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Abstract

We present, solve and numerically simulate a simple model that describes the consequences of increased longevity for fertility
rates, population growth and the distribution of wealth in developed societies. We look at the consequences of the repeated use of
life extension techniques and show that they represent a novel commodity whose introduction will profoundly influence key aspects
of the economy and society in general. In particular, we uncover two phases within our simplified model, labeled as ‘mortal’ and
‘immortal’. Within the life extension scenario it is possible to have sustainable economic growth in a population of stable size, as
a result of dynamical equilibrium between the two phases.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Constant lifespan is often taken as one of the assumptions in creating and analyzing econophysical and
sociophysical models. Today’s bio-medical research is, however, uncovering the reasons why organisms live as long as
they do. Through modern genetic engineering, the applications of this research are converging on the point of finding
practical ways to extend life substantially (and possibly repeatedly) beyond current life expectancy.

The uncovering of the so called “secret of life” was one of the crowning achievements of the second half of the past
century. The discovery of the structure of DNA by Crick and Watson [1], and the later successful translation of the
DNA code into the language of proteins, fueled the continuing revolution in molecular biology and bio-technology.
This revolution is now making it possible to tackle rationally the complementary question of why we die. For the first
time we have the option of looking at death from a fact-based [2] scientific perspective. The picture that is emerging
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is quite unexpected [3]. We are getting farther from the concept of “natural death” as an immutable and inevitable end
of life [4–6].

Physical models played a crucial role in the discoveries that marked the birth of molecular biology [7]. Similarly,
the well-developed machinery for understanding the behavior of complex systems is today being positioned to help
understand the mechanisms of death and the extension of life [8–11]. Another avenue of research is to try to understand
the social and economic implications of the prolongation of human lifespan. In principle, there are two quite distinct
paths that one may choose to take [12]: economics or econophysics. In this work we approach these problems from
an econophysical framework. Using this language we show that it is possible to model and predict some of the far-
reaching social and economic consequences of the successful extension of the human lifespan that have, up to now,
been disregarded both by economists [13,14] and physicists [15–17].

The fact that we all must die has been one of the central points shaping all human societies. Substantial modification
or even the removal of this mortality paradigm will necessarily bring about great change in how societies function. It
is important to try to anticipate these changes. Successful modeling of these phenomena is not only of practical,
but also of heuristic value. Many important discoveries, particularly in physics, have followed from analyzing
the consequences of modifying key paradigms. The introduction of a new and extremely sought-after commodity,
allowing for the extension of life, would bring about a great change in economy and society in general.

In this paper we present and solve a simple model dealing with the consequences of just such a novel commodity.
We study the implications of possible long-term extensions of life for society and its economy. We model the dynamics
of social and economic indicators of a society and investigate how the introduction of life extension will influence
fertility rates, population growth and the distribution of wealth. For this purpose we propose and analytically solve
a simple model. The model presented, when life extension is absent, is related to earlier investigations [18,19], the
main new feature being the introduction of overall economic and population growth. The results presented include
conclusions that the population explosion is not a necessary consequence of the introduction of the life extension
commodity, and that it is even possible to have sustainable economic growth in a population of stable size.

2. Basic model

Our model tracks through the generations the number and individual wealth of all of the descendants of a specific
individual at generation t = 0 having wealth m. We begin by first treating the simpler case of no life extension. Within
our model, the lifespan of each individual consists of three phases: formative years (parents invest in the individual);
adult years (individual inherits some initial money, marries, the pair earn some final amount of money, have children);
old age (individual lives off their pension and ultimately dies). As a result of these assumptions, dependency ratios are
fixed within our basic model, and are constant throughout the population. We track the adult phase of each individual
which starts at t and lasts until t + 1. We assume that individuals inheriting m money choose spouses having the
same amount of money, i.e. that the pair start off with 2m initial capital. While this may appear to be a natural
assumption it is not obvious whether it holds empirically. For example, Dragulescu and Yakovenko [20] have studied
the related phenomena of the earnings of spouses and have shown the earnings to be essentially uncorrelated. It would
be interesting to investigate the correlation of inherited wealth of spouses. Within the model presented here we stay
with the above simplifying assumption. We further assume that society is numerous enough that everyone can find
a mate. During their working life the pair increase their wealth by a factor γ , a fixed constant for the whole society
satisfying γ > 1. This money is spent on their children and the pair’s pensions:

2γ m = kC + km′
+ 2P(m). (1)

In the above equation k is the number of children, C the investment in each child, m′ the inheritance of each child.
The pension is assumed to be proportional to initial wealth, i.e. P(m) = α m. The number of children k is assumed
to take on the maximal possible value consistent with the rule m′

≥ m. This is a crucial assumption strongly affecting
the model’s predictions. It implies that parents have children only if they can assure them an equal or better financial
start-up compared to what they had. The number of children thus follows from a simple economic criterion. As
a consequence, the model leads to a positive relation between fertility and wealth. For this reason, it is obviously
not applicable to poor societies. In those societies the choice of the number of children is more strongly related to
survival (procreation) and less to expectations of their future wealth. Our ultimate goal is to analyze the effects of life
extension on society. For this reason we focus on developed societies in which economic choices play a dominant
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Fig. 1. (a) Numerical simulations of the time evolution of wealth distributions for the case of no life extension. The plot corresponds to γ = 2,
α = 0, C = 2, and an initial Gaussian wealth distribution. (b) Comparison of the time dependence of the fertility rate for France [33] with the
predictions of the model without life extension when γ − α decreases slowly (adiabatically) below the critical half-integer value.

role, societies having the necessary financial means to purchase life extension. Although many other things influence
fertility (e.g. religion, level of education, system of beliefs), the criterion chosen is that of a simplified model seeking
to capture the dominant aspect of the relation between fertility and wealth in developed societies.

We will keep track of m(t) and n(t) (money inherited by the descendants at generation t and the number of those
descendants). Note that the total number of people in the society at time t is simply N (t) ∝ n(t)/2t .

It is easy to see that for non-trivial dynamics we need to further have γ ≥ α + 1/2 + C/2m, since smaller values
of γ lead to k = 0 for all values of m. By introducing the critical value m∗ = C/(2γ − 2α − 1), as well as auxiliary

quantities K1 =

[
2m(γ−α)

C+m

]
and M1 =

2m(γ−α)
K1

− C , we can write the solution of the above dynamics as

k = θ(m − m∗)K1,

m′
= θ(m − m∗)M1.

Square brackets denote the integer part of an expression. The step function θ(x) used here equals unity for x ≥ 0,
and vanishes for x < 0. The above equations make it possible to investigate the dynamical evolution of wealth
distributions from given initial conditions. Wealth distributions have been extensively studied in the literature. The
field began with the power law distribution of Pareto [21]. Recent investigations show that, while Pareto’s law gives
a good fit at higher incomes, it does not agree well with observed data at middle and low incomes [22–26] which
best fit to lognormal or Gibbs distributions. The two regimes follow [27,22] from the fact that in low and middle
income ranges the accumulation of wealth is additive, while in the high income range wealth grows multiplicatively.
Simplified models [28–30] have linked Gaussian wealth distributions with egalitarian societies. Our model without
life extension agrees well with this phenomenology. The dynamics of the model is such that it preserves Gaussian
shaped wealth distributions, as shown in Fig. 1(a).

In contradistinction to this, Sala-i-Martin has shown [31,32] that highly segregated societies exhibit bi-modal
wealth distributions. In the next section, we will show that the introduction of life extension in our model can lead to
societal segregation, which then results in the appearance of just such bi-modal distributions.

Within the framework of our model it is also possible to analyze fertility rates of a given society. The fertility rate
f is the average of k(m) over the whole population. If the wealth distribution is such that most of the population have
wealth m � C then the above solution gives f . [2(γ −α)]. Due to the integer part operation, the fertility can depend
strongly on small changes in economic growth γ or of social expenditures α. If γ and α change slowly with time, then
γ̇ and α̇ can be neglected it the equations of motion and we uncover the same relation between fertility, economic
growth and social expenditure. As a result, even the smallest decrease of γ – α below half-integer values leads to a
decrease of fertility by one unit. This is illustrated in Fig. 1(b). The data points correspond to measured fertility rates
in France. Similar abrupt decreases of fertility have been observed for many other developed countries [33]. Thus, an
increase in social expenditures greater than the increase in economic growth results in a step-down in fertility rate.
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The sharp decline of fertility rates in developed countries has been most often accredited to increased participation
of women in the work market. The study of the relation between fertility and wealth within the presented simplified
model may offer new insight into this important phenomenology.

It is important to note that the simplifying assumptions made in this paper make the presented toy model (and its
generalization to include life extension) analytically solvable. Future models will need to be made more realistic. To
do this it will be necessarily to relax some of the assumptions of the current model. In particular they will have to treat
the effects of overlapping generations. Unlike in our mean-field model, a more realistic model will have to have agents
with different growth factors, different lifespans, richer or poorer spouses, etc. We intend to study the effects of the
relaxation of these assumptions in a future publication. These more realistic models will have more phenomenological
input parameters and will necessitate a purely numerical treatment. We hope that the present analytically solvable
model will serve as a useful zeroth-order approximation to these future models.

3. Model with recursive life extension

We now generalize the model to include life extension. The extension of life for one individual and one time step
(equal to the natural length of the adult period) costs E . We assume that any individual having enough money to pay
for this life extension will do so, no matter what. Therefore, for γ m ≥ E we now have

2γ m = 2E + kC + km′
+ 2m′. (2)

On the right hand side the first term pays for life extension for the pair, the second and third terms are the investment
and inheritance of each child, while the last term represents the “inheritance” of the original pair with which they
begin their new life cycle. Note that we have assumed that both parents inherit the same money as do each of their
children. After life extension individuals are assumed to be working able, i.e. there is no pension term in this case.
Note that for γ m < E we have the same dynamics as before, i.e. as given in Eq. (1), with P(m) = αm. Note that the
introduction of life extension decreases dependency ratios — in the extended life periods the population is of good
health and is assumed to be in the economically productive phase. Recursive application of life extension drives the
dependency ratio to zero.

We introduce m1 = E/γ and m2 = E/(γ − 1). The life extension phase is for m ≥ m1. The solution of the model
depends on the relation between critical values m∗ and m1. In terms of K2 = [

2mγ−2E−2m
C+m ] and M2 =

2mγ−2E−K2C
K2+2 ,

the solution for m∗ < m1 is given by

k = {θ(m − m∗) − θ(m − m1)} K1 + θ(m − m2) K2,

m′
= {θ(m − m∗) − θ(m − m1)} M1 + θ(m − m2) M2.

Similarly, the solution for m∗ ≥ m1 equals

k = θ(m − max{m2, m∗}) K2,

m′
= θ(m − m1) M2 .

Note that for all values of m the function θ(m − m1) measures whether life was extended in the current generation.
From the above solutions it follows that, whether the life extension phase, k 6= 0 is possible only for the case

γ > 3/2, and m ≥ (C + 2E)/(2γ − 3). We also see that m′
≥ m everywhere except for m ∈ [ m1, m2). It follows

that individuals with m ≥ m2 are immortal – they extend their lives and later they (and their children if they have any)
have more money than in the previous life cycle. Note that the potential segregation between mortals and immortals
could lead to serious political tensions and instabilities in a society. We next tackle the issue of segregation.

Fig. 2 illustrates the obtained solutions for the time dependence of the number of children k and wealth m for a
society with γ = 3/2, α = 1/2, C = 1. Figs. 2(a) and (b) correspond to the case of no life extension. The part of
the population with m < 1 has no children and dies off; those with m ≥ 1 have one child. That child is financially
better off than its parents, i.e. m′ is above the dashed m′

= m line. After t generations we have m(t) ∼ 2t , while the
population decreases as N (t) ∼ 2−t . Figs. 2(c) and (d) correspond to the same society as before but with life extension
costing E = 3. The population now consists of two groups that never mix — mortals and immortals. Immortals have
m ≥ 6. The number of mortals roughly decreases as 2−t while their individual wealth oscillates in the interval [1, 6).
In fact, numerical simulations show that the majority of this population oscillates in a narrow interval of wealth around
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Fig. 2. Solutions of the model for γ = 3/2, α = 1/2, C = 1. Plots (a) and (b) correspond to no life extension, plots (c) and (d) to life extension
with E = 3. The dashed lines in (b) and (d) correspond to m′

= m. Note that the introduction of life extension has decreased fertility.

Fig. 3. Time evolution of individual wealth: (a) An example of a society where tunneling is not possible and mortals and immortals remain
segregated (γ = 3/2, α = 1/2, C = 1, E = 3); (b) An example with tunneling (γ = 2, α = 0, C = 2, E = 3). Shaded regions denote
corresponding [m1, m2) intervals. Horizontal lines beneath them denote the critical value m = m∗.

m = 2. For k = 0 (immortals without children) we have m′
= 3m/2 − 3, so that their wealth grows asymptotically

as (3/2)t . For k > 0 the condition m′
≥ m is not met, i.e. for the case considered immortals can have no children.

From Eq. (2) it follows that immortals can procreate only if economic growth is such that γ > 3/2. Even this single
example shows how the introduction of life extension severely affects both population growth and wealth distribution
of the whole society, not just of the newly created class of immortals. The key effect of life extension on mortals is that
for some of them lifespan is increased — some do cross into the life extension phase m ≥ 2; however, their wealth
then decreases (solid curve below the dashed m′

= m line) and ultimately makes further life extension impossible.
Fig. 3 illustrates the time dependence of wealth for two different sets of parameters. The interval [ m1, m2)

represents a barrier through which a mortal must “tunnel” in a single generation in order to become immortal. The
only way that the descendants of mortals can become immortal is if m = m1 − 0+ leads to m′

≥ m2. To get this we
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Fig. 4. (a) Phase diagram showing the isolated islands in the model’s parameter space where it is possible to tunnel from mortality into immortality
in the case α = 0. The vertical lines denote γ values for: UK, Sweden, Australia (A); US, France, Italy, Canada, India (B); Spain, Greece, Romania
(C). For E/C = 1.5 all the above countries lie on the first island. (b) Time evolution of wealth distributions for the case of life extension with
tunneling (γ = 2, α = 0, C = 2, E = 3). In this case the introduction of life extension leads to the emergence of a bi-modal distribution of wealth.

must have

m∗ < m1, (3)

2m1(γ − α)

C + m2
≥

[
2m1(γ − α)

C + m1

]
. (4)

Equivalently, these inequalities may be written as

2 E
C (γ − α)

γ +
E
C

γ
γ−1

≥

[
2 E

C (γ − α)

γ +
E
C

]
≥ 1. (5)

These inequalities specify a series of isolated islands within the (γ , E/C) plane in which it is possible to tunnel
from mortality into immortality. These islands are indexed by integer n. For the simplest case α = 0 they are the
areas between curves E

C =
(n+1)γ

2(γ−α)−n−1 and E
C =

nγ (γ−1)
2(γ−α)(γ−1)−nγ

. The critical points γn = (1 +
√

1 + 2n(n + 1))/2
denote the start of the n-th island. It follows that mortals and immortals necessarily form segregated populations if γ

is smaller than the golden mean γ1 = (1 +
√

5)/2.
Fig. 4(a) shows the first few islands in which tunneling is allowed for the case α = 0 (similar graphs follow for

other values of α). The vertical lines in Fig. 4(a) denote γ values for: UK, Sweden, Australia (A); US, France, Italy,
Canada, India (B); Spain, Greece, Romania (C). These have been calculated using data for adjusted annual growth of
these countries from 1960 to 2000 and assuming that one generation in our model corresponds to 30 years [14]. For
E/C = 1.5 all the above countries lie on the first island in the above phase diagram. The much higher growths of
China and Singapore are also consistent with tunneling between mortals and immortals for the same value of E/C
since they lie on the second island. Fig. 4(b) shows that life extension profoundly influences the distribution of wealth.
For the society with γ = 2, α = 0, C = 2, and E = 3, tunneling takes an initial Gaussian wealth distribution into
a bi-modal one. Wealth distributions of this type are very similar to those of existing highly segregated societies in
which life expectancies at birth differ significantly between the rich and the poor [31]. This is an indication that the
presented model, although substantially simplified, captures key aspects of realistic processes.

Similar changes may be found when looking at fertility rates of mortals and immortals, as well as the overall size
of the population. In contradistinction to what one might naively expect, the introduction of life extension does not
speed up population growth. In fact, for realistic values of γ the size of the population generally stabilizes. This gives
us interesting examples of societies with sustained economic growth but without a spiraling population explosion.
It is not difficult to see that this is a consequence of the dynamical equilibrium between two phases in the model.
In fact, this uncovered non-trivial behavior within a simplified model is the essence of how physics can contribute
to our understanding of economy and society in general. Namely, effective models in physics (e.g. the Ising model)
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Fig. 5. Profit of pharmaceutical companies as a function of the unit price E . The society shown has γ = 2, α = 0, C = 2. The initial wealth
distribution was a Gaussian centered at m = 2 with width σ = 1. The t = 1, 2, 4 time slices are shown from bottom to top. The maximal profit for
the producers of life extension is for E ≈ 3, i.e. for E/C ≈ 1.5.

are of value not because they encode the detailed phenomenology, but because they capture key qualitative relations
between dynamical quantities like the one above, providing insight needed for deeper understanding of the underlying
phenomenology.

So far we have looked at life extension from the consumer’s perspective. We now briefly look at the profits of the
pharmaceutical companies selling the life extension product. Each individual purchase of life extension increases the
profit of the life extension companies by E . We assume here that all the R&D expenses of developing the product have
already been covered and that the actual cost of manufacturing the product is negligible. Summing the purchases over
the whole society we get the time dependence of the total profit. An example of this is illustrated in Fig. 5 for a society
with γ = 2, α = 0, and C = 2. From the figure we see that the maximal profit determines that E/C ≈ 1.5. Note that
this is also the horizontal line in the phase diagram in Fig. 4(a). We see, therefore, that the economic requirement of
maximizing profit of pharmaceutical companies is consistent with the political requirement of easing social tension
through de-segregating mortals and immortals, i.e. through allowing tunneling into immortality.

4. Concluding remarks

We have presented and solved a simplified model that analyzes the consequences of (repeatable) life extension
for fertility, population growth and wealth distribution. When life extension is absent the model correctly reproduces
observed time dependence of wealth distributions, and abrupt declines in fertility rates. We have analyzed in detail the
introduction of life extension to the model and have found it to be a novel commodity which profoundly influences
key aspects of society. Of particular interest is the emergence of two distinct phases: societies in which mortals and
immortals are segregated, and societies in which economic factors allow descendants of mortals to “tunnel” into
immortality.

The analysis of simplified models such as ours is but a first step in a process that could ultimately help in forming
important future policies, e.g. those to do with the pricing of pharmaceutical and medical products and services, wider
healthcare and insurance policies, etc. As is well known, these issues can have profound effects on the stability of
societies and their economic growth, and have for this reason attracted much attention. An important recent example
is the decision of the Brazilian government to bypass the copyright on US-produced AIDS drugs [34] in order to
be able to treat a significant part of the AIDS-infected population, and to avoid political instability that may arise
from this problem. Models such as ours have the possibility of leading to rationally thought-out policies, allowing
society to make critical choices acceptable to its members. However, in order to do this they necessarily have to be
followed up by the development and analysis of a series of richer models incorporating more realistic assumptions. We
have already commented on some directions in which this process of model building needs to go when we discussed
the assumptions within our basic model without life extension. The introduction of life extension will further affect
matters such as dependency ratios, or the effects of overlapping generations. The issue of work–leisure tradeoffs can
also play an important role in the dynamics of a society with life extension. On the other hand, the very introduction of
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life extension could greatly influence our attitudes towards work and leisure in prolonged lifespans. Also, the decisions
based on risk assessment will necessarily undergo a qualitative change when made from the longer time perspective
offered by repeated life extension. Social and economic strategies will also change accordingly.

In the presented model the economic growth, parental investment, and price of life extension were all externally
determined. More realistic models should include the boot-strap influence of population growth and wealth
distribution on these parameters. We plan to pursue this generalization in a future publication. Another interesting
extension of the model would be to consider the interaction and coexistence of two parts of society having different
parental investments.

References

[1] J.D. Watson, F.H.C. Crick, Nature 171 (1953) 737.
[2] The Human Mortality Database, URL: http://www.mortality.org/.
[3] M.Ya. Azbel, Phys. Rev. E66 (2002) 016107.
[4] T.J.P. Penna, J. Stat. Phys. 78 (1995) 1629;

T.J.P. Penna, A. Racco, A.O. Sousa, Physica A 295 (2001) 31.
[5] J. Oeppen, J.W. Vaupel, Science 296 (2002) 1029.
[6] R. Arking, V. Novoseltsev, J. Novoseltseva, J. Gerontol. A59 (2004) B697.
[7] H.F. Judson, The Eighth Day of Creation, Simon and Schuster, New York, 1979.
[8] E.M. Rauch, H. Sayama, Y. Bar-Yam, Phys. Rev. Lett. 88 (2002) 228101.
[9] J.B. Coe, Y. Mao, M.E. Cates, Phys. Rev. Lett. 89 (2002) 288103.

[10] M. Masa, S. Cebrat, D. Stauffer, Physica A 364 (2006) 324.
[11] P.M. de Oliveira, S.M. de Oliveira, D. Stauffer, S. Cebrat, Physica A 273 (1999) 145.
[12] P. Ball, Nature 441 (2006) 686.
[13] O.J. Blanchard, S. Fischer, Lectures on Macroeconomics, MIT Press, Cambridge, MA, 2001.
[14] R.J. Barro, X. Sala-i-Martin, Economic Growth, MIT Press, Cambridge, MA, 2002.
[15] B.W. Arthur, Increasing Returns and Path-Dependence in the Economy, University of Michigan Press, Ann Arbor, MI, 1994.
[16] B.K. Chakrabarti, A. Chakraborti, A. Chatterjee, Econophysics and Sociophysics: Trends and Perspectives, John Wiley and Sons, New York,

2006.
[17] R.N. Mantegna, E.H. Stanley, Introduction to Econophysics, Cambridge University Press, Cambridge, 1995.
[18] R. Coelho, Z. Neda, J.J. Ramasco, M.A. Santos, Physica A 353 (2005) 515.
[19] M.A. Santos, R. Coelho, G. Hegyi, Z. Neda, J. Ramasco, Eur. Phys. J. Special Topics 143 (2007) 81.
[20] A. Dragulescu, V.M. Yakovenko, Modeling of Complex Systems: Seventh Granada Lectures, in: AIP Conference Proceedings, vol. 661, 2003,

p. 180.
[21] V. Pareto, in: F. Pichou (Ed.), Cours d’Economie Politique, vol. 2, 1897, Lausanne.
[22] M.A. Fuentes, M. Kuperman, J.R. Iglesias, Physica A 371 (2006) 112.
[23] H. Aoyama, W. Souma, Y. Fujiwara, Physica A 324 (2003) 352.
[24] A. Dragulescu, V.M. Yakovenko, Eur. J. Phys. B 17 (2000) 723;

A. Dragulescu, V.M. Yakovenko, Eur. J. Phys. B 20 (2001) 585.
[25] A. Dragulescu, V.M. Yakovenko, Physica A 299 (2001) 213.
[26] A. Chakraborti, B.K. Chakrabarti, Eur. Phys. J. B 17 (2000) 167.
[27] A.C. Silva, V.M. Yakovenko, Europhys. Lett. 69 (2005) 304.
[28] R. Trigaux, Physica A 348 (2005) 453.
[29] A. Das, S. Yarlagadda, Physica A 353 (2005) 529.
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