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We argue that topological meron excitations, which are in a strong coupling phase (bound in pairs) in infinite

quantum Hall ferromagnets, become deconfined in finite-size quantum Hall systems. Although effectively for
larger systems meron energy grows with the size of the system, when gyromagnetic ratio is small meron
becomes the lowest-lying state of a quantum Hall droplet. This comes as a consequence of the many-body
correlations built in the meron construction that minimize the interaction energy. We demonstrate this by using
mean-field ansatzes for meron wave function. The ansatzes will enable us to consider much larger system sizes
than in the previous work [A. Petkovi¢ and M. V. Milovanovi¢, Phys. Rev. Lett. 98, 066808 (2007)], where

fractionalization into merons was introduced.
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I. INTRODUCTION

A quantum dot (QD) in high magnetic fields,! so-called
quantum Hall (QH) droplet,> represents an exciting play-
ground for correlation effects in interacting electron systems.
Some possible effects can be found in transport measure-
ments that detect oscillations in magnetoconductance? in the
interval 2= v=1 of filling factors. The associated minima of
the current amplitude are most completely understood taking
into account a tendency of the system to find itself in depo-
larized, highly correlated ground states at some fractions in
between despite Zeeman cost.*~”

In this paper we will introduce closely related depolarized
states as meron topological excitations of the v=1 com-
pletely polarized droplet, therefore extending topological
models to a finite system. They will represent relevant
lowest-lying ground-state configurations of the droplet when
gyromagnetic ratio is small.

Whenever we think about quasiparticles in small systems
we are skeptical about their existence or clear cut description
that we can find in infinite systems. That is even more true if
we deal with quasiparticles which quantization can be based
on topological considerations such as skyrmions in QH
ferromagnets.® Nevertheless, as we will argue here, topologi-
cal objects such as merons, a meron is a half of skyrmion,9
can exist as lowest-lying states of a quantum Hall droplet.
Therefore fractionalization and quantization, characteristic to
QH systems, may persist even in small spin-unpolarized sys-
tems bringing topological objects to their description.

The spin characterization of QD states at realistic Zeeman
coupling is an open problem.'” A very thorough understand-
ing of the completely polarized case exists that includes a
description of the QD states by the way of a vortex
quantization.''~!* The introduction of higher angular momen-
tum states or the increase in magnetic field with respect to
the most compact, maximum density configuration of a dot is
followed by vortex appearance inside the dot. On the other
hand there is a need to introduce a classification to various
(partially polarized) states at arbitrary or realistic Zeeman
coupling.'?

In the previous work, Ref. 16, by one of the present au-
thors, the Coulomb interaction problem of small quantum
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Hall droplets (dots) with N=4 and N=6, N is the number of
electrons, in the limit of zero Zeeman coupling, was studied
by exact diagonalization, in the lowest Landau-level approxi-
mation. It was shown that the lowest-lying states of these
small quantum Hall droplets can be described and classified
as states of merons.

In this work we address the question of the existence of
meron ground states in large quantum Hall droplets, N ~ 20,
that exact diagonalizations cannot reach. At the same time,
by extrapolation, we will be able to estimate the size of the
quantum Hall droplet, N~ 100, at which meron confinement
takes place, i.e., when we cannot expect meron ground
states. We will be able to do this by using a model wave
function that describes a meron of arbitrary winding number
positioned at the center of a droplet. In this sense our ap-
proach is variational, takes into account a mean-field descrip-
tion of a meron, and compares it energetically first with the
ground state—maximum density droplet (MDD) spin-
polarized configuration, but also with other meron
configurations—of different winding number.

II. DESCRIPTION OF MERON GROUND STATES

At the heart of the theory of the quantum Hall systems at
effective small gyromagnetic ratio, and filling factor v=1,
i.e., quantum Hall ferromagnets, is the commensuration of
spin and charge deviations from the ground-state values.®
Exchange interaction prefers smooth tumbling of spins that
follows changes in the charge distribution. Topology plays an
important role in the theory of infinite size quantum Hall
ferromagnets.® After the spontaneous symmetry breaking the
polarization of the ground state is in a definite direction and
fixes the boundary condition at infinite radius. Due to then
possible mapping between real and internal (spin) spaces, the
skyrmion excitations with nontrivial value of topological
charge, and the same value of electric charge implied by the
commensuration, can be identified. This classical (nonlinear
o model) skyrmion solution finds a concrete quantum-
mechanical realization in the following construction’
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FIG. 1. The mean angular momentum with respect to the
ground-state value of the constructions in Eq. (2). The results for
various system sizes, i.e., number of electrons (N), are very well
fitted with Eq. (3). The fit is better the larger the system size is.
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We omitted Gaussian factors and z’s are two-dimensional
(2D) coordinates of N electrons in the lowest Landau level
(LLL) in units of the magnetic length, Iz=\%c/eB. In this
construction the coordinates (in the orbital part) participate
in the spinor part. The complex number A\ denotes the size of
the skyrmion signifying the characteristic length when the
spin, which is around the center pointing up, starts gradually
pointing down as it does at infinity (|z| — ). The parameter
\ is finite, determined by the ratio between the strength of
the interaction and the Zeeman coupling.

Now we specialize to the case of a droplet. We simplify
the matters assuming that the gyromagnetic factor is zero.
Thus we are in a scale invariant situation where A may be
function only of the size (N) of the system. We take A —c¢
= \N 17 and consider constructions for merons of the follow-
ing form

‘I’ H{ n:|H(Zi_Zj)’ (2

< di<j

where n is a positive integer. The mean angular momentum
M can be easily (numerically) calculated and with respect to
the ground-state value, M,=N(N-1)/2, we find that

AM =M - M, =nY M=) 3)
2 2

approximate very well the calculated AM, the better, the
larger N is (Fig. 1). Therefore, for n=1, the excitation, in the
mean, is the excitation of one half of the flux quantum,
AM =N being the excitation of (Laughlin’s quasi) hole of one
flux quantum or a vortex. A skyrmion is a generalization of a
Laughlin quasihole in the case of quantum Hall ferromag-
nets. We may then identify the construction with a classical
one for a single meron being “half of the skyrmion,” and
carrying flux of one half of one flux quantum (ic/e). Also its
magnetization, from pointing up in the center, gradually
transforms into one in the plane (S,=0) on the edges resem-
bling the half of the skyrmion.® In the case of a skyrmion the
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FIG. 2. The ground-state interaction energy per electron in units
of V;. The analytical fit is an expansion in inverse powers of VN
which is the measure of the radius of the system.

magnetization would proceed to transform into configuration
that points down on the edges with equal magnitude but
opposite direction with respect to the configuration at the
center. For a detailed description of the single meron [Eq. (2)
with n=1] see below and Fig. 5.

Now we will show the results of the calculations of the
total (interaction plus confining) energy with respect to a
suitable Hamiltonian of the states expressed by Eq. (2). The
interaction part of the Hamiltonian we work with can be
described as a truncated pseudopotential interaction'® with
only pseudopotentials V; for /=0,1 nonzero and positive.
Here [ is the relative angular momentum of a pair of elec-
trons in the LLL. Precisely,

m-EEwU, )

i<j =0

where Pﬁj is the projector of a state in the LLL of the pair (ij)
to the definite relative angular momentum value /. We con-
sider V, much larger than V|, making the state in Eq. (2) with
n=0 a unique ground state [up to SU(2) rotation] of the
system at filling factor one. In addition to V,# 0 we choose
V| # 0 because we want to break energy degeneracy among
topological constructions implied by the hard core (only V,
#0) model."” For an explanation how to implement the
model interaction with pseudopotentials see Appendix. That
meron excitations [described in mean field as central con-
structions by Eq. (2)] are indeed lowest-lying states of a
small droplet was shown in Ref. 16 by exact diagonalization
in the case of the Coulomb interaction.

The interaction energy of the ground state we calculated
taking V;=1 in H; and the results are plotted in Fig. 2. We
see the dependence of the interaction energy per particle on
the size—the number of particles in the system. The energy
can be very accurately fitted with the analytical expressmn in
the figure as an expansion in inverse powers of yN. (\N is
the measure of the radius of the system.) The same analytical
expression can be found just considering the sizes up to N
=20.

The expectation values (interaction energies per particle)
of the meron states [Eq. (2) with n=1,2,3] with respect to

125305-2



MERON GROUND STATES OF QUANTUM HALL DROPLETS

0.00
AE/N=0.013 - 0.124/N"* + 0.015/N
<
>N AE/N = 0.029 - 0.314/N"" + 0.205/N
-0.05+

172

AE /N =0.041 - 0.485/N " + 0.417/N

-0.10 . r T
5 10 15 N 2

FIG. 3. The interaction energy per electron with respect to the
ground-state value for the meron states with n=1,2,3. Continuous
lines depict fits to the calculated values. Fits are expanded in pow-
ers of 1/N and the leading term in the N— o limit is positive. This
behavior leads to the absence of merons in large systems.

the ground-state value are plotted in Fig. 3 along with ana-
Iytical fits. Again we take V=1 and there are no contribu-
tions from the first pseudopotential V|, because the states in
Eq. (2) are zero energy eigenstates with respect to that
pseudopotential. The analytical fits are expansions in inverse
powers of VN, which is the measure of the radius of the
system. The expectation values come with overall negative
sign with respect to the ground-state value as each excitation
represents an inflation of the volume of the system and there-
fore increase in the average distance and decrease in the
interaction among particles. Nevertheless, we can find ex-
trapolating the fitted analytical expressions to larger number
of particles and system sizes that the positive first term
(small but always present and approximately proportional to
a constant times n) will overcome all other terms in the N
— o limit. This leads to the conclusion that in the thermody-
namic limit, AE;~ N and positive, the merons are not present
in the excitation spectrum. Like vortices in the XY model
they are confined in pairs as skyrmion excitations.

In a strong magnetic field and realistic situation with a
harmonic confining potential, we can model the confining
part of Hamiltonian as

AM is the angular momentum measured with respect to the
ground-state value, Eq. (3), and g is a positive constant. Then
we may expect [due to the positive third terms in the expres-
sions in Fig. 3 with nearly n(n—1) behavior] that in the case
of Hamiltonian,

H:H]+HC (6)

the system is prone to the instabilities (spin reconstructions)
described by the meron excitations in Eq. (2). Thus we plot-
ted the total energy of a droplet with N=19, Fig. 4, for a few
g. (c critical) when the total energy of the excitation with
fixed n equals the energy of the one with n+1. This is a
situation when one ground state with fixed n becomes less
favorable with decreasing g and substituted with another one
with the meron number equal to n+ 1. Somehow, as an only
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FIG. 4. The total-energy gain per electron as a function of n for
N=19 and for different values of the confining constant g. There is
no meron ground state for g>0.032. Here, g.;, i=2,3,4,5 (c for
critical) are calculated values of the slope of the confining potential
when the total energies for creation of merons with winding num-
bers n=i—1 and n=i are equal. Therefore g has the meaning of the
slope of the confining potential when meron with higher winding
number 7 enters the droplet.

exception, our mean-field approach predicts that the n=2
state reconstruction precedes the one with n=1 (Fig. 4). This
is very likely an artifact of our choice of the interaction po-
tential [Eq. (4)]. The implied ground states are only possible
when the size of the system is not large that the first and the
second term in the expansions of the interaction energies
become comparable in size. Approximately this happens
when N=100 as can be seen from the analytical fits in Fig.
3.

With a view on the theory of the evolution of a quantum
dot with magnetic field in Ref. 20 in terms of completely
polarized states incorporating (quasi)hole excitations, and its
reasonable agreement with experiment,”! the meron evolu-
tion that we advocate would occur at much smaller gyromag-
netic ratio (or stronger interaction strength). Further merons
of higher meron number (n=2 or 3), “giant merons,” are
highly unlikely in larger droplets, N>35, as described in Ref.
16. This will likely cause that implied N/2 periodicity would
be slightly modified, as entering merons would accommo-
date also on orbitals away, off the center just in the case of
vortex excitations in the completely polarized case.?”

To illustrate the bulk single meron configuration that the
construction in Eq. (2) for n=1 represents we plotted in Fig.
5 its spin density S(z), and charge density p(z), as functions
of the 2D coordinate z=|z|exp(i¢) in the case of N=20. The
analytic expressions (which are plotted) for spin density S(z)
are

S(2) = (N~ (7)
$:(2) = 2\NJzleos(¢)fi(l2). (8)
S,(z)=2\N )
and for charge density p(z) is
p(z) = (N +z] (10)

where
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FIG. 5. Plotted are for N=20, in the upper panel, charge density
p(|z]) with respect to the density in the ground state, po(|z|), in the
lower panel, S.(|z]) component of the spin density along S,(|z|,¢
=O)=\3'S§(\z)+S3(|z ), and in the side panel, spin-density vector
S(|z|) as functions of radius |z| for the meron construction, Eq. (2)
with n=1. A small dip in the charge density for |z] <N describes
the deficit of the charge due to the presence of a meron. The amount
of the missing charge is 0.486e, close to e/2 as expected for a
meron.

N-1 2
|Z|2me—\z\ 12
) =2 (11)
m=0 m+l, ]X
22" m ! \m+1+ 5

Therefore we have $%*(z)=p*(z). From Fig. 5 and these ex-
pressions we can conclude that for |z]=<\N we have a de-
scription of a single meron that is created in the bulk of the
system. Close to the boundary S(z) vector lies in the 2D
plane and rotates for 27 as expected for a meron.

Now, we must pose a question which quantum mechanical
states—eigenstates of M and S,, correspond to the “mean-
field” or “classical” constructions expressed by Eq. (2). We
will take that each meron classical construction corresponds
to the quantum-mechanical state that we find by expanding
the spinor part of Eq. (2) with eigenvalue of M correspond-
ing to the expectation value in Eq. (3). On the other hand, the
states that were proposed for spin (global not only edge)
reconstructions in Ref. 22 are of the following form
(2]*|Cy). |Cy) denotes the filled with N spin 1 particles
LLL, a Vandermonde determinant, and X=X, Vm+1
el +1,/Cm,1» @N exciton operator with ¢! and c,, the electron
creation and annihilation operators, and m denoting single-
particle angular momentum. k,=N/2, if N is even, and after
a little inspection we can find out that the state described by
the formula coincides with our quantum-mechanical eigen-
state analog of the construction in Eq. (2) with n equal to 1.
As we now show explicitly, in the case of the merons of Eq.
(2), these constructions carry very small S.. The states in Eq.
(2) are eigenstates of M+nS,—M, with eigenvalues nN/2.!7
Therefore (S.) in these states is (S.)=—(n—1)/2 and n=1 for
merons.
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FIG. 6. Participation ratios P,/ P, of the eigenstates of the
angular momentum with eigenvalues M=N(N-1)/2+nk as func-
tions of k=1,...,N for the meron construction defined by Eq. (2).

AR

To find out whether even in small droplets the mean-field
ansatz has a distribution of participating eigenstates of M
(and S,) very much peaked around the quantum-mechanical
states with AM given in Eq. (3), we calculated these distri-
butions (Fig. 6) in the cases of a droplet with N=17 and N
=20. Although our trial functions are not eigenstates of the
angular momentum, the calculated participation ratios,

P _ (E)Im X s

P .
max N 05 - INC1)

(0+i0n)!"'(N—1+iN_ln)!,

(12)

where if:O,l and Ejlfvz_ol ifzk, are indeed well peaked around
expectation values,

ENz l’lkPk

AM(N,n) = ;13—

(13)
k=0Pk

III. DISCUSSION AND CONCLUSIONS

The meron physics we described above should be, in prin-
ciple, detectable in lateral quantum dots, in which interaction
effects are strong, in their not yet explored regime beyond
the MDD state,® as well just below the MDD state where
depolarized (S=0) states were already discovered.* Besides
the study in Ref. 16 of small systems, there are studies in
Refs. 10, 24, and 25 without the LLL approximation that find
depolarized states that we can identify as meron ground
states. They appear at angular momenta, multiplets of N/2,
for N even.

Here we addressed the question of the existence of the
meron ground states in larger quantum Hall droplets. Our
conclusion is, as long as the Zeeman term is small, the meron
ground states are viable solutions of these droplets for N
smaller than ~100. Also we expect the appearance of
merons in any small enough system of particles with the
lowest Landau-level quantization and a degenerate, addi-
tional degree of freedom. That may happen in graphene
structures in the presence of magnetic field (with valley de-
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gree of freedom) or rapidly rotating quantum gases (with
spin degree of freedom).

A previous study, Ref. 26, of few-electron quantum dots,
without the Zeeman term, was based on restricted (condi-
tional) wave function (RWF) method.!' As the method un-
derlines explicit fixing of the spin projection of each elec-
tron, the vortices observed are analogous to those of
polarized systems. A more detailed and recent study in Ref.
27 is based on the same method and discusses the problem of
two distinguishable species of bosons or fermions which rap-
idly rotate. As usual in these circumstances the LLL approxi-
mation is applied and the fermion system is (up to the dif-
ference caused by the distinguishability) the same as in the
case of the quantum Hall droplet discussed in this paper. The
first vortices that enter the MDD come at the increase in
angular momentum of N/2. Due to being just vortices of one
kind of fermions, a density of fermions of another kind at
their core was detected. Because of this phenomenon these
vortices are called coreless vortices. For a larger droplet (N
=20) it was demonstrated using density functional theory
and the RWF method that a coreless vortex enters the droplet
(at an angular momentum slightly higher than that of MDD).
Based on these observations, i.e., that coreless vortices as
merons show an increase in polarization at their core (cen-
ter), and our studies we can conclude that merons are the
solutions of the quantum Hall droplet in the fully spin rota-
tionally invariant case, i.e., in an indistinguishable picture,
and correspond to these coreless vortices in the distinguish-
able picture.
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APPENDIX

First we consider a fixed spin configuration—component
of the total wave function whose expectation value of the
interaction energy we want to calculate

W(zy, ... 2n)- (A1)

V¥ in general does not have any overall definite symmetry
property (i.e., it is not antisymmetric or symmetric in gen-
eral). We first have to perform the calculation for each com-
ponent W separately and then add contributions. We do the
calculation by performing the projection to angular momen-
tum, /=1, component of wave function ¥ for each pair of
particles z; and z;. The component can be extracted by ex-
panding ¥ in powers of (z;+z;) and (z;-z)), i.e.,

V=2 (5-2)"(z+2)"

m,n=0

X Cm,n(Zlv ?ZN)a

(A2)

5Zi=15%i41s =+ 58j—158 415 + -+

and taking only m=1 contribution—wave function in the ex-
pansion. Because we take V,_;=1, the normalized, integrated
over all coordinates square of the projection would be the
contribution to the interaction energy from the given spin
configuration ¥ and fixed pair of particles.
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