
1/}(’3)—'\/"6—(—356 ,

with k(z) = 1/2V(z) — 2E. Again, this integration may easily be performed. Rather

than write this out it is more illustrative to give the result for large . We have

r 1 T
/ k(y)dy =~ T ./\/EA Vy? - hA%2dy , (3.14)

2

(3.13)

where A% = 4(1 + v/n? — n). Integrating we get

2 A YY)
%z‘/zz —hA? _ ATln (i__zz_ﬂ.) .
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Expanding in h/z? we find

(@)  ValR)eHS (3.15)
where we have

1 A% h Atk
;l(:c):;(1+Tz—2+...)exp{?ﬁ+...}. (3.16)

Dots indicate terms that are @(h?/z*). Therefore, for large (positive) z, the effect
of stabilization is as before just to flip the sign of the free action. Now there is also
a change in the measure according to 2" — p(z).

From (1.4) we see that in the case of a general theory we get the asymptotic
result

Set = |S] - (3.17)

At the same time stabilization always induces a measure term.

Returning to the models governed by (3.5), we may similarly use WKB to de-
termine Seq in the region z1 < £ < 3. As we have seen in (3.11) the answer will be
given in terms of arc sines and logs. We can then use this to obtain an expansion
of Ser around the minimum. We shall present here another, simpler derivation of
this expansion by the use of a variational approach.

As we have seen, for large positive £ we have Seq =~ ~Sg, while at the origin we
have Ses = o0. The simplest trial wavefunction to take is therefore

V= e—-;’;‘-z’+%1nz2

: (3.18)

with the variational parameter A satisfying A > 0. We determine A so that it mini-

mizes ) (BLHIY)
E()) = ——('/)W’) . (3.19)

A simple calculation gives

AA=1)=n(n-1)
h -1 ’

2RE(A) = A (3.20)

where we have thrown away an unimportant constant. The minimum of E(A) for

n=23,4,... where A = n, and so our effective action is
1. 2
Seft = 3% = nhlnz® . (3.21)

The minimum effective action is at

Zmin = V2nh . (3.22)
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By expanding around this minimum we get

Seﬂ' = '1'2'2 - 1

3
2 12v/nh

(3.23)

where we have introduced z = v2(z — Zmin).

We turn now to the exact solution of (3.8). From the equation we see that for
large z we have asymptotically 1 ~ exp(—1/4h z?2), while near the origin ¢ ~ z".
We thus write the wavefunction as

¥(y) = e Hybu(y), (3.24)

where y = 22 /2h, and u(y) is easily seen to satisfy the equation

1 1

This is a confluent hypergeometric differential equation (see, for example, Ref. 11).
The general solution may be written as

1 1 3 3
u(y)= AR (%+Z—hE,n+§;y) +By%"” 1P (—g+z—hE,§—n;y) . (3.26)

From the requirement that u(y) does not diverge at the origin we see that we must
have B = 0. At the same time for ¥(y) to vanish at large y it must be true that
1F1 is a polynomial. We have

) az a(a+1)z?
1tFi(a,bz)=1+ 310 + Bb+1) 2! + ... (3.27)
hence this is a polynomial for @ = 0,~1,—2, ... . This determines the energy levels

of our model to be )

n
i.e., they are equally spaced just as in the case of the harmonic oscillator. The
wavefunctions are

(3.28)

1 2
Ym(z) = e Hz 1F1< m,n+ 5 ;r.> (3.29)

For the ground state m = 0, and by (3.27) we see that 1 F; is then just 1. The
effective action is thus exactly what we found in (3.21) by using the variational
approach, and so for example (3.22) correctly gives the VEV

(z) = V2nh . (3.30)
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The WKB approximation, while giving (3.17) correctly is not of much use in deter-
mining the integration measure g(z). On the other hand, we have checked numeri-
cally that the correlator {(z) calculated by WKB turns out to be in good agreement
with the exact result.

4. Quartic Interaction with Wrong Sign

Let us now apply the stabilization technique to an unstable interacting theory.
We look at the action

S= %zz — gzt (4.1)

where the coupling constant g is positive. Following the general prescription we
may easily construct the stabilizing Hamiltonian for this model. However, in this
case we do not get an exactly solvable theory for any value of g, and have to settle
for an approximate derivation of S.q. As we shall show it is possible to get a closed
result for § — oo in a way that parallels the work of the previous section.

We may introduce an auxiliary field o and cast (4.1) in the form

S = %zz + %02 —V2g 2% . (4.2)

This makes the action quadratic in z. The partition function is
Z= / do =37 / dz e~ 31-VETo)* (4.3)

For the rest of this section we set A = 1. The z integration is easily performed. For
o > 1/4/2g this is the Gaussian of the wrong sign, but we may then use (3.3) to get

Z = / do e~ E0) (4.4)

where £(¢) = 1/2 02 + 1/2In}o — 1/\/2g], and where we have dropped a trivial
constant term. Taking g — oo gives us
L, 2
Y(o) = 37+ Alne (4.5)
with A = 1/4. This action is not bounded from below, but this cannot be the case
since we started in (4.1) with an unstable action. Note the similarity to the action
in (3.5). The stabilizing potential is now

1

V(a) = gd’z + M—l-

. (4.6)

This is just as we had before with the substitution of n — 1 for A. We may thus
directly write

Zesi(0) = %02 -(A+1)o?. 4.7



2018 A. R. Bogojevié

Setting A = 1/4 we find
o0 s 1,2
VA :N/ do 0% e7 37 . (4.8)
0

Treatment of unstable quartic theory for large but finite coupling will be presented
elsewhere. We are able to proceed with this perturbative calculation (in 1/g) due to
the fact that (as we have seen in the previous section) the complete set of eigenstates
of the Fokker-Planck Hamiltonian corresponding to (4.5) is known.

5. Conclusions

The aim of this paper is to give examples of unstable d = 0 field theories for
which it is possible to complete the Greensite—Halpern stabilization scheme in closed
form. We find that even in the simple case of unstable free theories with non-trivial
measure terms, stabilization gives rise to interesting physics — this case giving rise
to a “centrifugal barrier” term that breaks parity invariance. The exact solutions
enable us to check the validity of approximation techniques for calculating S.g that
are at our disposal, and that must be used for all but the simplest few models.
At the end we have dealt with the more interesting model of a wrong sign quartic
interaction. In the case of infinite coupling this model also becomes exactly solvable.
This enables us to construct a perturbation theory in 1/g.
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