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Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Received 25 January 2008; accepted 30 January 2008

Available online 9 February 2008

Communicated by V.M. Agranovich

Abstract

We generalize a recently developed method for accelerated Monte Carlo calculation of path integrals to the physically relevant case of generic
many-body systems. This is done by developing an analytic procedure for constructing a hierarchy of effective actions leading to improvements
in convergence of N -fold discretized many-body path integral expressions from 1/N to 1/Np for generic p. In this Letter we present explicit
solutions within this hierarchy up to level p = 5. Using this we calculate the low lying energy levels of a two particle model with quartic
interactions for several values of coupling and demonstrate agreement with analytical results governing the increase in efficiency of the new
method. The applicability of the developed scheme is further extended to the calculation of energy expectation values through the construction of
associated energy estimators exhibiting the same speedup in convergence.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Originally introduced in quantum mechanics [1,2] and later
most widely used in high energy theory [3,4] and condensed
matter physics [5,6], path integrals have become important tools
throughout the physical sciences from atomic, molecular and
nuclear physics, to chemistry and biophysics. Moreover, path
integrals are starting to play important roles in several areas
of mathematics and in modern finance [7], especially in option
pricing applications [8,9]. The downside of the formalism is
that the mathematical properties of path integrals are not suffi-
ciently well understood, and that an extremely small number of
path integrals can be solved exactly [10]. An extensive overview
of the path integral formalism and its various applications can
be found in [11].

Beside their key position in analytical approaches to quan-
tum theory, path integrals have an important role in direct nu-
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merical simulations of realistic many-body systems. Such simu-
lations have made possible practical comparisons of the predic-
tions of various theoretical models with the results of associated
experiments. Further, they have led to a deeper understanding
of the complex physical phenomena involved [12].

The starting point in all such calculations is the time-sliced
expression for the general quantum-mechanical transition am-
plitude [2],

(1)AN(a, b;T ) = 1

(2πε)
MNd

2

∫
dq1 · · ·dqN−1 e−SN

from initial state |a〉 to final state |b〉, for time interval T , where
N is the number of time slices, ε = T/N and SN is the naively
discretized action for a system of M non-relativistic particles
in d spatial dimensions. The N → ∞ limit of the above dis-
cretized amplitude gives the continuum amplitude A(a,b;T ) =
〈b|e−ĤT |a〉. The evaluation of these types of discretized ex-
pressions is handled by a variety of well-developed numerical
integration methods, and this is one of the principle reasons for
the popularity of the path integral approach in numerical simu-
lations.
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The performance of numerical algorithms for the calculation
of path integrals is determined by the efficiency of the applied
integration techniques, as well as by the speed of convergence
of the discretized amplitudes to the continuum. The first aspect
has been successfully dealt with by numerous Monte Carlo inte-
gration methods based on efficient sampling of trajectories. The
second is usually addressed by the use of better discretizations,
i.e., by substituting better effective actions for the naively dis-
cretized action. The underlying idea here is to construct and use
effective actions that lead to improved convergence of physical
expressions to the (same) continuum limit.

Typically, physical expression calculated using the naively
discretized action converge to the continuum as 1/N . A re-
view of a variety of effective actions constructed by improving
short-time propagation and using generalizations of the Trotter–
Suzuki formula [13], together with their ranges of application
and dependence on ordering prescriptions, are given in [14].
For a long time now, the state of the art result has been the
1/N4 convergence of discretized partition functions obtained
by Takahashi and Imada [15], and Li and Broughton [16]. In
these papers the authors used a generalized form [17] of the
Trotter formula and the cyclic property of the trace to increase
the speed of convergence of the discretized partition functions
to 1/N4. We stress that this increase in the speed of conver-
gence only holds for partition functions and not for amplitudes.
Some recent results regarding the efficient implementation of
PIMC algorithms may be found in Refs. [18–22]. In general,
the main feature of the improved effective action—faster ap-
proach to the continuum limit, i.e., with smaller number of time
slices—translates into numerical speedup, simpler integration
and smaller statistical fluctuations of the quantities calculated.

In a recent paper [23], we have introduced the concept of
the ideal effective action S∗

N . Discretized amplitudes calculated
with the ideal effective action do not depend on the discretiza-
tion coarseness N , i.e., they are all equal to the sought-after
continuum amplitude

(2)A∗
N(a, b;T ) = A(a,b;T ).

Note that for free particles S∗
N is in fact just the naively dis-

cretized action. In [24] we derived the integral equation for the
ideal action for a single particle moving in one spatial dimen-
sion in a general potential. We then solved this integral equation
as an asymptotic expansion in ε. The obtained truncation of the
ideal effective action S

(p)
N to order O(εp) systematically im-

proves convergence to the continuum to 1/Np:

(3)A
(p)
N (a, b;T ) = A(a,b;T ) + O

(
1/Np

)
,

where p = 1 corresponds to the naive action. Up to now the
work has focused on one particle theories in one dimension.
Within this set of theories the outlined procedure has been used
to determine explicit expressions for the set of effective dis-
cretized actions up to level p = 12. The ensuing speedup of
several orders of magnitude has been verified by extensive nu-
merical simulations [25]. The speedup holds for the calculation
of all path integrals—for transition amplitudes, partition func-
tions, energy expectation values (in combination with appro-
priate energy estimators), as well as for calculations of energy

levels. In this Letter we extend the above method to the phys-
ically relevant case of general many-particle non-relativistic
systems in arbitrary number of spatial dimensions. This is done
within a new analytical approach to the construction of the ef-
fective actions hierarchy. The new approach gives the same
effective actions as the old one when applied to one particle
one-dimensional theory, however its computational complex-
ity is lower, making it possible to determine effective actions
at higher p levels. In particular, the new approach allows for a
relatively straight-forward extension of the formalism to many-
body theories and arbitrary dimensions.

The present Letter gives the analytical derivation of these
results, as well as a series of Monte Carlo simulations im-
plementing the newly derived effective actions and explicitly
displaying that the derived speedup indeed holds. The Letter
is organized as follows: Section 2 introduces the hierarchy of
effective discretized actions and gives the new and extended
(many particles, higher dimensions) analytical approach to the
construction of these effective actions. Section 3 presents nu-
merical results that demonstrate the validity of the analytically
derived speedup in convergence. The efficiency of the new ap-
proach is further demonstrated in Section 4 through the calcu-
lation of energy spectra. A construction of virial energy estima-
tors corresponding to newly derived effective actions and the
results of numerical simulations that implement them are given
in Section 5.

We conclude the Letter with a brief summary of obtained re-
sults, indicating what we see to be the next steps in our line
of research and its future applications. Appendix A gives a
list of integration formulas needed for calculations up to level
p = 5. Appendix B lists the corresponding effective actions rep-
resenting the new state-of-the-art for path integral calculations
of non-relativistic many-body systems in arbitrary number of
dimensions. Higher level effective actions can be found on our
web site [26].

2. New approach to the derivation of effective actions

We present a method for systematically increasing the ef-
ficiency of PIMC calculations of a non-relativistic quantum
system consisting of M distinguishable particles in d spatial di-
mensions, with a Hamiltonian of the form Ĥ = K̂ + V̂ , where
K̂ is the usual kinetic energy operator, and V̂ is the potential
describing inter-particle interactions and interactions with ex-
ternal fields. The above set of theories encompasses a large
number of physically relevant models. However, as we shall
see from the derivations, the method is in principle applicable
to all quantum theories. For the considered class of theories, the
naively discretized action SN is

(4)SN =
N−1∑
n=0

ε

(
M∑

�=1

1

2

(
δn,�

ε

)2

+ V (q̄n)

)
.

Vectors with one index (e.g., qn) represent the set of positions of
all particles after n time steps of length ε = T/N , while vectors
with two indices (e.g., qn,�) represent d-dimensional positions
of particle � at time step nε. We have also introduced the asso-
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ciated discretized velocities δn,� = qn+1,� − qn,� and mid-point
coordinates q̄n = (qn + qn+1)/2. To summarize, n counts the
time steps, � the different particles. In the most compact nota-
tion, we may think of a configuration (trajectory) of the quan-
tum system as a single vector q whose individual components
qi take on Md possible values, representing positions of all the
particles at a given time step. In this notation the N → ∞ limit
of the above discretized amplitude is symbolically written as
the path integral

(5)A(a,b;T ) =
q(T )=b∫

q(0)=a

[dq]e−S[q(t)].

Note that we are using the mid-point ordering prescription and
units in which h̄ and the particle masses have been set to unity.

The defining relation for path integrals as the continuum
limit of discretized amplitudes given by Eq. (1) follows from
the completeness relation (decomposition of unity)

A(a,b;T )

(6)=
∫

dq1 · · ·dqN−1 A(a,q1; ε) · · ·A(qN−1, b; ε),
through the substitution of short-time amplitudes A(qn, qn+1; ε)
calculated to first order in time step ε, leading to the naive
action in Eq. (1). This is what gives the 1/N convergence to
standard path integral expressions. A faster converging result
may be obtained by evaluating the amplitudes under the integral
to higher orders in ε. From the above completeness relation, it
follows that the ideal discretized action S∗

N leads to exact prop-
agation in time, and is given in terms of the exact amplitude,
according to

(7)A(qn, qn+1; ε) = (2πε)−
Md

2 e−S∗
n .

The ideal discretized action S∗
N is simply the sum of expres-

sions S∗
n :

(8)S∗
N =

N−1∑
n=0

S∗
n(qn, qn+1; ε).

Full knowledge of the ideal action S∗
N is equivalent to know-

ing the exact expression for all the amplitudes A. At first, this
would seem to indicate that nothing new is to be gained by
Eq. (7). This, however, is not the case. We will use Eq. (7) to
input new analytical information into our numerical procedure
by calculating amplitudes within some available analytical ap-
proximation scheme. We focus on the calculation of the short
time propagation as a power series expansion in ε, which starts
from the naive action (4). The details of this calculation have
been inspired by a similar derivation given in [11]. One can
also attack the problem of solving Eq. (7) using various other
approximative schemes, especially in the case when short time
approximation is not appropriate. The application of the Feyn-
man and Kleinert variational approach [27,28], further devel-
oped in [29–33], could prove useful is such cases.

Improved 1/Np convergence of path integrals follows from
calculating the general short-time amplitude A(qn, qn+1; ε) up

to the order εp . To this end, we first perform a simple shift of in-
tegration variable q = ξ + x about a fixed referent trajectory ξ ,

A(qn, qn+1; ε)

(9)= e−Sn[ξ ]
x(ε/2)=0∫

x(−ε/2)=0

[dx]e− ∫ ε/2
−ε/2 ds ( 1

2 ẋ2+U(x;ξ))
.

We have also shifted the time from t ∈ [nε, (n + 1)ε] to s ∈
[−ε/2, ε/2]. The referent trajectory ξ satisfies the same bound-
ary conditions as q . As a result, the new integration variable x

vanishes at the boundaries. The action Sn[ξ ] is defined as

(10)Sn[ξ ] =
ε/2∫

−ε/2

ds

(
1

2
ξ̇2 + V (ξ)

)
,

and U(x; ξ) = V (ξ + x) − V (ξ) − xξ̈ , with dots representing
derivatives over time s. The amplitude may now be written as

(11)A(qn, qn+1; ε) = e−Sn[ξ ]

(2πε)
Md

2

〈
e
− ∫ ε/2

−ε/2 ds U(x;ξ)〉
,

where 〈· · ·〉 denotes the expectation value with respect to the
free particle action. The above expression holds for any choice
of referent trajectory ξ . Eqs. (7) and (11) now give the expres-
sion for the ideal effective action

(12)S∗
n = Sn[ξ ] − ln

〈
e
− ∫ ε/2

−ε/2 ds U(x;ξ)〉
.

The class of theories considered is free of ordering am-
biguities, i.e., different ordering prescriptions yield the same
continuum result. For concreteness we work in the mid-point
prescription, calculating the above amplitude as a power series
in time step ε. The free particle expectation value in Eqs. (11)
and (12) is calculated using a Taylor expansion in powers of U :

〈
e− ∫

ds U(x;ξ)
〉 = 1 −

∫
ds

〈
U(x; ξ)

〉
(13)+ 1

2

∫ ∫
ds ds′ 〈U(x; ξ)U(x′; ξ ′)

〉 + · · ·

with shorthand notation x′ = x(s′), ξ ′ = ξ(s′). By expanding
U(x; ξ) around the referent trajectory ξ , we get

(14)U(x; ξ) = xi

(
∂iV (ξ) − ξ̈i

) + 1

2
xixj ∂i∂jV (ξ) + · · · .

From now on we assume summation over repeated indices. The
expectation values of products 〈xi(s) . . . xj (s

′)〉 are now cal-
culated in the standard way with the help of the free-particle
generating functional given in terms of the propagator:

�(s, s′)ij = δij

ε
θ(s − s′)

(
ε

2
− s

)(
ε

2
+ s′

)

(15)+ δij

ε
θ(s′ − s)

(
ε

2
+ s

)(
ε

2
− s′

)
.

From this follow the usual Wick’s theorem results 〈xi(s)〉 = 0,
〈xi(s)xj (s

′)〉 = �(s, s′)ij , etc. Note that the generating func-
tional (and so all the expectation values) is independent of the
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specific choice of referent trajectory, i.e., the boundary condi-
tions for the x are the same for all choices of ξ , and so the
propagator is always given by (15). Different choices of ξ sim-
plify different approximation schemes: using the classical tra-
jectory for ξ is optimal for recovering semi-classical expansion,
the choice of linear referent trajectories will turn out to be opti-
mal for short-time expansion.

We next wish to perform the remaining integrations over s.
Because of the explicit dependence of the referent trajectory
on s, we first expand the potential and all its derivatives in (14)
around some reference point. The choice of q̄n for that point
corresponds to the mid-point ordering prescription. Once one
chooses the referent trajectory ξ(s), all expectation values
in (11) are given in terms of quadratures. The choice of linear
referent trajectories ξ(s) = q̄n + δn

ε
s makes all of these integrals

solvable in closed form, allowing us to determine the ideal ef-
fective action.

Before doing these explicit calculations, we first look at
which terms need to be retained in order to get the sought-after
1/Np convergence. It is easy to show that the ideal effective
action is a sum of terms of the form

(16)εαδ2β
(
∂γ1V (q̄n)

) · · · (∂γkV (q̄n)
)
,

where α, β , and γ1, . . . , γk are nonnegative whole numbers con-
strained by simple dimensional analysis to satisfy

(17)α + β = k + 1

2

k∑
r=1

γr .

Short time propagation satisfies the diffusion relation δ2
n ∝ ε.

Thus, 1/Np convergence follows from keeping all the terms
satisfying α + β < p + 1. An equivalent, but practically more
useful, form of the criterion determining the relevant terms at
level p is

(18)k + 1

2

k∑
r=1

γr < p + 1.

We now continue with the explicit evaluation of the ideal ef-
fective action, illustrating the general procedure on calculations
to level p = 2. The action is now

(19)Sn[ξ ] = ε

(
1

2

δ2
n

ε2
+ V (q̄n) + δn,iδn,j

24
∂2
ij V (q̄n)

)
+ O

(
ε3).

Note that δn,i is the ith component of vector δn while ∂2
ij is

shorthand for ∂i∂j . The first two terms in the above expression
correspond to the naive action, while the third term gives contri-
butions of order ε2. The remaining contribution at level p = 2
comes from the expectation value

〈
e− ∫

ds U(x;ξ)
〉 = 1 −

ε
2∫

− ε
2

ds
〈
U(x; ξ)

〉 + O
(
ε3)

= 1 −
ε
2∫

− ε
2

ds
1

2
〈xixj 〉∂i∂jV (ξ) + O

(
ε3)

= 1 − 1

2
δij

ε
2∫

− ε
2

ds �(s, s)i,j ∂
2
ij V (ξ) + O

(
ε3)

= 1 − 1

2
∂2V (q̄n)

ε
2∫

− ε
2

ds �(s, s)i,i + O
(
ε3).

As promised, the remaining integral is easily evaluated in
closed form to yield ε2/6. Appendix A lists all the related in-
tegrals needed for higher level calculations. The expectation
value now equals

〈
e− ∫

ds U(x;ξ)
〉 = 1 − ε2

12
∂2V (q̄n) + O

(
ε3)

(20)= e− ε2
12 ∂2V (q̄n) + O

(
ε3).

Finally, the p = 2 level discretized effective action is simply

S
(p=2)
N =

N−1∑
n=0

ε

[
1

2

(
δn

ε

)2

+ V (q̄n) + ε

12
∂2V (q̄n)

(21)+ δn,iδn,j

24
∂2
ij V (q̄n)

]
.

One similarly obtains the higher p level effective actions. Ap-
pendix B gives the explicit analytical expressions for many-
particle discretized effective actions at level p � 5. There are
no obstacles in going to higher values of p. The derived expres-
sions become algebraically more complex, and calculations are
best done using a package for symbolic calculus such as Math-
ematica. Higher level effective actions can be found on our web
site [26].

3. Numerical results

In this section we present results of numerical PIMC sim-
ulations that confirm the analytically derived speedup in con-
vergence of discretized path integrals. To do this, we have con-
ducted a series of PIMC simulations of transition amplitudes for
a two-dimensional system of two particles interacting through
potential

(22)V (
r1, 
r2) = 1

2
(
r1 − 
r2)

2 + g1

24
(
r1 − 
r2)

4 + g2

2
(
r1 + 
r2)

2.

Numerical simulations, based on our SPEEDUP [26] PIMC
code, have been performed for different values of couplings g1
and g2 and for variety of initial and final states. The associated
continuum limit amplitudes A(p) have been estimated by fitting
polynomials in 1/N to the discretized values A

(p)
N , according to

the analytically derived relation (3):

(23)A
(p)
N = A(p) + B(p)

Np
+ C(p)

Np+1
+ · · · .

For all values of p the fitted continuum values A(p) agree within
the error bars. The obtained 1/N dependence gives explicit ver-
ification of the analytically derived increase in convergence.
The typical case is illustrated in Fig. 1. The expected 1/Np
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Fig. 1. Convergence of discretized amplitudes A
(p)
N

to the continuum as func-
tions of N for p = 1,2,3,4,5 for a system of two particles in two dimensions
moving in the quartic potential given in (22) with coupling g1 = 10, g2 = 0,
time of propagation T = 1, and initial and final states a = (0,0;0.2,0.5),
b = (1,1;0.3,0.6). The number of MC samples was 106. The horizontal
dashed line represents the continuum limit, solid lines correspond to the fit-
ted functions (23).

Fig. 2. Deviations from the continuum limit |A(p)
N

− A| as functions of N for
p = 1,3,5 for the system of two particles in two dimensions in the quartic
potential given in (22) with g1 = 10, g2 = 0, time of propagation T = 1, ini-
tial and final states a = (0,0;0.2,0.5), b = (1,1;0.3,0.6). The number of MC
samples was 106 (p = 1), 109 (p = 3), 1011 (p = 5). Solid lines give the lead-
ing 1/Np behavior, dashed lines correspond to the fitted functions (23).

convergence may be most easily discerned from Fig. 2, a plot
of the deviations of discretized amplitudes from the continuum
limit. As can be seen, the increase of level p leads to an ever
faster approach to the continuum.

As a result of the newly presented method, the usual simula-
tions (in which one calculates specific physical quantities such
as the one in Fig. 1) proceed much faster than by using stan-
dard methods. On the other hand, Fig. 2 is itself time consuming
since it illustrates subdominant behavior. For this reason the fig-
ures contain only results obtained by effective actions to level
p = 5. Note, however, that the p = 5 curve corresponds to a
precision of four decimal places even for an extremely coarse
discretization such as N = 2.

In usual PIMC calculations one always chooses the number
of MC samples so that the stochastic error of numerical results

is of the order of deviations from the continuum limit. In Fig. 2
the number of MC samples had to be much larger, in order for
deviations from the continuum limit to be clearly visible.

4. Energy spectra

The improved convergence of path integral expressions for
amplitudes leads directly to the same kind of improvement in
the convergence of discretized partition functions, owing to the
relation

(24)ZN(β) =
∫

dq AN(q, q;β),

where the inverse temperature β plays the role of the time of
propagation T . From the previous relation we directly obtain
the path-integral presentation of the partition function:

(25)ZN(a, b;T ) = 1

(2πε)
MNd

2

∫
dq1 · · ·dqN e−SN .

The partition function is the central object for obtaining in-
formation about statistical systems. In addition, the partition
function offers a straightforward way for extracting informa-
tion about low lying energy levels of a system. This follows
from evaluating the trace in the definition of the partition func-
tion in the energy eigen-basis

(26)Z(β) =
∞∑

n=0

dne
−βEn,

where En and dn denote corresponding energy levels and de-
generacies. A detailed description of the procedure for extract-
ing energy levels from the partition function is given in [34].
The free energy of the system, given by

(27)F(β) = − 1

β
lnZ(β),

tends to the ground state energy E0 in the large β limit. Simi-
larly, we introduce auxiliary functions

(28)F (n)(β) = − 1

β
ln

Z(β) − ∑n−1
i=0 die

−βEi

dn

,

which can be fitted for large β to

(29)f (n)(β) = En − 1

β
ln

(
1 + ae−βb

)
and which tend to the corresponding energy level En.

In this way, by studying the large β behavior of the free en-
ergy and the corresponding auxiliary functions, one obtains the
low lying energy spectrum of the model. However, in numer-
ical simulations we are inevitably limited to a finite range of
inverse temperatures. In addition, the above procedure for the
construction of the auxiliary functions fn is recursive, i.e., in
order to construct fn we need to know all the energy levels be-
low En. This leads to the accumulation of errors as n increases,
practically limiting the number of energy levels that can be cal-
culated. Note that the orders of magnitude increase in precision
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Fig. 3. Convergence of discretized free energies F
(p)
N

(β) to the continuum as
functions of N for p = 1,2,3,4,5 for the system of two particles in two dimen-
sions in potential (22) for g1 = 1, g2 = 1, β = 1. The number of MC samples
was 107. The horizontal dashed line represents the exact free energy.

Fig. 4. Ground state energy versus coupling constant g1 for two-dimensional
two-particle system in the quartic potential with g2 = 1/9. Numerical simula-
tions were performed with 109 MC samples, level p = 5 effective action and
N = 64. Full lines give perturbative expansion results of the first order (green),
second order (blue), and third order (pink). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
Letter.)

of the presented method reduces the magnitude of the accu-
mulated error and thus allows us to extract a larger number of
energy levels.

Figs. 3 and 4 illustrate the calculation of low lying energy
levels using the more efficient PIMC formalism presented in
this Letter on the case of a two-dimensional system of two
distinguishable particles interacting through a quartic potential
(22). Fig. 3 demonstrates that the improved convergence of free
energies is the same as in the case of amplitudes. Table 1 gives
the calculated energy levels for quartic coupling from g1 = 0
(free theory) to g1 = 10 (strongly interacting theory).

Fig. 4 presents a comparison of ground energy values calcu-
lated using the derived effective actions with those calculated
by perturbative expansion. The graph gives the dependence of
obtained values of ground energy on the coupling constant g1.
The agreement with perturbative results is excellent for small

Table 1
Low lying energy levels for two-dimensional two-particle system interacting
through potential (22) with g2 = 1/9. Calculations were done with 109 MC
samples, level p = 5 effective action and N = 64. The degeneracies of the cal-
culated energy levels were found to be d0 = 1, d1 = 2, d2 = 3, d3 = 6

g1 E0 E1 E2 E3

0.0 1.8857(1) 2.3571(6) 2.83(1) 3.3(2)

0.1 1.9019(2) 2.374(2) 2.82(1) –
1.0 2.0228(2) 2.497(3) 2.94(3) –
10 2.6327(6) 3.098(4) 3.57(3) –

values of the coupling. Around g1 ∼ 1 even the higher or-
der perturbative results start deviating substantially from the
exact result, while for larger couplings we are well in the
non-perturbative regime in which such expansions are useless.
Throughout, the calculations based on the use of the derived
effective actions converge to the exact ground energy even for
relatively rough discretizations. From Table 1 we see that this
holds even in the case of strongly interacting theory.

5. Energy estimators

One of the basic properties of physical systems is the inter-
nal energy given as the energy expectation value. Various ways
of evaluating energy expectation values in PIMC simulations
are based on different types of energy estimators—expressions
whose thermal expectation values are used to calculate the dis-
cretized internal energy. The practical choice of the best esti-
mator usually depends on the model and on the specific values
of physical parameters. It is determined through a comparison
of the properties of different estimators (e.g., variance, con-
vergence, etc.), both in terms of calculated numerical values
and their functional dependencies. Details of the derivation and
characteristics of several energy estimators are given in [12]
and [35]. The virial energy estimator turns out to be most ad-
vantageous due to its roughly constant Monte Carlo variance
with the increase in the number of time slices. In this section we
construct a hierarchy of virial energy estimators with improved
convergence to the continuum limit as 1/Np , while keeping the
feature of constant variance of the naive virial estimator.

First we briefly review the standard derivation of the vir-
ial estimator [35,36]. Starting from the formula U(β) =
−∂β logZ(β), the straightforward generalization to discretized
expressions reads:

(30)UN(β) = −∂ logZN(β)

∂β
.

The above partial derivative can be rewritten in terms of ε as
∂β = 1/N∂ε . In order to simplify the calculation of this deriva-
tive, we remove the ε dependence of the path integral measure
and of the kinetic term of the discretized expression for ZN by
simply rescaling q → q

√
ε. Now the differentiation over ε only

affects the rescaled potential term in the exponent of the expres-
sion for ZN . After the differentiation, we reinstall the original
variables q , and obtain:

(31)UN(β) = 1

ZN

(
1

2πε

)N
2

∫
dq1 · · ·dqN Eviriale

−SN .
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Fig. 5. Convergence of discretized energy expectation values U
(p)
N

(β) to the
continuum as functions of N for p = 1,2,3,4,5 for the system of two particles
in two dimensions in a potential (22), with g1 = 1, g2 = 1/9, β = 1. The num-
ber of MC samples was 107. The horizontal dashed line represents the exact
internal energy.

Here, Evirial is the standard virial energy estimator given as

(32)Evirial = 1

N

N−1∑
n=0

(
V (q̄n) + 1

2
q̄n,i∂iV (q̄n)

)
.

This estimator yields a typical 1/N convergence.
As shown in [36], improved convergence of expectation val-

ues follows from using the appropriate effective actions and
energy estimators. As we have seen, virial estimators follow
directly from the form of the discretized action. The level p

estimator is obtained by substituting S
(p)
N for SN in this proce-

dure. Writing the ideal effective action and its associated virial
energy estimator as

(33)S∗
N = SN +

∞∑
p=2

σ (p),

(34)E∗
virial = Evirial +

∞∑
p=2

e(p),

where σ (p) and e(p) are corresponding contributions propor-
tional to εp . Each σ (p) is a sum over all the time-slices, i.e.,
σ (p) = ∑N−1

n=0 σ
(p)
n . The same relation holds between e(p) and

e
(p)
n . The outlined procedure now gives the following simple

connection between ideal action and estimator:

(35)e
(p)
n = 1

T

(
p + 1

2
q̄n,i∂i

)
σ

(p)
n .

The analytically derived improvement in convergence has
been verified by a series of Monte Carlo simulations that have
been performed on a two-particle two-dimensional system in
a quartic potential (22) for a variety of different values of
coupling constant and inverse temperature. Typical results are
presented in Figs. 5 and 6. Fig. 5 shows convergence of dis-
cretized energy expectation values for different levels p. As
level p increases, we see that the continuum limit is approached
faster, with ever smaller values of N . Numerical results con-
form precisely to the analytically derived 1/Np increase in

Fig. 6. Deviations from the continuum limit |U(p)
N

(β) − U(β)| as functions
of N for p = 1,2,3,4,5 for the system of two particles in two dimensions in
quartic potential (22), with g1 = 1, g2 = 1/9, β = 1. The number of MC sam-
ples was 107 (p = 1), 109 (p = 2), 1010 (p = 3), 1011 (p = 4,5). Solid lines
give the leading 1/Np behavior, dashed lines correspond to the fitted func-
tions (23).

convergence as can be seen from the log–log plot of the de-
viations of discretized values from the continuum limit shown
in Fig. 6.

6. Conclusions

We have presented a derivation of discretized effective ac-
tions and energy estimators that lead to substantial, systematic
speedup of numerical procedures for the calculation of path in-
tegrals of a generic many-particle non-relativistic theory. The
derived speedup holds for all path integrals—for transition am-
plitudes, partition functions, expectation values, as well as for
calculations of energy levels. The obtained analytical results
have been numerically verified through simulations of path in-
tegrals for multi-particle model with quartic coupling. In the
Letter we present explicit expressions for the effective actions
up to level p = 5. The developed calculation scheme has been
completed and is ready for applications to relevant problems in
condensed matter physics. Further analytical work will focus
on the generalization of the outlined scheme to more complex
bosonic and fermionic systems, e.g., field theories.
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Appendix A. Integrals of propagators

In this appendix we present the values of all integrals neces-
sary for calculations of effective actions at levels p � 5.
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ε
2∫

− ε
2

ds �(s, s)ksn−2k

=
{

0 n odd,

2−1−nε1−k+nB(1 + k, 1−2k+n
2 ) n even,

where B is the Euler beta function. All the multiple integrals
needed have the same boundaries of integration as the preced-
ing case.∫

ds ds′ �(s, s′) = ε3

12
,∫

ds ds′ �(s, s′)3 = ε5

560
,∫

ds ds′ �(s, s′)�(s′, s′) = ε4

60
,∫

ds ds′ �(s, s′)�(s, s′) = ε4

90
,∫

ds ds′ s2�(s, s′) = ε5

240
,∫

ds ds′ ss′�(s, s′) = ε5

720
,∫

ds ds′ ss′3�(s, s′) = ε7

6720
,∫

ds ds′ s2s′2�(s, s′) = ε7

4032
,∫

ds ds′ ss′�(s, s′)2 = ε6

5040
,∫

ds ds′ s4�(s, s′) = ε7

2240
,∫

ds ds′ s′2�(s, s′)2 = ε6

2520
,∫

ds ds′ s2�(s′, s′)�(s, s′) = ε6

1260
,∫

ds ds′ s2�(s, s)�(s, s′) = ε6

1680
,∫

ds ds′ ss′�(s, s′)�(s′, s′) = ε6

5040
,∫

ds ds′ �(s, s)�(s, s′)�(s′, s′) = 17ε5

5040
,∫

ds ds′ �(s, s)�(s, s′)2 = ε5

420
,∫

ds ds′ �(s, s′)�(s, s)2 = ε5

280
,∫

ds ds′ds′′ �(s, s′′)�(s′, s′′) = ε5

80
.

Appendix B. Effective actions for levels p � 5

The ideal effective action for a general non-relativistic multi-
particle system in the mid-point prescription is given in (33) as

a sum of terms σ (p) containing all contributions of order εp .
As we have seen, σ (p) is the sum over all the time-slices, i.e.,
σ (p) = ∑N−1

n=0 σ
(p)
n , where σ

(p)
n is the contribution of time-

slice n. In this appendix we give a list of the explicit expressions
for σ

(p)
n up to p = 5 in shorthand notation in which V = V (q̄n)

and δi = δn,i . The expressions for higher levels can be found on
our web site [26].

σ (2) = ε2

12
∂2V + εδiδj

24
∂2
ij V ,

σ (3) = − ε3

24
∂iV ∂iV + ε3

240
∂4V + ε2δiδj

480
∂2
ij ∂

2V

+ εδiδj δkδl

1920
∂4
ijklV ,

σ (4) = ε4

6720
∂6V − ε4

120
∂iV ∂i∂

2V − ε4

360
∂2
ij V ∂2

ij V

− ε3δiδj

480
∂kV ∂3

kijV + ε3δiδj

13 440
∂2
ij ∂

4V

− ε3δiδj

1440
∂2
ikV ∂2

kjV + ε2δiδj δkδl

53 760
∂4
ijkl∂

2V

+ εδiδj δkδlδmδn

322 560
∂6
ijklmnV,

σ (5) = ε5

241 920
∂8V − ε5

1680
∂2
ij V ∂2

ij ∂
2V

− 17ε5

40 320
∂i∂

2V ∂i∂
2V − ε5

2240
∂iV ∂i∂

4V

− ε5

6720
∂3
ijkV ∂3

ijkV + ε5

240
∂iV ∂jV ∂2

ij V

+ ε4δiδj

483 840
∂2
ij ∂

6V − ε4δiδj

6720
∂kV ∂3

ijk∂
2V

− ε4δiδj

10 080
∂2
ikV ∂2

kj ∂
2V − ε4δiδj

10 080
∂2
klV ∂4

ijklV

− ε4δiδj

5040
∂k∂

2V ∂3
ijkV − ε4δiδj

20 160
∂3
iklV ∂3

kljV

+ ε3δiδj δkδl

1 935 360
∂4
ijkl∂

4V − ε3δiδj δkδl

53 760
∂mV ∂5

mijklV

− ε3δiδj δkδl

40 320
∂2
imV ∂4

mjklV − ε3δiδj δkδl

32 256
∂3
ijmV ∂3

mklV

+ ε2δiδj δkδlδmδn

11 612 160
∂6
ijklmn∂

2V

+ εδiδj δkδlδmδnδpδq

92 897 280
∂8
ijklmnpqV .
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