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Assembly of nanocube super-structures directed
by surface and magnetic interactions†

Igor Stanković, *a Luis Lizardib and Carlos García b

We study the stabilisation of clusters and lattices of cuboidal particles with long-ranged magnetic dipolar

and short-ranged surface interactions. Two realistic systems were considered: one with magnetisation

oriented in the [001] crystallographic direction and the other with magnetisation along the [111] direction.

We have studied magnetic nanocube clusters first in the limit of T = 0 K intending to elucidate the struc-

tural genesis of low energy configurations and then analysed finite-temperature behaviour of the same

systems in simulations. Our results demonstrate that dipolar coupling can stabilise nanoparticle assem-

blies with cubic, planar, and linear arrangements seen previously in experiments. While attractive surface

energy supports the formation of super-cubes, repulsion results in the elongated structures in the form of

rods and chains. We observe the stabilisation of the ferromagnetic planar arrangements of the cubes

standing on their corners and in contact over edges. We illustrate that minimal energy structures depend

only on the size of the assembly and balance of surface repulsion and magnetic dipolar coupling. The

presented results are scalable to different particle sizes and material parameters.

1 Introduction

Assembly of nanoparticles into target functional structures
refers to the spontaneous formation of ordered patterns from
disordered constituents. The self and directed assembly of
magnetic particles carrying permanent dipolar moment is of
great interest for many technical applications. In some cases,
complex superstructures are created in a sequence of steps in
which first particles are formed, and the interactions between
nanoparticles are carefully tuned to steer the whole self-assem-
bly process to ultimately form a macroscale ordered
structure.1–4 The external field can drive assembly to various
shapes using coils, conductive wires or meso- to microscale
two-dimensional (2D) magnetised shapes with nanoparticles
as building blocks.5–9 Applications rely on outstanding assem-
bly properties of magnetic nanoparticles, and therefore, the
understanding of relevant energetic scales is crucial for
designing processes including magnetorheological fluids,10

high-density magnetic storage devices,11 and tailored
superlattices.12,13 The magnetic sphere and corresponding
dipolar hard-sphere model, with a point-dipole at the centre of

a spherically symmetric hardcore, is one the most studied
systems both in the experiment and theoretically due to the
simplicity of representation for particles with magnetic
interactions.

In contrast, cuboid particle geometry has received less
attention despite being advantageous for many applications in
terms of photonic response,13,21 improved catalytic activity,22

packing density,23,24 and orientability.5,18 Still, the cubic shape
is unique in two ways. First, this shape imposes strong coup-
ling between geometry and magnetic interaction in assemblies
of magnetic particles, where interparticle junctions formed by
cube over their surfaces, corners, and edges are stabilised by
strong attractive magnetic forces.25–28 Second, it is a compel-
ling geometry for obtaining non-close-packed assemblies by
designing surface interaction through facets. The magnetic
forces are not screened in solution and are virtually indepen-
dent of changes in experimental conditions such as humidity,
pH, or solvent composition, which can alter surface inter-
actions, thus, giving us significant design freedom.14–16 The
surface interactions between nanoparticles can be van der
Waals, electrostatic or covalent interactions depending on the
composition of the solvent and adsorbed layer on particles. A
class of surface-modifying compounds that control the associ-
ation of nanoparticles is referred to here as ligands, but terms
molecular linkers, surface modifiers and surfactants (i.e.,
surface active agents) are used elsewhere in the literature.29–31

It is worth noting that particles with significant shape an-
isotropy can remain a single domain at much larger sizes than
their spherical counterparts.32 From a fundamental point of
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view, by looking into a self-assembled structure we can in-
reverse conclude about interactions present in the system.
There is an important reason to investigate monodispersed
magnetic cubes: atomically flat sides of nanocubes allow them
to glide almost without friction over their superstructures.17

Besides, square symmetry reduces the number of local ener-
getic minima in which the system can be quenched, prevent-
ing the creation of the clumps,18 while tailoring the magnetic
properties of the nanoparticles can provide an effective
approach to direct the self-assembly process.15,33 Here, we
analyse magnetic nanocubes in which the interaction land-
scape is defined by the steric effect, and magnetic and surface
interactions.16,17,24,34,35

Fig. 1 summarises the magnetic nanocuboid structure
stabilised by an interplay of density, magnetic anisotropy, the
strength of dipolar coupling, and surface interactions. If the
density of particles is low, small clusters might be created.15

The hematite micron-sized cuboids demonstrate how dipolar
interactions and particle shape result in the creation of the
regular polymorphs, cf., Fig. 1A–C. Designing a rational assem-
bly mechanism based on magnetostatic interactions requires
understanding differences between the energies of different
structures. Strong and long-ranged dipolar coupling leads to
the formation of macroscopic chains even in the gas phase,
from particles coming from the cluster source, as demon-
strated in Fig. 1D from ref. 17. The tendency for hydrophobic
particles to cluster in water is readily used to self-assemble
super-particles with a remarkable internal order, e.g., regular
super-cubes composed of up to 10 000 nanocubes in Fig. 1E
from ref. 18. The shape of assemblies can be tuned between
super-spheres and super-cubes, cf. Fig. 1F and G from ref. 19.
Chemistry of solution in which particles are created, i.e., pres-
ence of chloride ions and fatty acids, which control growth
and prevent agglomeration also results in strong repulsion of
the particles. Fig. 1H and J adapted from ref. 20 show two-
dimensional crystals formed by cubic-shaped particles stand-

ing on their corners, which is the result of the interplay of
repulsion and magnetic interaction between particles.

In the present contribution, we consider assemblies of
cubic magnetic particles and analyse the structural changes of
the minimal energy configuration. Designing a rational assem-
bly mechanism based on magnetostatic interactions requires
understanding differences between the energies of different
structures. We systematically investigate clusters and lattices
stabilised by magnetic dipolar coupling of their nanocube con-
stituents. We compared the magnetic binding energy to the
contact surface and calculated the magnitude of repulsive or
attractive surface interaction needed to switch between
different structures.

2 Methods and models

We study a structure of the colloidal agglomerate formed from
nano-particles described by Hamiltonian: H = U + εssS

int + γSeff

+ kBT, where U is the dipolar magnetic interaction energy and
Sint and εssS

int are the interparticle surface contact area and
surface binding energy, respectively. The effective surface area
Seff, surface tension γ of the suspension liquid, and tempera-
ture T are parameters which describe interaction with the
suspension.

2.1 Dipolar magnetic interaction

Magnetic cuboids are synthesised from iron and its oxides, as
well as, from non-ferrous materials with different magnetic
anisotropy and remanent magnetisation. An overview of
sizes, saturation magnetisation, and easy magnetisation axis
found in the literature11,15,16,20,24,33,36–41 is given in Table 1.
Magnetite (Fe3O4),

42 nickel platinum alloy20 nanocubes mag-
netic easy axis lying along the [111] crystallographic direction.
This is in contrast to cubes of iron,42 FePt,40 and cobalt/zinc
ferrite33,36 that have cubic magnetic anisotropy and therefore

Fig. 1 SEM images of polymorphs composed of (A) silica-coated and (B) bare hematite microcuboids, adapted with permission from ref. 14 pub-
lished by The Royal Society of Chemistry and ref. 15 copyright (2012) American Chemical Society, respectively. (C) Optical microscopy images of
hematite cuboids during particle self-assembly induced by sedimentation, adapted with permission from ref. 16 copyright (2012) American
Chemical Society. (D) The self-assembled chain in the gas phase of 25 nm iron/iron-oxide core/shell magnetic nanocubes, adapted with permission
from ref. 17 published by The Royal Society of Chemistry. (E) SEM image of a 3D cuboid which consists of more than 10 000 iron-oxide nanocubes,
adapted with permission from ref. 18 copyright (2015) National Academy of Sciences. TEM images of the self-organised (F) super-sphere along the
[001] zone axis and (G) super-cube obtained by control of surface interactions, adapted with permission from ref. 19 copyright (2012) American
Chemical Society. (H) Magnified TEM image and (J) STEM images of the 2D nickel nanocube lattice (cubes are suspended on corners) both adapted
with permission from ref. 20 with permission from The Royal Society of Chemistry.
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preference for magnetisation along the [001] direction. An
additional variability of the properties may be achieved with a
core–shell structure, which can combine high remanent mag-
netisation of the core with magnetic anisotropy defined by the
shell.42 The iron-oxide nanocuboids (i.e., hematite, and mag-
netite) can be synthesised as micron-sized colloids. Hematite
colloids, in particular, maintain a permanent dipole moment
even at a large particle size.

Small single-domain magnets are treated like uniaxial
magnets. We consider the two most common magnetisation
directions: alongside [001] or along the principal diagonal
[111] of the cube. Magnetic nanoparticles can have complex
coupling involving both dipolar and exchange interactions.
Their interaction is described through dipole–dipole inter-
action potential: it is assumed that each particle carries identi-
cal dipolar (magnetic) moment with magnitude m0 = Msd

3.
The saturation magnetisation is material and particle size-
dependent and can take value from modest 50 kA m−1 in
12 nm FePt41 to 874 kA m−1 for 20 nm Zn0.4Fe2.6O4 nano-
cubes.33 We can approximate the reference magnetic energy of
interaction of two touching nanocubes with υ = μ0m0

2/4πd3.
For dependence on saturation magnetization Ms and d particle
size, we obtain υ ∝ Ms

2d3. As a result, a choice of material or
dimension of cubes has a strong influence on the magnetic
interactions.

In the case of a pure 40 nm single-crystal magnetite cube
and Ms = 160 kA m−1, cf. ref. 31, the reference magnetic inter-
action energy was estimated to be υ = 1 eV, i.e., 40kBT, where T
= 300 K is the temperature and kB is Boltzmann’s constant. We
chose the cube’s dimensions to facilitate comparison both
with real units used in experiment and scales used in generic
theoretical considerations. The magnetic field generated by
one particle at the centre of mass of the other particle (placed
side by side) is B0 ≈ μ0m0/(2πd3) = 16 mT.

The dipolar magnetic interactions between an assembly of
magnetic cubes are treated semi-analytically for small clusters
N ≤ 8 or using 9-dipole approximation17 (see the ESI†). This
model represents an extension of the previously used single
central dipole models.25,26 In our model, the additional

dipoles are placed in the corners of the cube and account for
the interaction of the touching corners and edges of the cubes.
The minimisation of energy was performed systematically for
N ≤ 16 for all possible geometric and magnetic configurations.
For larger systems, the genetic algorithm was used to mini-
mise the magnetic configuration (i.e., N > 16). We should note
that in our calculations, we did not allow for the relaxation of
magnetic moments around the easy-magnetisation axis. Such
relaxation will be particularly pronounced in [111]-magnetic
configurations where magnetisation has very localised flux
closure, cf. ref. 18 and 44.

2.2 Surface interaction

The nanocube assemblies show a clearly defined contact
surface area. These surfaces can be engineered repulsive or
attractive, either by adsorbed layers from solution34,35 or by
polymers grafted on it.21,44,45 The stacking of the cubes tends
to reduce or increase the surface area depending on the nature
of surface interaction. In our calculations, surface energy is
proportional to the contact surface. We will first discuss strong
van der Waals attraction of the clean surfaces. Then we will
explain how the surfaces can be modified to obtain weak
attractive or even repulsive forces, and show that the resulting
energy scales are similar to that of magnetic interaction.

Clean metallic or metal–oxide nanocubes interact with each
other through van der Waals interactions characterised by the
interaction energy and distance. The interaction energy para-
meter can be calculated as,46 εss = −Ammσ4mmρ

2/4π2 where σmm

= 0.35 nm is the size parameter for iron atoms, ρ = 85 nm−3

the density of iron atoms in the bcc lattice, and Amm = 2.38 eV
is the average Hamaker constant for metals.47 We obtain a
value of εss = −6 eV nm−2, which results in a surface binding
energy of ess = εssd

2 = 9.6 keV over a 40 × 40 nm surface (fully
touching cubes) and is comparable to the values found
elsewhere.21,45 We assume that the resulting interaction is pro-
portional to the contact surface and dependent on the orien-
tation of the touching cubes.‡

Since van der Waals interaction is strong, the so-called
steric stabilisation is used to control the coalescence of the
particles typically by a thin adsorbed or grafted layer of appro-
priate thickness. These thin layers are used to obtain weak
attraction, comparable to magnetic interaction energy between
particles, and even repulsion, which can accommodate the for-
mation of non-close-packed agglomerates. Engineering the
repulsion and distance between magnetic particles is a typical
way to steer the extent of the cube’s aggregation.17,20 The
repulsive forces can arise from neutral steric layers (i.e., entro-
pic repulsion of grafted polymer chains) or electric double
layers. The excluded volume of steric layers covering two par-
ticles results in a repulsive force. Each molecule of steric layer
occupies a certain amount of space and, if molecules are
brought close together, there is an associated cost in energy.

Table 1 Mean size, saturation magnetisation (Ms), and easy magnetisa-
tion axis for different materials found in the literature

Nanocube
Size
[nm]

Ms
[kA m−1]

Easy
axis Ref.

FePt 12 50 [001] Chou et al.41

CoFe2O4 8 400 [001] Song and Zhang36

20 200 Wu et al.11

Zn0.4Fe2.6O4 20 874 [001] Noh et al.33

60 1060
Fe 18 1700 [001] Kronast et al.38

NiPt 25 600 [111] Cuya Huaman et al.20

Fe3O4 9 100 [111] Moya et al.43

Magnetite 14 130
30 160 Niculaes et al.31

1000 480 Aoshima et al.16

γFe2O3, maghemite 9 32 [111] Ahniyaz et al.24

αFe2O3, hematite 1000 2.2 [111] Sacanna et al.15

‡Ref. 45 showed that, when cubes get close, dependence on the relative orien-
tation intensifies and interacting regions are sharply localised in the vicinity of
the surface.
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The thickness of layers and the local density of grafted/
attached polymers determine the extent and strength of repul-
sion, respectively. The maximal energy of the repulsion is of
the order of εss = 3 meV nm−2, i.e., es = 4.8 eV for 40 nm par-
ticles, cf. ref. 21 and 44. We should also note that while the
interaction between surfaces is repulsive, the grafted-polymer
chains can accommodate edge contact. Gao et al.21 found
weak and extremely short-ranged attractions between edges,
which we did not include in our model. These edge–edge and
edge–surface interactions will certainly further stabilise open
structures analysed in the present work. We limited our con-
siderations to a generic model for surface interactions which
does not include any specific characteristics of many possible
surface modifications.21,29–31

At this point, we would like to discuss how the size of the
particles influences the balance between surface and magnetic
energy. Several studies explored the assembly of the small
nanocubes, i.e., d ≤ 25 nm, cf. ref. 5 and 17. We recall that
magnetic dipole interactions are roughly proportional to
volume, i.e., d3 and the surface interactions are proportional to
d2. In consequence, surface interactions would become more
pronounced than magnetic interactions with decreasing par-
ticle size. Besides, for nanoparticles covered by a layer of
organic ligands, the finite length of the ligand molecules
becomes more critical in the assembly process while decreas-
ing the particle size to 20 nm and below. The interaction is
repulsive with a distance of about 2–5 nm for the grafting
density of 0.04 chains per nm2.44 The effects of the finite-
range of surface repulsion are discussed in sec. 3.5.

2.3 Interactions of assembly with the suspension

The interaction of hydrophobic particles with the suspension
can itself alone drive self-assembly. Due to surface tension, a
liquid tries to reduce the surface area at the interface. This
also applies to the interaction of the suspension with the
nano-agglomerate through their interface. The agglomeration
process reduces the interface surface between nanoparticles
and suspension, synchronously reducing interparticle energy
and surface energy of the liquid–nanoparticle interface. Water,
the dominant chemical component of most suspensions, has
particularly high surface tension. The Lum–Chandler–
Weeks48,49 (LCW) theory explains the mechanism of how the
interface surface area is reduced. Due to the thermal energy of
molecules, according to LCW theory under ambient conditions
(room temperature and 1 atm pressure), liquid and vapour
phases of water are close to phase coexistence. Therefore LCW
theory bridges macroscopic wetting phenomena characterised
by surface energy γSeff and nanoscale structuring of the sus-
pension–nanoparticle interface, which gives rise to effective
surface area Seff. The effective surface area Seff is smaller than
the total surface S of the agglomerate. The factor of propor-
tionality γ is a solvent dependent parameter called surface
tension. The direction in which self-assembly is going to drive
the system is therefore also defined by the effective surface
area and surface tension. We should note that while the inter-
action between surfaces of individual particles (introduced in

the previous section) is anisotropic and can be both attractive
and repulsive, the interaction with the solvent takes the form
of isotropic external pressure.

2.4 Finite temperature simulations

Molecular dynamics simulations in the LAMMPS simulation
package were used to test the thermodynamic stability of inves-
tigated magnetic structures. We have performed three-dimen-
sional simulations using a Langevin thermostat to keep con-
stant temperature conditions and include the effect of a fluid
environment. The Langevin thermostat accounts both for
viscous drag and for the random Brownian force on suspended
particles exerted by the surrounding fluid.§

The cubes are represented by two types of contact potential:
(i) purely repulsive Weeks–Chandler–Anderson (WCA) poten-
tial, so called, contact potential28 and (ii) repulsive or attractive
potential in Yukawa form (see the ESI†). The total force of
contact due to the WCA potential is calculated using 33
spheres (overlapping): a large central sphere with diameter d
and 32 smaller with diameter ð ffiffiffi

3
p � 1Þd=ð ffiffiffi

3
p þ 1Þ places in

cube’s corners and edges. This geometry allows smooth
gliding of one cube over the other. The previous form of
surface interactions, solely dependent on the contact surface,
is very convenient for analytical calculations but not straight-
forward to implement in molecular dynamics. Instead, we
implement an additional interaction potential in Yukawa form
between nine-point dipoles accounting for the short-range
repulsion or attraction. This model was the basis for finite-
temperature molecular dynamics simulation. The total force
was the conservative force of inter-particle interactions. The
magnetic interaction was treated with an interaction cut-off at
rcut/d = 8, in order to reduce computational load without com-
promising precision cf. ref. 27. We chose not to use the compu-
tationally expensive Ewald summation method, as our study is
focused on the stability of assembled objects. The rotational
degrees of freedom are also governed by the equations of
motion for torque and angular velocity of the spheres. The
total force and torque on each cube are computed as the sum
of the forces and torques on its constituent particles at each
timestep. The dipole orientation is accordingly rotated with
the cube as a single entity. The rotation was implemented by
creating internal data structures for each rigid body and per-
forming time integration on these data structures.50,51

§We have based our model in the low-density limit, i.e., 4πkBT/μ0M0
2 ≫ N/V

where N is the number of suspended particles in a volume V. A higher density of
nanocubes will have a profound influence on the assembly. The long-ranged
dipolar interaction can result in self-organized assemblies interacting with each
other. There are two strategies to obtain assembly control: work with low concen-
tration or reduce the volume in which particles are suspended in the moment of
the assembly. The assembly at lower concentrations has a disadvantage that it
will increase the assembly time since it would be governed by diffusion. The
self-assembly in a reduced volume could be achieved by creating a flow of mag-
netic particles through a narrow tube or slit, either in liquid micro-reactor or a
cluster gun, respectively. This will result in the creation of linear assemblies.17

Another way to reduce volume is the assembly performed at the liquid–gas or
solid–liquid 2D interface.20
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The magnetic energy varies strongly with the system size,
while for the 40 nm magnetite cube the reference magnetic
energy is υ = 1 eV (Ms = 160 kA m−1, see sec. 2.1), and for the
10 nm magnetic cube it is only υ = 16 meV. For this reason, we
will make our discussion in this section independent of the
system by introducing reference temperature Tref = υ/kB. The
reference temperatures are 12 000 K and 1500 K, for 40 nm
and 20 nm cubes, respectively. It is worth noting that the
increase of temperature also may reduce saturation magnetisa-
tion Ms which was not taken into account. The mass of the
cuboid corresponded to the 40 nm magnetite 40 cube and was
distributed over nine constitutive dipolar particles. The mole-
cular dynamics step was t = 20 ms and the typical length of the
molecular dynamics simulation was 1000 s.

3 Results

The energy scales of assemblies can be probed in detail by
analytical calculations of ideal configurations. We show the
system size and surface interaction dependent behaviour of
different configurations for [111] and [001] magnetisations.
Finally, we describe the behaviour of these systems when the
surface tension effect and the dynamics in the solvent are
taken into account.

3.1 Energy of dimers

It is instructive to first consider the interaction between two
cubes with completely touching faces and compare it with the
two elementary dipole situation. A ground configuration of the
system is head–tail with magnetic energy u½001�min = −0.815 eV, see
Fig. 2(a). Opposite to the head–tail configuration would be the
head-on-head configuration with the positive energy value
u[001] = 0.815 eV indicating that there is a strong energy penalty
upon assembling a magnetic dimer in that configuration from
infinite relative separation. Due to symmetry, the magnetic
T-configuration in Fig. 2(b) has zero energy. This feature is fully

consistent with two spherical magnetic bids where magnetic
T-configuration also has zero energy. The magnetic energy for
the magnetic cube magnetised along the principal diagonal is
u½111�zz = 2½001�u /3 = −0.555 eV for the zig-zag magnetic configur-
ation and zero for the parallel magnetic configuration. Both
configurations are shown in Fig. 2(c) and (d), respectively.

For a dimer of nanocubes, the assembly mechanism drives
the particles to adopt structures that create a head–tail configur-
ation, very much like chains of magnetic beads. In the case of
the [001] direction, the head–tail configuration represents a
deep central minimum of potential energy, cf., Fig. 3(a), restrict-
ing the lateral movement of the magnetic particles, and conse-
quently leading to a quite stiff configuration. In contrast, when
the magnetisation is along the principal axis, i.e., [111] direc-
tion, the structure is more flexible since magnetisation is point-
ing to/away of cube’s corners. The resulting minimal magnetic
energy profile of the [111] magnetic cube dimer has two
minima, i.e., local and global see cf., Fig. 3(b). The configuration
with minimal energy has a zig-zag dipole vector placement, i.e.,
Fig. 2(c). At the minimum energy point (zig-zag configuration),
the distance between their centres Δr2 is equal to the cube size
Δr2 = d = 40 nm and particles are fully in contact, cf., Fig. 2(c).
The system can extend to a full head–tail configuration in
Fig. 2(e) by synchronous displacement and rotation of magnetic
a cube between two minima.17 Balcells et al.17 showed that rela-
tive displacement and rotation can take place along the bottom
of the circular valley connecting two minima characterised by
gradual energy increase.

If we include surface energy, the total energy is a result of
the net magnetic orientations and the contact surface. Now we

Fig. 2 Different configurations of two uniformly [001] and [111] magne-
tised cubes. For [001] magnetisation, so called, (a) head–tail and (b)
T-configuration are shown. In the case of [111] magnetisation, so called,
(c) zig-zag, (d) parallel, (e) head–tail, (f ) point and (g) edge configur-
ations are shown.

Fig. 3 The minimal energy per particle u for a cube moving along the
face diagonal of the other one. We obtained that two cubes are always
parallel and only magnetisation changes. The horizontal axis shows a
projection of the centre of mass on the x-axis, total displacement isffiffiffi
2

p
x. The magnetisation is oriented in the (a) [001] and (b) [111] direction.

The uniformly magnetised cubes with d = 40 nm side are considered
with Ms = 160 kA m−1 magnetisation. The energies are given in electron-
volts, i.e., the reference magnetic energy is υ = 1 eV. The surface coup-
ling energy of two cubes in full contact es = εssd

2 is varied. The results
are shown without es = 0, as well as for attractive es = −0.1, −0.2, −0.4
eV and repulsive es = 0.4, 1, 2, 4 eV surface couplings.
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analyse the evolution of the energy profile along the cube’s
face diagonal connecting two minima. The results are shown
for different, so-called, surface coupling energies of two cubes
in full contact es = εssd

2. We use surface coupling energy rather
than energy per surface area to facilitate comparison with mag-
netic energy. If the particles attract each other, i.e., for es < 0
promotes fully touching configuration of the cubes (maximal
contact surface). Therefore, the attractive surface interaction
leads to a deeper central minimum of the potential energy, cf.
curves for es < 0 in Fig. 3, adding stability to ground state con-
figuration, and consequently to increased stiffness of the con-
figuration to any kind of deformation.

If the surface interaction is repulsive, i.e., for positive es > 0,
the energy minimum becomes shallower. In the repulsive
regime, two magnetic configurations [001] and [111] start to
behave strikingly differently. For es > 0, the central minimum
of [001] disappears and evolves into a potential valley with
local conical energy maximum in the middle, see Fig. 3(a).
With increasing repulsion, the maximum increases, and the
stable configuration moves towards the edge of the [001] mag-
netic nanocube and becomes fully unstable for es ≳ 2 eV, i.e.,
particles will not stay in close contact.

Evolution of the structure of the [111] magnetised dimer in
the repulsive surface energy regime (i.e., es > 0) is complex.
Fig. 3(b) shows the evolution of the energy profile with surface
coupling energy for cubes with [111] magnetisation. The ıt
head–tail configuration in Fig. 2(c) corresponds to the second
minimum of the magnetic energy at point Δr = 0.5d = 20 nm
in Fig. 3(b). The centre of mass of the top particle is above the
corner of the bottom particle in this configuration. At the
second minimum, the centres of mass of the particles are 22%
further apart than at the global minimum (as shown in Fig. 3,
Δr2=d ¼ ffiffiffiffiffiffiffiffi

3=2
p

, i.e., Δr2 ≈ 49 nm for 40 nm particles). The
magnetic head–tail configuration of dipoles has magnetic
energy u½111�ht = −0.81 eV, which is 27% energy increase com-
pared to the global minimum. The critical surface repulsion
energy is equal to the difference of magnetic energies of two
minima divided by the relative contact surface difference of
the two configurations εcirts = 2(u½111�ht − u½111�zz )/0.75 ≈ 0.4 eV.
Below es = 0.4 eV particles will tend to stay in the zig-zag mag-
netic configuration, and above they will open up to the head–
tail configuration. The [111] magnetic particles will stay in
contact even for very large repulsion energies, e.g., see the es =
4 eV curve in Fig. 2(b). Finally, we want to find out which is the
lowest magnetic energy configuration of the two [111] magne-
tised cube system if there is no contact surface. Fig. 2(f ) and
(g) show two [111] magnetised cubes touching only in a point
or over an edge. The fully extended head–tail magnetic con-
figuration in Fig. 2(f ) has −0.125 eV magnetic binding energy.
The cubes touching over the edge have a zig-zag magnetic con-
figuration and a slightly lower binding energy −0.14 eV, cf.
Fig. 2(f ).

3.2 Magnetisation [111]

3.2.1 From polymorphs to super-cubes. We have investi-
gated ground state configurations of nanocube assemblies 2 ≤

N ≤ 8 by calculating energies of all possible magnetic and geo-
metrical arrangements. The diagonal polarisation of [111]
magnetised cubes results in a strong tendency to create closed
flux structures. The two-dimensional polymorphs were ground
states only for N = 3, 4, cf. Fig. 5(A1) and (B1). For N ≥ 5, three-
dimensional polymorphs become a ground state. For N = 5,
see Fig. 5(C1), the system has an uncompensated magnetic
moment. Interestingly, the formation of five particle poly-
morph leads to penalty (increase) in magnetic binding energy,
i.e., binding energy per particle increases from u4 = −1.16 eV
to u5 = −1.06 eV. Also we should note that there is less than
1% binding energy difference for N = 5 and 6 polymorphs
between 3D (e.g., ground state) and 2D (non-ground state
isomer) structures, e.g., u5 = −1.06 eV for the cube on top of
the 2 × 2 square and u5 = −1.05 eV on the side, see in Fig. 5
(C1). Further closure of head–tail magnetic circulation of all
magnetic cubes, i.e., for N = 8, leads to a 10% difference in
magnetic binding energy between 2D and 3D structures. More
specifically, for polymorphs, a well-known arrangement of the
dipoles in head–tail circulation is found (see Fig. 5). Direct
computation of energies for all possible configurations
increases exponentially with the number of cubes so, beyond
eight nanocubes this approach is not feasible. We used the
genetic algorithm52 to obtain the minimal binding energy of a
super-cube composed of 3 × 3 × 3 nanocubes, see the ESI.† All
three dipole vector components along sides of the cubes are
inscribed antiferromagnetically (cf., N = 8 in Fig. 5), resulting
in a vortex magnetic structure. For a super-cube composed of 3
× 3 × 3 nanocubes, e.g., N = 27, the minimal binding energy
was obtained by the genetic algorithm52 (see the ESI†). All
three dipole vector components along sides of the cubes are
inscribed antiferromagnetically (cf., N = 8 in Fig. 5), resulting
in a vortex magnetic structure.

3.2.2 Interparticle interactions: super-cube vs. super-
sphere. In Fig. 4, we have numerically compared the magnetic
binding energy uN (per particle) of super-spheres and super-
cubes. To calculate magnetic energy, the super-cubes and
spheres were inscribed antiferromagnetically with [111] mag-
netisation. The energy evolution with the number of nano-
cubes is displayed in Fig. 4. We demonstrate that, with respect
to magnetic binding, the super-sphere is an unfavourable con-
figuration. The energy of a super-sphere is always above the
energy of a super-cube (except in the case of the smallest
sphere, i.e., N = 8, which is also a cube).

First, we discuss the situation when the surface coupling is
attractive and much stronger than dipolar magnetic inter-
actions between nanocubes. This is a limiting case where the
system behaviour is independent of magnetic anisotropy (in
our case, [111] or [001]). When surface coupling is attractive,
i.e., es < 0, the assemblies tend to decrease the total (free)
surface area. One can construct, so-called, super-sphere in
which magnets are centred around the middle of the super-
sphere within a radius R (cf. Fig. 4).

The perfect super-sphere formed from nanocubes has a
surface consisting of kinks and steps. As a result, the surface
area of the super-sphere is larger than that of a super-cube.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 19390–19403 | 19395



The super-sphere surface (Sss) to volume (Vss) ratio is Sss/Vss ≈
7.4N−1/3, for N ≫ 1 and therefore about 23% larger than that
of the super-cube, 6N−1/3 made of an identical number of
nanocubes. This means that the creation of a super-cube
(rather than a super-sphere) is a path to reduce the free
surface in a system composed of nanocubes. From scaling
laws in Table 2 the difference between the super-particles
decreases with N−1/3. Still, since the super-sphere has a larger
exterior surface and hence a smaller contact surface than its
cubic counterpart, the surface repulsion needed to induce

transformation is es > 2.9 eV and almost size independent.
Therefore, the only way to obtain super-spheres is through
interaction with the suspension, as we will show later.

3.2.3 Phase behaviour of [111] magnetised nanocubes:
cluster size effects. Table 2 lists energy scaling laws for
different super-structures. It is found that the reduced energy
per cube uN is given by uN = −2.15 + 1.307N−1/3 for super-
cubes, which is slower than that in previously studied systems
of magnetic tubes.53,54 The reduced energy per magnet is u3D1 =
−2.15 eV in a bulk material, uzz1 = −1.17 eV in an infinite chain
of the fully touching cubes (zig-zag magnetisation) and uht1 =
−0.95 eV in head–tail chains. We found that the scaling laws
for chain structures, uN ∼ N−1, are in accordance with previous
observations for one-dimensional dipolar structures made.52

To study the evolution of arrangements of [111] magnetised
nanocubes with the strength of repulsive surface interaction
we used scaling laws and calculated exact values of energy for
different arrangements of polymorphs (i.e., N < 27). We start
from minimal magnetic energy structures described in the pre-
vious section and analyse the difference in energy resulting
from the surface coupling between particles, i.e., es = εssd

2.
When the surface repulsion increases es ≳ 0.6, the magnetic
assemblies tend to increase the surface area.

The assemblies with N < 400 will transcend into chains
with partially touching cubes and head–tail magnetic configur-
ations. This is somewhat surprising since the chains with fully
touching faces have higher binding energy. Nevertheless, four
times smaller contact surface of partially touching head–tail
magnetised cubes makes them favourable as a minimal energy
state over fully touching chains. The limiting energies are
denoted with (green) squares in Fig. 7. With increasing repul-
sive coupling, we observe a transition to the so-called, corner-
cube flakes. This remarkable transformation originates from
the necessity to avoid any surface-to-surface contact while sim-
ultaneously increasing binding energy by minimising the dis-

Fig. 4 Magnetic binding energy per particle (uN) as a function of
number of cubes (N) in polymorphs (dots), super-cubes (dashed), and
super-spheres (full line) for magnetised cubes along the main diagonal
([111] direction) and minimal energy super-rods with [001] magnetised
cubes. Regular isomers of super-structures are shown for N ≈ 343 and
1000 constituent nanocubes. The uniformly magnetised cubes with d =
40 nm side are considered to have Ms = 160 kA m−1 magnetisation. The
energies are given in electron-volts, i.e., the reference energy is υ = 1 eV.

Table 2 Scaling laws for magnetic energy per particle u(N) and surface
area S(N) for different structures with the number of constitutive cubes
(N). The results are shown for two easy magnetisation axes [111] and
[001] in different structures such as; super-cube, super-sphere, super-
rod (all three shown in Fig. 4), corner-cube planar structures [111]
(Fig. 6), linear zig-zag [111] (right side of Fig. 5), head–tail [001] chains of
fully touching cubes (e.g., in Fig. 8), and head–tail [111] chains of partially
touching (over 1/4 of the side surface) cubes. The expressions for ener-
gies and surface areas of the super-sphere and super-rod are obtained
numerically from calculated data. The energies are given in electron-
volts for uniformly magnetised cubes with d = 40 nm side and saturation
magnetisation Ms = 160 kA m−1, i.e., the reference energy is υ = 1 eV

Super structure Axis uN [eV] SN/d
2

Super-cube [111] −2.15 + 1.307N−1/3 6N2/3

[001] −2.15 + 1.321N−1/3

Super-sphere [111] −2.15 + 2.23N−1/3 ≈7.4N2/3

[001] −2.15 + 2.3N−1/3

Super-rod [001] −2.15 + 0.56N−1/3 ≈10.24N2/3

Corner-cube [111] −0.91 + 0.9N−1/3 0
Zig-zag chain [111] −1.17 + 1.3N−1 5N + 1
Head–tail chain [001] −2.01 + 0.95N−1

Head–tail chain [111] −0.95 + 1.2N−1 (11N + 1)/2
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tance between cubes. The transition from the 4 × 4 square to
corner-cube square takes place for a surface coupling energy of
es = 0.84 eV. Fig. 6 gives an overview of corner-cube flakes. The
constitutive chains have the magnetisation parallel to the
patch longer side and ferromagnetic configuration. The mag-
netic binding energies are considerably higher than in the
case of polymorphs, ucc4 = −0.32 eV, ucc12 = −0.32 eV, and ucc32 =
−0.62 eV, see Fig. 6.

Our analysis shows that chains are energetically favoured
transient structure only for small assemblies. For a large
number of particles, i.e., N > 400, the chain vanishes as an inter-
mediate structure and there is a direct transition to corner-cube
flakes, cf. Fig. 7. With an increasing number of magnetic cubes
the binding energy of the corner-cube flake is converging to a
value of u2D;cc1 = −0.91 eV. This binding energy is only about
42% of the value for the bulk magnetic cube structure, i.e.,
u3D1 = −2.15 eV. The resulting limiting surface energy required
to unrolling super-cube into a corner-cube surface converges to
e½111�cc ≈ (u2D;cc1 − u3D1 )/3 = 0.41 eV, cf. in Fig. 7.

3.3 Magnetisation [001]

3.3.1 From chain to rods. The computational cost of the
search for the ground states is greatly reduced when we study
[001] magnetisation along one side of the cube. The chains

Fig. 7 Phase diagram of magnetic cubes, with a surface coupling es =
εsd

2, plotted as a function of the cluster size. The (green) squares, con-
nected as a guide to the eye, represent polymorphs being composed
only of a few particles located in the grey area which transcend directly
into the chains of partially touching cubes with head–tail magnetic
configurations. The (red) circles denote the upper limit of stability of
head–tail chains above which they transform into corner-cube 2d struc-
tures. The right side of the diagram follows the phase transformation of
large structures (N ≥ 27). The (green) full curve delimits the area of stabi-
lity of super-cubes and chains and (red) dashed curve same for chains
and corner-cube 2d structures. The uniformly magnetised cubes with
d = 40 nm side are considered to have saturation magnetisation Ms =
160 kA m−1.

Fig. 6 Overview of the calculated magnetic energies per particle uN of
corner-cube flakes with N = 3, 4, 12, and 32 magnetic cubes. Side view
(left) and top view (right) of the structures are given. One could observe
a hexagon pattern seen in the experiment (cf., Fig. 1K) in the top view.
The uniformly magnetised cubes with the d = 40 nm side are considered
to have saturation magnetisation Ms = 160 kA m−1. The energies are
given in electron-volts, i.e., the reference energy is υ = 1 eV.

Fig. 5 Magnetic binding energy per particle (uN) of polymorphs with
magnetisation in the [111] direction for N = 3, 4, 5, 6, and 8. The ground
state structures (left) and examples of non-ground state isomers (right)
are shown. The uniformly magnetised cubes with d = 40 nm side are
considered with Ms = 160 kA m−1 magnetisation. The energies are given
in electron-volts, i.e., the reference energy is υ = 1 eV.
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have minimal binding energy for N ≤ 25. Beyond N = 25, we
observe different behaviour for even (i.e., N = 2k, k N) and
uneven number (N = 2k + 1) of particles. For an even number
of particles 26 ≤ 2k ≤ 70, a ribbon composed of two chains is
created, see Fig. 8(A2). The configuration is antiferromagnetic,
i.e., the two chains have magnetisation. At this point, energy
increase due to breaking one chain into two is offset by the
magnetic interaction of the resulting two touching chains.
This configuration is followed by a three-dimensional rod with
a square 2 × 2 profile between 72≤ 4k ≤ 224, cf. Fig. 8(D2). For
an uneven number of particles, the chains remain stable until
2k + 1 ≤ 37, see Fig. 8(C2). Beyond this point, two touching
chain configurations, with k and k + 1 particles, become ener-
getically favorable. The reason for this is a penalty of the ulti-
mate particle, having only one neighbour, compared to the
double chain composed of an even number of particles. As a
result, the assemblies with unequally long chains exhibit
higher binding energies and retarded transition to thicker
rods. A further example is a transition from a double chain
with 4k + 2 particles to a square-profile 2 × 2 rod. This tran-
sition is taking place at 4k + 2 ≤ 86. The energy differences
between competing states are quite small (less than 1% total
energy) and also much smaller than the gain in binding
energy due to the additional particle.

For simplicity, from now on, we will only consider rods
composed of chains with equal length and analyse the evol-
ution of the profile of the rods. We observe an almost smooth
energy drop, see Fig. 4. This is reminiscent of behaviour seen
in rods composed of magnetic spheres.52,55 For N = 342 mag-
netic nanocubes, we obtain 2 × 3 × 57 and for N = 992, 7 × 7 ×
204 × 4 × 62 rods.

3.3.2 Phase behaviour of [001] magnetised nanocubes:
cluster size effects. Having now a good understanding of the

structural evolution of the minimal energy structures com-
posed of [001] magnetised cubes we can capture geometrical
properties of the super-rods as a function of N. More specifi-
cally, we consider the height h of the super-rod (parallel to the
magnetisation axis of the cube) and its profile. Interestingly,
while the super-rod growth scales in all three dimensions simi-
larly N1/3, the height grows h ≈ 6.2N1/3 faster than the profile
width w ≈ 0.4N1/3. The binding energy of the rods converges to
u3D;½001�1 = −2.15 eV, i.e., which is the same energy already
found in the super-cubes of [111] magnetised particles. This is
not physically surprising since a uniformly magnetised block
of material should have the value of the binding energy inde-
pendent of the orientation of the bulk magnetisation.

In Fig. 9, the diagram shows boundaries between different
classes of structures built with [001] magnetised nanocubes
concerning the number of building blocks and the surface
interaction energy. The size effects on the stability of different
structures are weak and limited to agglomerates with N < 100
nanocubes. The energy of infinite chains is uht;½001�1 = 2.01 eV.
Therefore, the limiting surface repulsion energy necessary to
prevent creation of very large three dimensional agglomerates
is ε½001�s = (uht;½001�1 − u3D1 )/2 ≈ 0.07 eV.

The surface attraction tends to reduce the external surface
and increase the number and size of the contacts between
cubes. As we already discussed, the super-cube is the most

Fig. 8 Magnetic energy per particle (uN) as a function of number of
cubes (N = 8, 26, 37, and 72) with magnetisation in the [001] direction.
The ground state structures (left) and examples of non-ground state
isomers (right) are shown. The uniformly magnetised cubes with d =
40 nm side are considered with Ms = 160 kA m−1 magnetisation.

Fig. 9 The phase diagram for magnetic [100] nanocubes with a surface
coupling es plotted as a function of the cluster size N. The (blue)
squares, connected as a guide to the eye, represent the transition from
super-rod to regular super-cube for N = 8, 27, 64, 125, 216, 343, 512,
729, and 1000. The dotted blue line is a trend from the energy scaling
laws for the energy of super-rods and super-cubes. The dashed (orange)
curve is an upper limit of the stability of super-rods above which they
transform into head–tail chains. The dashed-dotted (red) curve rep-
resents the limit of stability of the chains. The uniformly magnetised
cubes with d = 40 nm side are considered to have saturation magnetisa-
tion Ms = 160 kA m−1. The energies are given in electron-volts, i.e., the
reference energy is υ = 1 eV.
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compact super-particle regarding the surface to volume ratio.
Based on scaling laws for [001] super-cubes and rods, we esti-
mate that the critical surface attraction is given by εs ≈ −0.4 eV
for N ≫ 1, beyond which super-cubes will form in [001]
systems, cf., Fig. 9.

3.4 Surface tension effect: can super-spheres win?

Up to this point, we have analysed only inter-particle inter-
actions. The suspension can have a profound effect on self-
assembly and we will show that magnetic nanocubes are an
interesting system in that respect. Using our numerical results
we look into magnitudes of surface tension and effective
surface area required to induce a transformation from the
super-cube to super-sphere. Thus the effective surface con-
trolled by size-dependent hydration, as predicted by the LCW
theory,48 plays a significant role in the formation of super-par-
ticles. Large curvatures, i.e., steps and corners of hydrophobic
surfaces, lead to very high local values of surface energy. The
suspension liquid cannot fill corners created by kinks and
steps of the structure. The exterior surface of nanocubes in
agglomerate represents the upper limit for the value of an
effective surface and the lower limit is a smooth surface fully
enveloping the agglomerate. In our case, the difference
between the super-cube and super-sphere arises from the geo-
metry of their exterior surface. While the super-sphere has a
few, if any, flat surfaces, super-cube has six flat sides. In the
case of the super-cube, therefore, the effective surface area will
be equal to its surface. In the case of the super-sphere, there is
a range of possible values for the effective surface area depend-
ing on the quality of wetting. The upper limit of this range for
good wetting is determined by the true surface of the super-
sphere, Smax = 7.4N2/3d2, cf. Table 2. The surface of a perfect
sphere with a volume of Nd3 is Smin = (36π)1/3N2/3d2 ≈ 4.83N2/

3d2 and represents a lower boundary for the effective surface
area. To obtain a super-sphere, its effective surface area has to
be smaller than the surface of the super-cube, i.e., 6N2/3d2. In
this way, surface energy will offset the energy penalty for the
magnetically less-favourable configuration of the super-sphere.
To have a smaller effective surface of the super-sphere, we
need a liquid that does not fully wet the surface.

In the following, we will discuss how the surface tension
magnitude γ of real liquids and the effective surface area
change balance between the super-sphere and super-cube. We
define the critical surface energy γcS

eff as the energy at which
the super-sphere and super-cube have the same energy. The
total energy of the system due to molecular interactions is
U + γcS

eff where U is the total interaction energy in the system
due to magnetic coupling between particles. We obtain

γc ¼
μ0
4π

Λ

6� σ
Ms

2d, where σ is the effective surface factor given

by σ = [4.83, 7.4] (the lower boundary stands for no wetting and
the upper one for full wetting of the super-sphere surface) and
Λ is an energy parameter which depends on magnetisation,
Λ = 0.92 for [111] and 0.98 for [001] magnetisation (from
scaling laws for energy per particle in Table 2). For a fully
spherical effective surface formed by magnetite cubes (magne-

tisation [001], Ms = 160 kA m−1 and d = 40 nm), we obtain σ =
4.83 and γmin

c = 96 μN m−1, which is significantly lower than
the typical surface energy of any solvent. For smaller magnetic
particles, the value of γmin

c decreases. Therefore, the super-par-
ticle wettability predicted by the LCW theory plays a major role
in tuning of the equilibrium shape of super-particles by steer-
ing the balance between the bulk and the surface energy terms
in minimising the overall energy.

3.5 Finite-temperature behaviour

Having thoroughly analysed the energies of different configur-
ations at the zero temperature limit, we can now proceed to an
evaluation of the results obtained from the simulation at finite
temperatures. At this point, it is important to note that kinetic
energy kBT of the particles enters as a third factor in energy
balance that determines the structure along with magnetic
and surface energies. If the kinetic energy is comparable to the
interaction energies, the thermal motion influences the
system. Since the size of the magnetic cubes has a strong
effect on their reference magnetic binding energy υ, we show
results in scaled units kBT/υ in Fig. 10. We have followed the
evolution of potential energy with temperature for several con-
figurations (e.g., corner-cube flake, [111] super-cube, [001]
super-rod, and [111] chain) and define a transition tempera-
ture based on the change in heat capacity of the cluster. The
delimiting lines and uncertainty regions are interpolated
through discrete points obtained from molecular dynamics
simulations. We have crosschecked the results of the analysis
with snap-shots and there is a clear correlation with the evol-
ution of the structure, cf. right panels in Fig. 10.

At low temperatures (kBT ≪ υ), the associated thermal fluc-
tuations in the configurations are extremely small. We observe
that the finite-range surface repulsion used in simulation
influences the configurations at low temperatures. The super-
rod of [001] magnetised cubes shows structural anisotropy,
which originates from the anisotropy of magnetic interaction.
The magnetic attraction is two times stronger in the magneti-
sation direction, i.e., the long axis of the super-rod, than in the
orthogonal plane. The cubes separate more in directions
where the magnetic attraction is weaker, cf. Fig. 10(B1). The
cubes are separated by repulsion, while positions and mag-
netic orientation of the constitutive particles remain
unchanged. The dilatation of the structure is a physical conse-
quence of the finite range of the repulsion and in the experi-
ment will depend on how the repulsive interactions are
realised in the system, e.g., adsorbed layers, polymers grafted
to the surface, etc. We also observe in corner-cube flakes that
particles do not touch each other due to repulsion Fig. 10(C1).
With the increase of temperature, the [001] chains of magnetic
cubes start to move and particles within chains rotate relatively
to each other. With increasing temperature, the space between
cubes created by repulsion gives the cubes additional freedom
to move, reducing the influence of their shape anisotropy.

At elevated temperatures, in two and three-dimensional
structures, both positional and magnetic orders disappear

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 19390–19403 | 19399



while constituent cubes stay connected inside a disordered
cluster. Due to stronger binding within the three-dimensional
structure for surface repulsion es < 0.3, the super-rods are
more stable compared to chains, cf. dashed curve in Fig. 10.
The change of structure with increasing surface repulsion is
not isotropic. We observe that with an increasing repulsion,
the structure splits into the assembly of aligned head–tail
chains (attraction inside the chain is two times stronger than
between the chains). The thermal motion makes individual
cubes oscillate around their equilibrium positions. As a result,
the chains are pushed away from each other to accommodate
the movement. At sufficiently elevated temperatures, the
bundle of [001] chains is created and lateral order (alignment)
disappears. Also, the cubes in these head–tail magnetised
chains start to rotate around their magnetisation axis, break-
ing face-to-face order within the chain. The transition tempera-
ture from super-rod to a [001] chain bundle decreases with
surface repulsion es.

The distance between single cubes increases homoge-
neously in the [111] super-cube with increasing surface repul-
sion and temperature. Melting of the cubic structure takes
place when the cubes are sufficiently separated and can rotate
freely around their magnetic axis. Assembly changes shape
and takes the form of a spherical cluster after melting. The
melting takes place first at the surface since the surface par-
ticles have fewer neighbours to constrain them geometrically
and through magnetic interactions. Likewise, we also observe
the size stabilisation of the super-cubes, i.e., larger super-
cubes melt at a higher temperature. Fig. 10 demonstrates size

stabilisation. The evolution of the melting temperature with
surface energy for es for N = 64 and 216 particle super-cube is
denoted with dotted and full (blue) curves, respectively.

For corner-cube flakes, we observe a discrepancy between the
stability predicted by analytic theory and simulation. The reason
is that simulations produced a far greater separation between
edges even for small surface repulsion es < 0.3 than seen in the
experiment, cf. Fig. 10(C1). This resulted in the structures being
less stable than indicated by the analytical results. The probable
reason is that our model does not capture the strong repulsion
of the surfaces and weak repulsion between the edges. Our
interpretation of the mechanisms of corner structures attributes
their formation to the combined strong magnetic attraction
between particles in edge contact and surface repulsion, pre-
venting them from closing into a three-dimensional cluster,
achievable by grafting polymers on them.

The chain of [111] magnetised cubes stays connected up to
kBT/υ < 0.35 even if particles are made very repulsive, i.e., es >
0.5 see the bold line (yellow) in Fig. 10. The nanocubes reduce
their surface energy by rotating away from full face-to-face
contact. In the case of the chain, such rearrangement of par-
ticles does not alter the long-range order or make the chain
disconnect.

4 Discussion

The competition between shape and magnetic anisotropies
offers various pathways for self-assembly. To explore the struc-

Fig. 10 The diagram (left panel) showing the thermal stability region of super-structures made of nanocube dependence on surface repulsion. The
bold (yellow) line shows the stability limit for the [111] chain. The short-dashed (magenta) line shows stability region for [001] magnetised super-rod
with N = 128 nanocubes, dotted (blue) line for the [111] magnetised super-cube with N = 64 nanocubes, full (blue) for [111] magnetised super-cube
with N = 216 nanocubes, and long-dashed line (green) corner-cube flake with N = 180 nanocubes. The right side panels show snapshots of the
evolution of structure with temperature for the [111] super-cube (A1, A2, A3), [001] super-rod (B1, B2, B3), and [111] corner-cube two-dimensional
structure (C1, C2, C3). The positions of the configurations in parameter space are also shown on the left panel. The results are material and scale-
independent. If uniformly magnetised cubes are considered to have saturation magnetisation Ms = 160 kA m−1, the reference energy and tempera-
ture depend on the particle size. For d = 15 and 40 nm, υ = 50 meV and υ = 1 eV, respectively. The particles are coloured differently to make them
more distinguishable.
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ture of polymorphs (N ≤ 27), analytical calculations are com-
bined with a systematic search for ground states. Two orien-
tations of the dipole relative to the cube geometry were con-
sidered, namely in the crystallographic directions [001] and
[111]. For magnetic anisotropy in the [001] direction, linear
chains have minimal binding energy for N ≤ 25. Beyond N = 26,
we observe complex re-entrant behaviour. Between 26 ≤ N ≤ 72,
for an even number of particles, the ground state is an anti-
ferromagnetic ribbon, and the structure has a closed magnetic
flux. For an uneven number of particles, the chain remains in
the ground state and does not enclose the magnetic flux. The
strong finite-size effects found in dipolar systems are respon-
sible for the persistence of the chains as the ground state.52

Beyond N ≥ 72, three-dimensional antiferromagnetic rods were
found as ground states. In the case of [111] magnetised cubes,
the ground state was found to consist of structures derived
from a simple square lattice resulting in the super-cubes seen
in experiments, cf. Fig. 1E and G. The surface minimisation
and the interplay of the magnetic anisotropy and the cube geo-
metry, which in turn form antiferromagnetic alternating mag-
netic order, are the driving mechanisms leading to the for-
mation of the super-cube.

The creation of directed non-close-packed arrangements is a
technological challenge. We depart in our consideration from
ground-state configurations found in polymorphs (N ≤ 27) and
compare them with the configurations found in experiments.
We study the transition between different states with increasing
repulsion surface energy. For magnetisation [001], the linear
chain becomes the minimal energy state for repulsive surface
coupling energies higher than 4% magnetic bulk binding
energy. The [111] magnetised cubes will transit into a chain
structure only in a range of surface repulsive energies and for
small and intermediate numbers of constitutive particles
N < 400. The limit of stability of compact three-dimensional
structures also lies around 60% of the magnetic binding energy
of the cubes. The strong repulsion still does not result in the
fully stretched chains with cubes touching only at the corners.
Instead, the system collapses into a corner-cube two-dimen-
sional configuration with the cubes in contact over the edges.
Surface coupling, repulsive or attractive, has a profound influ-
ence on the magnetic order of the assembled structures. Dense
configurations, such as super-rods or super-cubes, are antiferro-
magnetic, while non-closed-packed arrangements, such as
chains and corner-cube planes, are ferromagnetic.

The results revealed vanishing differences in the binding
energy between different super-structures, cf., in Fig. 4, due to
the insertion of additional nanocubes or between different
isomers. Even for the smallest considered assemblies – poly-
morphs containing only several particles (cf., Fig. 5 and 8),
these differences in energy per particle were comparable to the
thermal fluctuations at room temperature. Such a small differ-
ence in energy can result in the formation of the non-ground
state structures seen in the experimental realisation of poly-
morphs. The probability of proliferation of non-ground state
structures decreases with the magnitude of the energy differ-
ence between non-ground states and the ground state. In the

case of the super-structures, energy differences due to the
addition of a nanocube or between different structures with
similar numbers of nanocubes decreased with the number of
particles following the N−1/3 scaling law for the two and three-
dimensional structures. Nevertheless, the total energy differ-
ences of these structures increase with system size as N2/3

leading to the formation of fairly regular super-structures such
as super-cube, super-rods, or corner-cube flakes.

The morphology provides an insight into the particle mag-
netisation. This is particularly useful in situations where elec-
tron holography42 measurements are not possible (e.g., large
three dimensional systems or if the assembly is densely de-
posited on the substrate). The direction of the net magnetic
orientation relative to the cube geometry changes the geo-
metrical structure of the assembly. For chains of nanocubes,
the assembly mechanism drives the particles to adopt struc-
tures that create a head–tail configuration, very much like
chains of magnetic beads.53,54 In the case of the [001] direc-
tion, this leads to a deep central minimum of magnetic poten-
tial energy for the lateral movement of the magnetic particles
with respect to their magnetisation and consequently to a
quite stiff linear configuration in the presence of surface repul-
sion (es > 0.07 eV) or rod-like structures otherwise. In contrast,
when the magnetisation is along the principal axis, i.e., [111]
direction, the structure becomes more flexible under repulsion
(es ≳ 0.6 eV) or symmetric super-cubes are formed. We find
that the overall picture concerning the magnetization of the 3d
nanoparticles assemblies is fairly clear: the individual dipole
moments tend to cancel each other in antiferromagnetic con-
figurations. Only exception are 2d corner-cube flakes, where we
find a ferromagnetic zigzag magnetic configuration.

5 Conclusion

We demonstrate a rich variety of structures and non-close-
packed arrangements that can be engineered from nanocubes
with a combination of surface interaction and magnetic
dipole–dipole coupling. Our results are in good agreement
with the experimentally obtained structures. The model
studied here approaches systems where interparticle energies
of interaction are much higher than the thermal energy of the
particles. In most of the structures, particles assemble forming
flat surfaces to avoid getting trapped in local minima. We
established the relationship between arrangement, [100] and
[111] magnetic anisotropy, surface interaction, and size of the
system. The results are scalable and our approach is valuable
to research aimed at the application of novel magnetic super-
structures and to direct the self-assembly of unique structures
at different scales. The directed assembly of structures opens
up new possibilities in materials science in terms of tuning
properties through the balance of surface and magnetic inter-
actions, which is of practical relevance in many areas of
research, including biomedical materials, energy applications,
and complex nanoarchitectures for metamaterial coatings or
plasmonic elements.
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