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Abstract.  The percolation properties in anisotropic irreversible deposition 
of extended objects are studied by Monte Carlo simulations on a triangular 
lattice. Depositing objects of various shapes and sizes are made by directed self-
avoiding walks on the lattice. Anisotropy is introduced by imposing unequal 
probabilities for placing the objects along dierent directions of the lattice. The 
degree of the anisotropy is characterized by the order parameter p  determining 
the probability for deposition in the chosen (horizontal) direction. For each 
of the other two directions adsorption occurs with probability (1− p)/2. It is 
found that the percolation threshold θp increases with the degree of anisotropy, 
having the maximum values for fully oriented objects. Percolation properties 
of the elongated shapes, such as k-mers, are more aected by the presence of 
anisotropy than the compact ones.

Percolation in anisotropic deposition was also studied for a lattice with 
point-like defects. For elongated shapes a slight decrease of the percolation 
threshold with the impurity concentration d can be observed. However, for 
these shapes, θp significantly increases with the degree of anisotropy. In the 
case when depositing objects are triangles, results are qualitatively dierent. 
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The percolation threshold decreases with d, but is not aected by the presence 
of anisotropy.

Keywords: numerical simulations, percolation problems
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1.  Introduction

Irreversible adsorption has a wide range of applications in biology, nanotechnology, 
material science, and device physics [1–3]. Depending on the system of interest, depos-
iting objects can be various macromolecules, proteins, DNA segments, polymer chains, 
nanotubes, etc. There is a large number of works dealing with deposition of regular 
shapes on spatially homogeneous regular surfaces, but recent interest has shifted to 
deposition of irregular shapes on patterned or inhomogeneous substrates [4–7]. In real 
physical situations substrates can be biological membranes, minerals, and other inher-
ently heterogeneous surfaces. Understanding the impact of surface topography is cru-
cial for controlling the adsorption process.

Irreversible deposition is often studied by random sequential adsorption model 
(RSA). In these models particles are randomly, sequentially and irreversibly deposited 
onto a substrate. The particles are not allowed to overlap, so the dominant eect in 
RSA is the blocking of the available substrate area and the limiting (jamming) θjam 
coverage is less than in close packing. The kinetic properties of a deposition process are 
described by the time evolution of the coverage θ(t), that is the fraction of the substrate 
area occupied by the adsorbed particles [8–10]. Since the process of object deposition 
is random, the quantity θ(t) represents the expected value of the coverage at time t.

Depending on the system of interest, the substrate can be continuum or discrete, 
and RSA models can dier in substrate dimensionality. Exact solutions are available 
only for a number of one-dimensional problems [11, 12]. Due to the complexity of the 
geometrical exclusion eects in two and three dimensions, Monte Carlo simulations are 
one of the primary investigating tools for these deposition processes [13–18].

https://doi.org/10.1088/1742-5468/ab780a
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The long-term behavior of the coverage fraction is known to be algebraic for contin-
uum systems [1, 14], and exponential for lattice models [15, 17]. For discrete substrates 
the late time kinetics of the process is described by the time dependence:

θ(t) = θjam − Ae−t/τ ,� (1)

where A and τ  are parameters that depend on the shape, orientational freedom of the 
objects, and on the substrate dimensionality and heterogeneity.

During the process of irreversible deposition, coverage increases causing the growth 
of clusters of occupied sites. Percolation assumes the formation of a large cluster that 
connects two opposite sides of the substrate [19]. The interplay between RSA and per-
colation has been discussed in several works [20–22]. Motivated by irreversible deposi-
tion of large particles, such as polymers, the percolation properties of flexible chains 
were discussed in [23] for both the square and the triangular lattice. Simulations were 
performed for various chain lengths and the compositions that give minimum percola-
tion thresholds were identified. For longer and more bent chains non-percolation regime 
was observed. Results for the percolation thresholds, jamming coverages, and their 
ratios for deposition of various objects on a triangular lattice were presented in [24]. 
Depositing objects of various shapes were made by self-avoiding random walks on the 
lattice. It was found that the percolation threshold monotonically decreases for elon-
gated shapes and increases for more compact objects with the object size. For compact 
objects of larger sizes jamming coverage was reached before the percolation.

In order to describe the inhomogeneous surfaces in the RSA model, anisotropy in 
the deposition procedure can be imposed [25]. Namely, the probability for deposition 
is dierent along dierent directions of the underlying lattice. This simple modification 
introduces preferential direction in the deposition process and causes a specific ‘pat-
terning’ of the deposited layer. Eect of anisotropy on the RSA of objects of various 
shapes on a triangular lattice was studied by Monte Carlo simulations [26]. It was 
shown that the kinetics of anisotropic deposition strongly depends on the symmetry 
properties of the object. In the case of elongated and asymmetric shapes, the relaxation 
time was found to increase with the degree of anisotropy. However, for symmetric 
shapes, rapidity of the approach to the jamming state was not aected by the presence 
of anisotropy. For asymmetric shapes the jamming coverage was also found to depend 
on the degree of anisotropy.

Eect of anisotropy on the electrical conductivity in disordered systems, such as 
polymer chains and nanotubes, was studied experimentally in [27]. It was found that 
percolation conductivity of a stick network depends on the alignment, as well as on 
the concentration. The highest conductivity occurs for slightly aligned, rather than 
isotropic sticks. Electrical conductivity of a monolayer produced by random sequential 
adsorption of linear k-mers onto a square lattice was examined by computer simula-
tions [28]. Isotropic deposition with two possible orientations of the k-mers along the 
x and y  axes, and anisotropic deposition with all the k-mers oriented in the y  direction 
were analyzed. Percolation phenomena were also investigated for anisotropic random 
sequential adsorption of k-mers on a square lattice by Monte Carlo simulations for vari-
ous values of order parameter [29]. For partially ordered systems, for a certain length 
of k-mers, a minimum of the percolation threshold value has been observed. It has been 

https://doi.org/10.1088/1742-5468/ab780a
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found that the increase of system ordering always results in an increase of the percola-
tion threshold.

Percolation with the presence of impurities has also been studied [30, 31]. It has 
been shown that the critical defect concentration, i.e. the highest concentration for 
which the percolation was observed, depends on the object shape. Eect of anisotropy 
on jamming and percolation for RSA of linear k-mers on a square lattice that contains 
defects was studied in [32]. The critical concentration of defects was found to decrease 
with the order parameter determining the degree of anisotropy.

Here we investigate the percolation properties in irreversible deposition of objects 
of various shapes on inhomogeneous substrates. Most of the work is devoted to perco-
lation in anisotropic conditions, with various probabilities for depositions in a certain 
direction, i.e. for various values of the order parameter. Eects of anisotropy is also 
studied for lattices with quenched impurities.

The paper is organized as follows. Section 2 describes the details of the model and 
simulations. Results and discussions are given in section 3, while section 4 contains 
some additional comments and final remarks.

2. Definition of the model and the simulation method

Anisotropic irreversible deposition of extended objects is studied by Monte Carlo simu-
lations. The depositing objects are modeled by self-avoiding walks on a triangular lat-
tice. A self-avoiding walk of length � is a sequence of distinct sites of the lattice such 
that each site is a nearest neighbor of its predecessor, so a walk of length � covers �+ 1 
lattice sites.

Anisotropy is introduced by imposing dierent probabilities of deposition in the 
three possible directions. The choice of the horizontal direction occurs with probability 
p  and for each of the other two directions with probability (1− p)/2. Hence, the value 
of p   =  1/3 corresponds to the isotropic case. In our simulations one direction corre-
sponds to two opposite orientations with equal deposition probabilities. The probabil-
ity p  actually stands for the order parameter characterizing the degree of anisotropy.

At each Monte Carlo step a lattice site is selected uniformly at random. If the 
selected site is unoccupied, one of the six possible orientations is chosen with the corre
sponding probability and deposition of the object is tried in that orientation. We fix the 
beginning of the walk that makes the shape at the selected site and search whether all 
successive � sites are unoccupied. If so, we occupy these �+ 1 sites and place the object. 
If the attempt fails, a new site is selected at random. The jamming limit is reached 
when the object of the specified shape cannot be placed in any position on the lattice.

In this work we concentrate on the study of percolation in anisotropic irreversible 
deposition. The coverage of the surface is increased in the RSA process up to the perco-
lation threshold, when there appears a cluster that extends through the whole system—
from the left to the right side of the lattice. The tree-based union/find algorithm is used 
to determine the percolation threshold [33]. Each cluster of connected sites is stored 
as a separate tree, having a single ‘root’ site. All sites of the cluster possess pointers 
to the root site, so it is simple to ascertain whether two sites are members of the same 

https://doi.org/10.1088/1742-5468/ab780a
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cluster. When a deposited object connects two separate clusters, they are amalgam-
ated by adding a pointer from the root of the smaller cluster to the root of the larger 
one. This procedure is repeated until the percolation threshold is reached, i.e. until 
the opposite sites of the lattice are connected by a single cluster. The cluster wrapping 
making the percolation through the lattice can be defined in a number of dierent ways 
[29]. In the isotropic case the percolation thresholds have equal values along all direc-
tions. Nevertheless, for an anisotropic system we have to define the direction of interest 
for percolation. Here we determine the average coverage when a left–right crossing first 
appears. In the following text we denote this value as the percolation threshold θp.

The Monte Carlo simulations are performed on a triangular lattice of size up to 
L  =  3200. Periodic boundary conditions are used in all directions. The time is counted 
by the number of attempts to select a lattice site and scaled by the total number of 
lattice sites (discrete time model). In all the simulations the data are averaged over 500 
independent runs.

3. Results and discussion

Jamming coverages and percolation thresholds are determined for a large variety of 
objects. Basic object shapes made by the self-avoiding walks of length � = 1, 2, and 
3 are shown in table 1. Objects of larger sizes are made by repeating each step of a basic 
shape the same number of times for the elongated shapes, while the compact objects 
of larger sizes, such as triangles and rhombuses, also occupy all comprised sites. The 

Table 1.  Various shapes (x) of length � on a triangular lattice. Here ns denotes the 
order of the symmetry axis of the shape.

(x) Shape � ns

(A) 1 2

(B) 2 1
(C) 2 3

(D) 3 1
(E) 3 2
(F) 3 1
(G) 3 1

(H) 3 2

Table 2.  Illustration of the construction of the objects larger than the basic 
ones.

Shape A� Shape B� Shape C� Shape H�

� = 1 � = 2 � = 2 � = 3

� = 2 � = 3 � = 5 � = 8

... ... ... ... ... ... ... ...

... � = 10 ... � = 20 ... � = 20 ... � = 24

https://doi.org/10.1088/1742-5468/ab780a
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construction of larger objects is illustrated in table 2. Simulations are performed for 
k-mers (denoted as (A), angled objects (B), and triangles (C) up to the length � = 20, 
for objects (D), (E), (F), (G) up to � = 21, and for rhombuses less then � = 15 because 
the percolation cannot be reached for larger ones.

According to the scaling theory the eective percolation threshold θp (the mean 
value measured for a finite lattice) approaches the asymptotic value θ∗p (L → ∞) via 
the power law [19]:

θp − θ∗p ∝ L−1/ν .� (2)

For all lattice sizes and all examined objects results for the percolation thresholds are 
averaged over 500 independent runs. The theoretical value for the critical exponent 
is ν = 4/3 for two-dimensional systems. For the objects (A2), (B) and (C) simulations 
are performed for the lattice size ranging from L  =  200 to L  =  3200. Plots of the mean 
value of θp obtained for various lattice sizes against L−1/ν are shown in figure 1 in the 
case of anisotropic deposition p   =  0.84. It must be stressed that validity of the finite-
size scaling is confirmed in the whole range of parameter p . Moreover, the asymptotic 
value of the percolation threshold θ∗p coincides with the value of θp obtained for the 
largest lattice, within the limits of the statistical error. Although θp is sensitive to the 
lattice size L, θp tends to θ∗p as L → ∞. As also confirmed in [23, 34], the results for a 

Figure 1.  Finite-size scaling of the mean value of the percolation threshold θp 
versus L−1/ν for objects (A2), (B), and (C) for the value of the order parameter 

p   =  0.84. Straight lines represent the linear fit of the form: θp − θ∗p ∝ L−1/ν , where 

the asymptotic value of the percolation threshold θ∗p coincides with the value 

θp obtained for the largest lattice, within the statistical error. For clarity, the 
data for objects (A2) and (B) are shifted vertically upward by 0.022 and 0.0415, 
respectively.

https://doi.org/10.1088/1742-5468/ab780a


Percolation in irreversible deposition on a triangular lattice: eects of anisotropy

7https://doi.org/10.1088/1742-5468/ab780a

J. S
tat. M

ech. (2020) 033211

suciently large lattice can be taken instead of the asymptotic value θ∗p. For further 
analysis of the percolation threshold we take the results for L  =  3200.

According to the scaling theory [19] the standard deviation σp of the percolation 
threshold determined for a finite size lattice L satisfies the power law:

σp ∝ L−1/ν .� (3)

In the case under consideration, σp is the standard deviation of the mean value of the 
coverage at which a left–right crossing first appears. Plots of σp versus L are shown 
for the objects (A2), (B) and (C) on a log–log scale in figure 2. The slope of these lines 
corresponds to the exponent 1/ν = 0.75± 0.01.

3.1. Eects of anisotropy

Results for jamming densities and percolation thresholds are obtained for various prob-
abilities of deposition in the horizontal direction, i.e. for values of the order parameter 
p  ranging from p   =  0 to p   =  1. Dependence of the percolation threshold θp on the order 
parameter p  are presented in figure 3 for various sizes of the basic objects from table 1. 
It can be seen that the lowest values of θp are obtained for the isotropic case (p   =  1/3). 
Percolation threshold increases with the degree of anisotropy, having the largest values 
for fully oriented objects in one direction (p   =  1). This property is most pronounced for 
k-mers (figure 3(a)). Percolation thresholds for various values of the order parameter p  
for objects (A1), (A3), (A10), (A12), and (A20) are given in table 3. On the other hand, 
for triangles (C), neither jamming nor percolation are aected by the anisotropy (figure 

Figure 2.  Finite-size scaling of the mean value of the standard deviation σp against 
L for objects (A2), (B), and (C) for the value of the order parameter p   =  0.84. 

Straight lines represent the linear fit of the form: σp ∝ L−1/ν .

https://doi.org/10.1088/1742-5468/ab780a
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(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 3.  Dependence of the percolation threshold θp on the probability p  for 
deposition in the horizontal direction, i.e. on the order parameter, for various basic 
objects from table 1 and for the larger sizes of these shapes: (a) (A); (b) (B); (c) (C); 
(d) (D); (e) (E); (f) (F); (g) (G) and (h) (H).

https://doi.org/10.1088/1742-5468/ab780a
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3(c)). The relative increase of the percolation threshold due to the complete alinement 
(maximum anisotropy) defined as:

R =
θp( p = 1)− θp( p = 1/3)

θp( p = 1/3)
,� (4)

is largest for the k-mers of length � = 11 (A11), and its value is 28.6%. The lowest eect 
of the anisotropy (the lowest value of R) on the studied k-mers is found for dimers: 
(4.8%). It is interesting that the percolation thresholds for k-mers of various lengths 
have almost the same values for highly anisotropic deposition. The minimum and maxi-
mum relative increase of the percolation threshold for p   =  1, compared to the isotropic 
case, is given in table 4 for all objects from table 1. It can be seen that the impact of 
anisotropy on the percolation properties is largest for the elongated objects ((A), (F)), 
on the contrary to the compact rhombuses (H), that are less aected by the anisotropic 
conditions. With the exception of fully symmetrical objects, the increase in the aniso
tropy always results in higher percolation thresholds. It should be emphasized that the 
statistical errors are typically of the order of 10−3, and in all the figures the error bars 
are smaller than the symbol size.

It is interesting to note that there has been an uncertainty whether percolation can 
be reached for unlimited lengths of k-mers. Numerical investigations of this point would 
require extremely large lattices and the conclusions would still be based on extrapola-
tion of the results obtained for relatively short k-mers. The solution of this dilemma 
can be found in [36], where the authors provided a rigorous proof that all jamming 
configurations of k-mers on a square lattice are percolating ones. In the isotropic case, 
percolation threshold decreases with � for shorter k-mers, reaches a smooth minimum 
for � � 11, and slightly increases for longer k-mers [24]. Dependence of the percolation 
threshold on the length of various objects from table 1 is shown in figure 4 for some val-
ues of the order parameter p . Introducing the anisotropy shifts the minimum towards 
lower k-mer lengths. For highly anisotropic conditions a qualitatively dierent behavior 

Table 3.  Percolation thresholds for various values of the order parameter p  for 
objects (A1), (A3), (A10), (A12), and (A20).

p 

θp

A1 A3 A10 A12 A20

0 0.4943(12) 0.4662(14) 0.4471(25) 0.4482(27) 0.456(4)
0.04 0.4924(11) 0.4612(14) 0.4398(25) 0.4410(26) 0.448(3)
0.12 0.4894(11) 0.4530(12) 0.4262(23) 0.4271(26) 0.434(3)
0.20 0.4876(11) 0.4469(14) 0.4151(23) 0.4160(26) 0.423(3)
0.28 0.4864(12) 0.4436(13) 0.4091(23) 0.4097(25) 0.418(3)
0.36 0.4864(10) 0.4430(12) 0.4082(21) 0.4090(23) 0.417(3)
0.44 0.4870(11) 0.4455(13) 0.4127(23) 0.4133(24) 0.421(3)
0.52 0.4886(11) 0.4507(13) 0.4224(22) 0.4225(27) 0.428(3)
0.60 0.4910(11) 0.4583(13) 0.4360(23) 0.4364(27) 0.440(4)
0.68 0.4940(11) 0.4681(14) 0.4529(24) 0.4534(28) 0.457(4)
0.76 0.4977(11) 0.4795(12) 0.4713(26) 0.4718(28) 0.475(4)
0.84 0.5021(11) 0.4904(16) 0.4899(24) 0.4905(26) 0.494(4)
0.92 0.5073(11) 0.5064(15) 0.5079(27) 0.5084(29) 0.5094(4)
0.96 0.509 84(11) 0.5134(16) 0.5169(25) 0.5169(29) 0.516(4)
1 0.5127(11) 0.5209(15) 0.5255(26) 0.5252(29) 0.524(4)

https://doi.org/10.1088/1742-5468/ab780a
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(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 4.  Dependence of the percolation threshold θp on the length of various 
objects from table 1: (a) (A); (b) (B); (c) (C); (d) (D); (e) (E); (f) (F); (g) (G) and (h) 
(H) for the values of the order parameter: p = 0; 0.12; 0.28; 0.44; 0.60; 0.76; 0.92 
and 1.

https://doi.org/10.1088/1742-5468/ab780a
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is obtained—θp increases with the k-mer length, reaches a maximum, and decreases 
for longer k-mers (figure 4(a)). Percolation thresholds for various lengths of k-mers for 
p   =  0, p   =  0.12, p   =  1/3, p   =  0.76, p   =  0.92, and p   =  1 are given in table 5. For the 
angled objects (B) θp decreases with � (figure 4(b)), but for the triangles (C) increases 
with the object size (figure 4(c)). Numerical values of the percolation thresholds for 
various lengths of angled objects (B) for p   =  0, p   =  1/3, p   =  0.76, and p   =  1 are given 
in table 6. There is an essential dierence between deposition of elongated objects and 
the compact ones. This feature is connected with dierence in the geometry exclusion 
eects. Blocking of the substrate area is enhanced by the growth of the k-mer length, 
making the surface more porous. The porosity of the surface is also responsible for 

Table 5.  Percolation thresholds for various lengths of k-mers for p   =  0, p   =  0.12, 
p   =  1/3, p   =  0.76, p   =  0.92, and p   =  1.

Length

θp

p   =  0 p   =  0.12 p   =  1/3 p   =  0.76 p   =  0.92 p   =  1

1 0.4943(12) 0.4894(11) 0.4863(11) 0.4977(11) 0.5073(11) 0.5127(11)
2 0.4785(13) 0.4689(12) 0.4620(11) 0.4872(12) 0.5067(13) 0.5179(13)
3 0.4662(14) 0.4530(12) 0.4428(13) 0.4795(15) 0.5064(15) 0.5209(15)
4 0.4578(16) 0.4420(16) 0.4293(15) 0.4751(16) 0.5062(16) 0.5225(17)
5 0.4523(18) 0.4348(17) 0.4202(16) 0.4728(18) 0.5066(18) 0.5236(19)
6 0.4494(20) 0.4306(18) 0.4145(17) 0.4716(19) 0.5068(20) 0.5243(20)
7 0.4479(20) 0.4281(20) 0.4110(18) 0.4711(21) 0.5161(21) 0.5249(22)
8 0.4468(23) 0.4268(20) 0.4088(21) 0.4708(22) 0.5076(22) 0.5252(25)
9 0.4468(24) 0.4263(22) 0.4079(21) 0.4710(24) 0.5076(27) 0.5252(23)
10 0.4471(25) 0.4263(23) 0.4078(22) 0.4713(26) 0.5079(27) 0.5255(26)
11 0.4476(27) 0.4266(24) 0.4080(23) 0.4714(26) 0.5087(26) 0.5251(29)
12 0.4482(27) 0.4271(26) 0.4087(24) 0.4718(28) 0.5084(29) 0.5252(29)
13 0.4490(27) 0.4278(29) 0.4095(26) 0.472(3) 0.509(3) 0.5253(29)
14 0.450(3) 0.4287(29) 0.4104(25) 0.473(4) 0.509(3) 0.525(3)
15 0.451(3) 0.429(3) 0.4112(27) 0.473(3) 0.509(3) 0.525(3)
16 0.452(3) 0.430(3) 0.4124(29) 0.473(4) 0.509(4) 0.525(4)
17 0.453(3) 0.431(3) 0.4134(29) 0.473(4) 0.509(4) 0.524(3)
18 0.454(3) 0.432(3) 0.415(3) 0.474(4) 0.509(4) 0.524(4)
19 0.454(3) 0.433(3) 0.415(3) 0.474(4) 0.509(4) 0.524(4)
20 0.456(4) 0.434(3) 0.417(3) 0.475(4) 0.509(4) 0.524(4)

Table 4.  Relative increase of the percolation threshold (equation (4)) for p   =  1, 
comparing to the fully isotropic case.

(x) Shape Rmin.–Rmax. Objects

(A) 4.8%–28.6% A1 (min.); A11 (max.)
(B) 4.8%–8.2% B2 (min.); B14 (max.)
(C) / /
(D) 8.1%–13.4% D3 (min.); D9 (max.)
(E) 3.7%–12.1% E3 (min.); E21 (max.)
(F) 11.4%–18.8% F3 (min.); F9 (max.)
(G) 3.7%–12.1% G3 (min.); G21 (max.)

(H) 3.6%–5.6% H3 (min.); H15 (max.)
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the decrease of θp with the length of the angled objects (B), as well as for the objects 
(D), (E), (F ) and (G) from table 1. On the other hand, for compact objects, such as 
triangles (C) and rhombuses (H), percolation threshold increases with their size. This is 
the consequence of a low connectivity of these objects.

Figure 5 shows the ratio θp/θjam versus the order parameter p  for various sizes of 
the objects from table 1. These plots also exhibit a minimum for the isotropic case 
and grow with the order parameter p . For larger sizes of elongated shapes such as 
(A), (B), (D), (F ), this minimum is more prominent. Less elongated shapes (E), (G), (H) 
show a broad minimum for the isotropic case, and an abrupt increase of θp/θjam when 
p  tends to unity. For such objects the θp/θjam ratio is only slightly aected by the low 
degree of anisotropy, but increases significantly when depositing conditions impose 
almost complete alignment of the objects.

Percolation threshold behavior for various objects from table  1 is illustrated in 
figure 6 for a relatively high degree of the anisotropy p   =  0.84. Under these conditions, 
k-mer percolation practically does not depend on their length. For compact objects, 
triangles (C) and rhombuses (H), percolation threshold increases with �, while for the 
objects (B), (D), (E), (F ) and (G) decreases with the object length. Jamming cover-
age decreases with the object size for all shapes of depositing objects [35]. When the 
dependence of the ratio θp/θjam on the object size is presented for various object shapes 
as in figure 7, it can be concluded that θp/θjam monotonically increases with � for each 
object shape. Namely, at very early times of the deposition process, depositing objects 
do not ‘feel’ the presence of already deposited ones, and are placed randomly accord-
ing to the deposition rules onto the lattice. With the growth of the coverage, paral-
lel deposition of elongated objects is more favored in order to avoid an intersection. 
Anisotropic conditions, i.e. ordering along one of the directions, show an additional 
deposition-induced alignment of the elongated objects. Percolation threshold for these 
objects decreases more slowly with � than the corresponding jamming coverage. This 
results in the increase of the θp/θjam ratio. On the other hand, anisotropic deposition of 
compact objects, triangles (C) and rhombuses (H), gives the increase of the percolation 
threshold with the object size, resulting in the increase of θp/θjam with �.

Table 6.  Percolation thresholds for various lengths of angled objects (B) for p   =  0, 
p   =  1/3, p   =  0.76, and p   =  1.

Length

θp

p   =  0 p   =  1/3 p   =  0.76 p   =  1

2 0.4667(11) 0.4608(12) 0.4701(11) 0.4831(11)
4 0.4239(14) 0.4146(12) 0.4296(12) 0.4487(12)
6 0.3932(14) 0.3825(13) 0.4006(13) 0.4219(13)
8 0.3716(16) 0.3602(14) 0.3796(15) 0.4014(14)
10 0.3558(15) 0.3445(16) 0.3638(15) 0.3853(16)
12 0.3439(17) 0.3329(17) 0.3519(17) 0.3727(16)
14 0.3348(19) 0.3239(19) 0.3423(19) 0.3621(21)
16 0.3275(20) 0.3171(20) 0.3345(18) 0.3532(18)
18 0.3214(23) 0.3116(21) 0.3276(20) 0.3458(18)
20 0.3161(22) 0.3071(22) 0.3221(19) 0.3393(19)

https://doi.org/10.1088/1742-5468/ab780a


Percolation in irreversible deposition on a triangular lattice: eects of anisotropy

13https://doi.org/10.1088/1742-5468/ab780a

J. S
tat. M

ech. (2020) 033211

(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 5.  Dependence of θp/θjam on the probability p  for deposition in the horizontal 
direction, i.e. on the order parameter, for various objects from table 1 and for the 
larger sizes of these shapes: (a) (A); (b) (B); (c) (C); (d) (D); (e) (E); (f) (F); (g) (G) 
and (h) (H).
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Comparison of the fully aligned adsorption (p   =  1) and the isotropic case is illus-
trated in figure 8. Dependence of the percolation threshold on the length of objects 
(A), (B) and (C) from table 1 are shown for p   =  1 and for the isotropic case (p   =  1/3). 
Existence of the anisotropy in the adsorption process results in the increase of the 
percolation threshold. The most noticeable eect is for the adsorption of line-segments 

(a) (b)

Figure 6.  (a) Dependence of the percolation threshold θp on the length of objects 
(A), (B), and (C) from table  1 for p   =  0.84. (b) Dependence of the percolation 
threshold θp on the length of objects (D), (E), (F), (G), and (H) from table 1 for 
p   =  0.84.

(a) (b)

Figure 7.  (a) Dependence of θp/θjam on the length of objects (A), (B), and (C) from 
table 1 for p   =  0.84. (b) Dependence of θp/θjam on the length of objects (D), (E), 
(F), (G), and (H) from table 1 for p   =  0.84.
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(k-mers), for which the percolation threshold in the isotropic case decreases with �, 
reaches a minimum, and increases for longer k-mers, while for the fully aligned deposi-
tion, θp increases with � for short k-mers, reaches a maximum, and slightly decreases 
for longer objects. As already mentioned, deposition properties of triangles with the 
symmetry axis of third order, are not aected by the presence of anisotropy. The same 
conclusion would apply to the adsorption of hexagons with symmetry axis of sixth 
order, matching the underlying triangular lattice.

3.2. Percolation in anisotropic conditions on a lattice with point-like defects

Percolation properties are also examined for inhomogeneous substrates, with quenched 
impurities and anisotropic depositing conditions. The aim of these numerical experi-
ments is to examine how the defects, together with the anisotropic depositing condi-
tions, aect the percolating properties of the deposits.

In the work [31] percolation thresholds were determined for k-mers, angled objects, 
and triangles of two dierent sizes. It was found that for the examined k-mers, θp was 
practically not aected by the presence of point-like impurities. For the deposition of 
triangles, a slight decrease of θp was observed with the increase of the point-like defect 
concentration.

Simulations of the irreversible deposition on a substrate containing defects are 
performed in two steps. The triangular lattice is initially and randomly occupied by 
point-like defects at given concentration d. After placing the impurities, anisotropic 
deposition of objects of various shapes is performed. The depositing objects are not 
allowed to overlap with the previously deposited ones, nor with the lattice defects.

Figure 8.  Dependence of the percolation threshold θp on the length of objects (A), 
(B) and (C) from table 1 for p   =  1 and for the isotropic case (p   =  1/3), as indicated 
in the legend.
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Results are obtained for various degrees of anisotropy determined by the values of 
the order parameter p = 0; 0.20; 0.33; 0.50; 0.66; 0.80 and 1. Plots of the percolation 
threshold θp versus the defect concentration d are shown in figure 9 for line segments 
covering three lattice sites (A2), angled objects (B) and triangles (C) from table 1. From 
figure 9(a) we can see that the percolation threshold for the k-mers covering three lat-
tice sites is almost not aected by the impurity concentration d. Formation of a per-
colation cluster requires a certain coverage by the depositing k-mers, and this is not 
changed by the presence of the point-like impurities that are avoided by the depositing 
line-segments. The situation is similar for the angled objects (B), although the values 
of the percolation thresholds are lower than for the line segments. A slight decrease of 
the percolation threshold with the impurity concentration can be observed. However, 

(a) (b)

(c)

Figure 9.  Dependence of the percolation threshold θp on the impurity concentration 
d for various values of the order parameter p  for objects: (a) (A2), (b) (B), and  
(c) (C).
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for both of these shapes, θp significantly increases with the degree of anisotropy. The 
lowest values of θp are obtained for the fully isotropic case (p   =  0.33), and the highest 
for the completely aligned objects (p   =  1). Plots of θp versus the defect concentration 
d for the triangles (C) are qualitatively dierent. The percolation threshold decreases 
with d, but is not aected by the presence of anisotropy.

4. Concluding remarks

Percolation properties in anisotropic irreversible deposition on inhomogeneous sub-
strates have been investigated. Various object shapes were examined and percolation 
thresholds were determined for various degrees of deposition anisotropy characterized 
by the order parameter p   =  taking values from p   =  0 to p   =  1. It was found that the 
percolation threshold increases with the degree of anisotropy, having the maximum 
values for fully oriented objects in one direction. The relative increase of the percola-
tion threshold for the maximum anisotropy (p   =  1), compared to the isotropic case 
(p   =  1/3), is largest for k-mers of length � = 11. These are the k-mers that give the low-
est value of θp in the isotropic case. On the contrary, percolation of the triangles with 
the symmetry axis of third order, is not aected by the anisotropy of the underlying 
lattice.

Essential dierence in the percolation properties of elongated and compact objects 
was also found. High porosity of the deposit and the high connectivity of elongated 
objects result in low percolation thresholds for the isotropic, as well as for the anisotro-
pic deposition. For these objects θp decreases with their size. On the other hand, low 
connectivity of the compact objects, for example triangles and rhombuses, results in 
higher percolation thresholds, while θp increases with the object size. It should be noted 
that the k-mers show a more complex behavior. For the isotropic case θp decreases with 
� for shorter k-mers, reaches a minimum, and increases for longer k-mers. In the pres-
ence of anisotropy the minimum is shifted towards shorter k-mers. For highly anisotro-
pic deposition, percolation threshold practically does not depend on the k-mer length.

Simulations of adsorption processes on anisotropic substrates with defects showed a 
qualitatively dierent behavior of the percolation threshold for dierent object shapes. 
In the case of k-mer deposition, percolation threshold is not aected by the pres-
ence of point-like impurities, for angled objects θp slightly decreases with the impurity 
concentration, and this decrease is most prominent for compact objects (triangles). 
Percolation threshold increases with the degree of anisotropy, with the exception of 
triangle deposition that is not aected by the presence of anisotropy.
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