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From percolating to dense random stick networks: Conductivity model investigation
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In a Monte Carlo study the conductivity of two-dimensional random stick systems is investigated from
the percolation threshold up to ten times the percolation threshold density. We propose a model explicitly
depending on the stick density and junction-to-stick conductance ratio. The model describes the transition from
the conductivity determined by the structure of a percolating cluster to the conductivity of the dense random stick
networks. The model is motivated by the observed densities of the sticks and contacts involved in the current flow.
The finite-size scaling effects are also included in the description. The derived model for conductivity should be
broadly applicable to the random networks of the rodlike particles.
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I. INTRODUCTION

Recently there has been an increasing interest in the
networks of randomly distributed stick (rodlike) particles1–4

due to the development in the area of conductive nanoparticles,
such as the carbon nanotubes, silicon, copper, and silver
nanowires,5 and the promising applications in electronics,6

optoelectronics,7 and sensors.8 The conventional electronic
composites containing stick particles as a filler can be
used as a conducting channel in the thin-film network
configurations.9–11 Probably the most important characteristics
of the stick networks are the conductivity, either electric12 or
thermal.13 The conductivity dependence on the stick density
and system geometry needs to be taken into account in any
device design.14 The percolation models15,16 are often used
to model an onset of the high electrical conductivity in the
composites consisting of the conductive sticks in the insulating
matrices.1,7,17

The percolation theory predicts that the electrical conduc-
tivity of the composite materials with the conductive filler den-
sity n above, but close to the percolation threshold nc, increases
with the density by a power scaling law σ ∼ (n − nc)t , with the
universal conductivity exponent t ≈ 1.29 for two-dimensional
(2D) systems.15 While the conductivity scaling law is expected
to be applicable only near the percolation threshold, in many
experiments the scaling law was used over a much larger
range of concentration, but with the nonuniversal values
of the conductivity exponent.7,17,18 Hu et al.7 obtained the
nonuniversal value 1.5 for the conductivity exponent using
the conductivity scaling law for fitting the experimental data
for ultrathin carbon nanotube networks operating from the
percolation threshold up to about ten times the percolation
threshold density. Several numerical studies confirmed the
observed nonuniversality of the conductivity exponent when
the stick density was well above the percolation threshold.19–21

Keblinski et al.19 demonstrated that the universal power law
holds from the percolation threshold nc to about twice its
value 2nc. For higher stick density n > 2nc and in two
limiting cases they observed that the conductivity scaling
exponent becomes (i) slightly higher than 1 when the junctions
are superconductive and only the stick conductance is the
limiting factor for the current flow through the system and
(ii) close to 1.75 when the sticks are superconductive and the
contact conductance is the limiting factor. Li et al.20 showed

that the conductivity exponent significantly varies with the
junction-to-stick conductance ratio for lower stick densities
up to 2nc. The broad range applicability of the conductivity
scaling law was explained by the presence of the long-range
correlations in the distribution of the conductive sticks in the
system.22 We will demonstrate that the nonuniversality of the
conductivity exponents is a consequence of a transition from
the percolating to dense stick networks.

In this paper, we numerically investigate the conductivity
of the stick systems from the percolation threshold up to
ten times the percolation threshold density. We show that it
is not appropriate to use a simple scaling law to describe
the conductivity dependence on the density both for finite
and dense systems. Based on the Monte Carlo simulation
results, a model is proposed describing the conductivity
dependence on the stick density and the different junction-to-
stick conductance ratios. The proposed model is valid for the
different stick-like nanoparticles (e.g., the carbon nanotubes
and the nanowires). The model is motivated by the observed
structural characteristic (i.e., the density of the total sticks and
contacts involved in the current flow through the system). The
finite-size effects, especially pronounced in the vicinity of the
percolation threshold, are included in the generic description
for the conductivity of stick systems.

II. NUMERICAL METHOD

Monte Carlo (MC) simulations are coupled with an efficient
iterative algorithm implemented on the grid platform and used
to investigate the conductivity of stick systems.20,23,24 We have
considered the two-dimensional systems with isotropically
placed widthless sticks of length l. The centers of the sticks
are randomly positioned and oriented inside the square system
with size L. Two electrodes (i.e., conducting bars) are placed
at the left and right sides. The top and bottom boundaries of
the system are free and nonconducting. The free boundary
conditions are more consistent with the finite-size rodlike
nanoparticle networks in practice.7–11 Two sticks lie in the
same cluster if they intersect. The system percolates (conduct)
if the electrodes are connected with the same cluster. The
behavior of the stick percolation is studied in terms of the
stick density n = N/(L/l)2, where N is the total number of
sticks and L/l is the normalized system size. The percolation
threshold of the infinite system is defined by the critical
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density nc ≈ 5.63726 (Refs. 25 and 26). To evaluate the
conductivity of the stick systems we introduce two different
conductances: (1) the conductance of the entire stick Gs and
(2) the conductance due to the stick-to-stick junction Gj .
We assume diffusive electrical transport through the stick
typical for the rodlike nanostructures (carbon nanotubes and
nanowires) whose length is larger than the mean free path of
the electrons.27 According to the diffusive electrical transport
the electrical resistance of a stick segment is proportional to
the length of the segment.28 In our simulations, each stick-stick
junction is modeled by an effective contact conductance
regardless of the type of the junction, following the simplified
approach of the authors of Refs. 6,14, and 20. Therefore, if
two sticks intersect a junction with the fixed conductance
Gj is created at the intersection point. If a stick intersects
an electrode the potential of the electrode is applied to
the intersection point. Kirchhoff’s current law was used to
balance the current flow through each node of the created
network. An iterative equation solver (i.e., conjugate gradient
method with Jacobi preconditioner) has been employed to
solve a large system of the linear equations following from
the current law.20,29 After obtaining the total current I under
an applied voltage V the macroscopic electrical conductivity
of the system is evaluated as σ = I/V (Ref. 30). Monte
Carlo simulations have been performed for a wide range (i.e.,
Gj/Gs = 0.001 to 1000) of junction-to-stick conductance
ratios (cf. Refs. 31–36). Finally, for each set of the system
parameters, the electrical conductivity is averaged over the
NMC independent MC realizations. To obtain the same preci-
sion for the finite-size systems NMC = 64 000 realizations are
used for the systems with normalized size L/l = 10 down to
NMC = 4000 for the largest system L/l = 40 studied. Using
the appropriate functions for the fitting data and the least-
squares fitting methodology,26 good fits with high correlation
factors (R2 > 0.998) were obtained for all analyzed systems.

III. RESULTS AND DISCUSSION

As already mentioned, the numerical estimates of the
conductivity exponent t are based on the linear fit of the
MC results for the logarithms of the conductivity σ and
density n − nc (Refs. 1 and 19–21). The estimates therefore
rely on the assumption that σ obeys the simple power-law
dependence over a quite extended density range. As there exists
no justification of such an assumption, we have investigated in
detail the behavior of the conductivity σ as we move away from
the critical point. A local (density dependent) conductivity
exponent is defined as t(n) by37,38

t(n) = n − nc

σ

dσ

dn
. (1)

The dependence of the local conductivity exponent t(n) on
the stick density n and the ratio of the stick-stick junction
conductance (Gj ) to stick conductance (Gs) (i.e., Gj/Gs) is
shown in Fig. 1. As one can see from a coarse observation,
when the stick density approaches the percolation threshold
nc from above the local conductivity exponent converges to
the universal value for 2D systems t(nc) ≈ 1.29 for all Gj/Gs

values. The fine behavior of the local conductivity exponent for
finite-size systems in the vicinity of the percolation threshold
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FIG. 1. (Color online) The dependence of the local conductivity
exponent t(n) on the stick density n and junction-to-stick conductance
ratio Gj/Gs . The points are MC simulation results obtained using
Eq. (1) for the system size L/l = 20. The values are given for the
conductance ratios Gj/Gs = 0.001,0.01,0.1,0.2,0.5,1 (filled), and
their inverse values 1000,100,10,5,2 (transparent). The error bars
are smaller than the size of the points. The star marker denotes
the expected universal value for the conductivity exponent at the
percolation threshold t(nc). The lines represent the local conductivity
exponents t(n) obtained from the conductivity model for an infinite-
size system, Eq. (3).

will be discussed later in this section. With the increasing
concentration n, the local conductivity exponents t(n) change
quickly from the universal value t(nc), taking the values in a
wide range 1 � t(n) � 2. From Fig. 1 one can see that the local
conductivity exponents t(n) for the conductance ratio higher
than 2 (Gj/Gs > 2) is a monotonically decreasing function
of the stick density n which converges to 1 from above.
Somewhat surprisingly, for the conductance ratios lower than
1 (i.e., Gj/Gs < 1), the local exponent t(n) is not a monotonic
function and has a local maximum. The observed density
where the local conductivity exponent reaches a maximum
is decreasing with the conductance ratio Gj/Gs .

To explain the observed behavior of the exponent t(n) at the
higher densities n > 2nc, one needs to look into the structure
of the dense conducting stick systems. Figure 2 shows the
densities of the sticks nI and junctions nI

j that carry the current
through the system. For sufficiently high stick densities (n >

2nc), one can see that almost all the sticks and junctions in the
system contribute to the conductivity and that the density of
the current-carrying junctions increases with the stick density
n by a square power law nI

j ∼ n2. The reason for this is that the
mean number of contacts per stick is proportional to the stick
density, see Ref. 39. Also, for a sufficiently high stick density
n the current-carrying stick density nI is proportional to n.
Therefore, when the stick density is well above the percolation
threshold nc, the conductivity of the system can be modeled
as an equivalent serial conductance n sticks in parallel and n2

junctions in parallel

σ ∼ 1

bn−1/Gs + n−2/Gj

, (2)
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FIG. 2. (Color online) The density of junctions nI
j and sticks nI

involved in the current flow through the system is compared with
the density of all junctions nj and sticks n in the system of size
L/l = 20. For higher stick densities n almost all junctions and sticks
will carry some current. The error bars are smaller than the size of
the points. Inset: The density ratio of the current-carrying junctions
to current-carrying sticks nI

j /nI is higher than the density ratio of all
junctions to all sticks nj/n in the system. At the percolation threshold
this ratio is about 2 [i.e., nI

j /nI = 2.0(1)].

where b is a constant parameter. One can see that the square
term n−2/Gj , originating from the junctions, converges faster
to zero than the linear term bn−1/Gs . This explains the
conductivity exponent t(n) approaching to 1 when the stick
density is sufficiently high (i.e., n � Gs/Gj ) and the existence
of the local exponent maximum in Fig. 1. If the sticks are much
more conductive than the junctions (e.g., Gj/Gs = 0.01),
the density where the local conductivity exponent starts to
converge to 1 is high and computationally unreachable in the
MC simulations shown in Fig. 1. Only in the limiting case
when the sticks are superconductive and the conductance ratio
approaches zero (i.e., Gj/Gs → 0) should the conductivity
exponent t(n) converge to 2 with the increasing density n,
which is consistent with Keblinski et al..19 In the other limit,
when the junctions are superconductive (i.e., Gj/Gs → ∞),
the local conductivity exponent t(n) should have the fastest
convergence to 1.

At the densities close to the percolation threshold nc, only
a fraction but not all the sticks and junctions in the system
contribute to the conductivity by carrying some current. From
Fig. 2 (inset), one can see that at the percolation threshold
nc, the density of the current-carrying junctions is about
two times higher than the density of the current-carrying
sticks [i.e, nI

j /nI = 2.0(1)]. From the framework of the
percolation theory we cannot determine a density-dependent
factor of proportionality in the conductivity power law [i.e.,
σ ∼ (n − nc)t ]. Instead, we fit the factor of proportionality
with an expression for the dense systems [i.e., Eq. (2)]
and obtain 1/[bnt−1/Gs + (n + nc)t−2/Gj ]. This relation
explicitly includes the previous observation that there is
almost exactly two times more current-carrying junctions than
current-carrying sticks at the percolation threshold. For a
general conductivity description of the infinite-size systems

we obtain

σ = a
(n − nc)t

bnt−1/Gs + (n + nc)t−2/Gj

, (3)

where a = 0.027(1) and b = 0.061(3) are fitting parameters
calculated using the least-squares fitting methods. The solid
lines in Fig. 1 denote the local conductivity exponents t(n)
calculated from Eq. (1), using the model for an infinite system
given by Eq. (3), for a wide range of conductance ratios
Gj/Gs = 0.001 to 1000. Deviations between the modeled and
MC values for local conductivity exponent t(n) are comparable
to the statistical errors.

Figure 3 illustrates the structure of the percolating cluster
[Figs. 3(a) and 3(b)] and the redistribution of the current in the
dense stick networks due to the junction-to-stick conductance
ratio increase [Figs. 3(c) and 3(d)]. The current through a
stick I is given relative to the maximal current in the system
Imax. As one can see from Figs. 3(a) and 3(b), the percolating
cluster consists of a few subclusters connected by high current

(a)

n=nc,L/l=10,Gj/Gs=1

0 1I/Imax

(b)

n=nc,L/l=40,Gj/Gs=1
(c)

n=8,L/l=10,Gj/Gs=0.01

(d)

n=8,L/l=10,Gj/Gs=100

FIG. 3. (Color online) Simulated current (a) and (b) at different
system sizes and (c) and (d) junction-to-stick conductance ratios. The
current through a stick I is given relative to the maximal current in the
system Imax. There is a large difference in the fraction of the system
involved in the current flow between the two nominally identical
films in term of density (n = nc) and junction-to-stick conductance
ratio (Gj/Gs = 1) for two different system sizes L/l = 10 and
40. The current redistribution with the increasing junction-to-stick
conductance ratio Gj/Gs is visible from (c) and (d). (c) If junctions
are weakly conductive (i.e., Gj/Gs = 0.01), the maximal current
flows along the shortest path with the least junctions. (d) For high
junction conductance values (i.e., Gj/Gs = 100), the total current
is evenly carried by the larger number of shortest paths connecting
electrodes. This effect is only visible at higher densities (e.g., n = 8),
where several paths connecting electrodes exist.
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links. This explains why on average more junctions than
sticks are needed to shortcut the electrodes. For a large, but
finite-size systems at the percolation threshold, the density
of the current-carrying junctions decreases as nI

j ∼ (L/l)−β/ν

with normalized system size L/l, where β = 5/36 for 2D
systems.15 Also, the density of the current-carrying sticks
at the percolation threshold is nI ∼ (L/l)−β/ν . As a result
the densities of the current-carrying sticks and junctions
decrease with system size [cf. Figs. 3(a) (L/l = 10) and
3(b) (L/l = 40)]. Furthermore, the density ratio nI

j /nI at
the percolation threshold converges to a constant value with
the increase of the system size, see Fig. 2. At higher stick
densities (i.e., n = 8), one can see that current flows along
many parallel paths connecting electrodes. An increase of
the junction-to-stick conductance ratio Gj/Gs results in
the more uniform redistribution of the current [cf. Figs.
3(c) (Gj/Gs = 0.01) and 3(d) (Gj/Gs = 100)]. For weakly
conductive junctions (i.e., the low conductance ratio Gj/Gs =
0.01), most of the current flows through a shortest path with
the least junctions along. With the increase of the junction
conductance several parallel paths become visible. As a result,
the total current through the system is more evenly distributed,
resulting in the higher conductivity. This is also expected
from Eq. (3).

If we compare the infinite system model prediction and MC
simulation results in Fig. 1 close to the percolation threshold,
we observe a deviation between the predicted and simulated
values. This deviation is a result of the finite-size effects
since the MC results in Fig. 1 are calculated for the large
but finite-size system (i.e, L/l = 20). The convergence of
the local conductivity exponents with the increasing system
size is shown in Fig. 4. The points are MC simulation results
for the systems with sizes L/l = 10, 20, and 40 and the
solid line denotes the model for an infinite system given by
Eq. (3). For the finite-size systems close to the percolation
threshold we observe a large deviation of the local conductivity
exponent t(n) from the model. The local conductivity exponent
decreases with the decreasing system size and can be even
lower then 1 [t(n) < 1]. This is result of a nonzero conductivity
value for the finite-size systems at the percolation threshold.15

Therefore, the model should be adapted for the finite-size
systems. The finite-size scaling arguments15,26,40 suggest that
the conductivity σ depends on the system size L as

σ ∼ (n − nc)t f

[
ξ (n)

L

]
, (4)

where ξ (n) ∼ l|n − nc|−ν is the correlation length that mea-
sures the linear extent of the largest cluster. For 2D systems
the correlation-length exponent is ν = 4/3 (Ref. 15). For
the infinite system above the percolation threshold [i.e.,
ξ (n)/L → 0] the conductivity follows the simple scaling law
and finite-size scaling function f [ξ (n)/L] converges to a
constant value. In the other limit, for the finite-size systems
at the percolation threshold [i.e., ξ (n)/L → ∞], conductivity
has a nonzero value σ ∼ (L/l)−t/ν (Ref. 15). Therefore, the
finite-size scaling function should have a form f [ξ (n)/L] ∼
[ξ (n)/L]t/ν to cancel the conductivity dependence on density
in Eq. (4). Since the finite-size scaling function f [ξ (n)/L]
above the percolation threshold is a continuous and smooth
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FIG. 4. (Color online) The local conductivity exponents t(n) for
the stick systems with increasing size L/l = 10, 20, and 40 and
for three conductance ratio values (a) Gj/Gs = 0.01, (b) 1, and
(c) 100. The direction of the increase of L/l is indicated on the graphs.
The points are obtained from the MC simulations and calculated using
Eq. (1). The error bars are smaller than the size of the points. The solid
line represents the local conductivity exponent t(n) for the infinite
system obtained from Eq. (3), while the dashed lines denote the local
conductivity exponents t(n) obtained from the model that includes
finite-size effects, Eq. (7). The star marker denotes the expected value
for the conductivity exponent of the infinite system at the percolation
threshold nc.

function,15 we approximate it by a combination of its two
limiting behaviors

f

[
ξ (n)

L

]
∼ 1 + c(n − nc)−t (L/l)−t/ν, (5)

where c is the finite-size parameter. Inserting Eq. (5) into
Eq. (4) the first-order approximation of the finite-size scaling
law for conductivity becomes

σ ∼ (n − nc)t + c(L/l)−t/ν . (6)

Finally, incorporating the finite-size effects given by Eq. (6)
into the conductivity model for an infinite-size system, Eq. (3),
we obtain the finite-size model for conductivity

σ = a
(n − nc)t + c(L/l)−t/ν

bnt−1/Gs + (n + nc)t−2/Gj

. (7)

The finite-size parameter for 2D stick systems c = 2.5(1)
is calculated using the least-squares fitting methods. A
comparison between the MC results and the values obtained
from the model given by Eq. (7) is shown in Fig. 4. The
dashed lines in Fig. 4 denote the local conductivity exponents
t(n) calculated from the model including finite-size effects,
Eq. (7), for systems with increasing size L/l = 10, 20, and 40
and for three conductance ratio values Gj/Gs = 0.01, 1, and
100. We see that the introduction of finite-size effects in the
model significantly improves the quantitative description of
the system close to the percolation threshold. Finally, the MC
conductivity values normalized with the stick conductance Gs
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FIG. 5. (Color online) (a) Conductivity as a function of (n −
nc)/nc is obtained from the MC simulations (points) for the stick
system of size L/l = 20 and the junction-to-stick conductance ratio
from Gj/Gs = 0.001 to 1000 (from bottom to top). The lines denote
values obtained from the conductivity model for the finite-size
systems given by Eq. (7). (b) The conductivity ratio between the
MC simulation results σMC and the values obtained from the model
σmodel for corresponding finite-size systems, Eq. (7). The error bars
are smaller than the size of the points.

and fitted by Eq. (7) for the systems of size L/l = 20 and
conductance ratios from Gj/Gs = 0.001 to 1000 are shown
in Fig. 5(a). For all studied values of the conductance ratio
Gj/Gs the conductivity obtained from the model agrees with
the MC results over the whole range of the stick density n,
see Fig. 5(a). The agreement between the MC results and the
model is good for higher stick densities (n > 2nc) (i.e., further
away from the percolation threshold), but not so good in the
vicinity of the percolation threshold [cf. Fig. 5(b)]. Hence, in
the vicinity of the percolation threshold the conductivity ratio
between the MC simulation results and the values obtained
from the model is shown in Fig. 6 for different system sizes
L/l = 10, 20, and 40. For all three system sizes in Fig. 6
the curves look qualitatively similar. Only the density where
the dense-system behavior becomes dominant decreases with
the system size L/l. To improve the agreement between the
MC results and the model close to the percolation threshold
one could consider a further refinement of the model to include
higher-order correction for the finite-size effect. Finally, the
proposed model for conductivity gives a good estimate of
the local conductivity exponents, as one can see in Figs. 1
and 4.

IV. CONCLUSION

In this paper, we present the results of the numerical Monte
Carlo study of the conductivity of random stick systems for
the wide range of densities and junction-to-stick conductance
ratios. We observe the transition from the conductivity of the
percolating cluster to the conductivity of the dense random
stick networks with increasing density. Three limiting cases
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FIG. 6. (Color online) The conductivity ratio between the MC
simulation results σMC and the values obtained from the model σmodel

given by Eq. (7) for different system sizes (a) L/l = 10, (b) 20, and
(c) 40 and for three conductance ratio values Gj/Gs = 0.01, 1, and
100. The error bars are smaller than the size of the points.

are identified for the conductivity of whole system: one in the
vicinity of the percolation threshold, and two for high densities
when either the junctions or sticks are superconductive.
Each of these cases has a different exponent governing the
power-law dependence of the conductivity from density (i.e.,
1.29, 1, and 2, respectively). As result, the exponent can
take values anywhere in the range (1,2) depending on the
junction-to-stick conductance ratio. For finite-size systems the
density-dependent exponent can even take values lower than
1. Therefore, it is not appropriate to use a simple scaling
law to describe the conductivity dependence on the density
both for finite and dense systems. We instead propose a
comprehensive conductivity model, derived from the behavior
of the limiting cases. We find that the proposed description
gives a satisfactory estimation of the conductivity and the
local conductivity exponent (which is related to the first
derivative of the conductivity) over the whole range of the
stick density values. Finite-size effects, important for many
practical realizations of the random conducting networks,
are also included in the conductivity model. The presented
methodology could be used to describe the properties of other
conducting systems (i.e., disks, spheres, and fibers).
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