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We study the compaction dynamics of frictional hard disks in two dimensions, subjected to vertical shaking,
by numerical simulation. Shaking is modeled by a series of vertical expansions of the disk packing, followed by dy-
namical recompression of the assembly under the action of gravity. The second phase of the shake cycle is based on
an efficient event-driven molecular-dynamics algorithm. We analyze the compaction dynamics for various values of
the friction coefficient and the coefficient of normal restitution. The granular organization at local level was studied
by analyzing the shape factor ξ of the local volumes, associated with a natural way of subdividing the volume
into local parts - the Voronoi partition. It gives a clear physical picture of the competition between less and more
ordered domains of particles during the compaction. We calculate the distribution of the shape-factor for packings
at different stages of the compaction process. We have also investigated a two-dimensional granular medium exper-
imentally. We prepared the granular packings of metallic cylinders of diameters 4, 5, and 6 mm. The distributions
of the shape-factor obtained numerically for various tapping intensities are consistent with our experimental results.

PACS: 45.70.–n, 45.70.Cc, 81.05.Rm, 61.43.Bn

1. Introduction

The vibratory compaction of granular materials has
long been of importance in many technological applica-
tions. The underlying dynamic and structural properties
of the compaction process are a subject of great inter-
est for physicists in recent years [1–5]. The phenomenon
of granular compaction involves the increase of the den-
sity of granular material subjected to shaking, tapping
or, more generally, to some kind of external excitation.

First, we study the compaction dynamics of frictional
hard disks in two dimensions, subjected to vertical shak-
ing, by numerical simulation. During the redeposition of
the packing, the disks undergo instantaneous, inelastic
binary collisions and propagate under gravity in between
the collision events. Their settlement is terminated when
the total kinetic energy of each disk falls below some
threshold value. The algorithm employed in the present
paper describes relatively accurately the quite complex
succession of collisions in a shaken packing and provides
a realistic information about its microstructural transfor-
mations during the compaction.

Our numerical simulation is based on the ideas of
Barker and Mehta [6, 7] and Bideau and coworkers [8],
with modifications aiming at more realistic treatment of
gravitational redeposition of granular particles. The pre-
vious models [6–8] may have limited applications because
of not taking into account the friction and other interpar-
ticle forces.

In addition, we investigate experimentally a two-
dimensional (2D) dense, disordered granular medium
composed of rigid noncohesive grains. Our experimen-
tal apparatus is adapted from a geometry introduced by

Kolb et al. [9]. We study the dependence of the mi-
crostructural properties of packings on some parameters
like the packing fraction of granular medium and com-
pare the simulation results to the experimental ones. We
apply the novel concept of shape factor, recently intro-
duced by Moucka and Nezbeda [10], to measure in detail
the topology of the Voronoi cells during the penetration
process. The shape factor is a dimensionless measure
of deviation of the Voronoi cells from circularity. This
quantity was recently used to study the crystallization
of two-dimensional systems, both in simulation [10] and
experiment [11]. Since the shape factor clearly indicates
the presence of domains made up of different Voronoi
polygons, it gives a relevant physical picture of the com-
petition between less and more ordered domains in the
packing.

The plan of the paper is as follows. The simulation
methodology is presented in Sec. 2, and the numerical
results are presented in Sec. 3. The experimental results
are reported and discussed in Sec. 4. Finally, Sec. 5
contains concluding remarks and comments.

2. Simulation method

The compaction of N = 1000 monosize disks of diam-
eter d and mass m under consecutive taps is studied in
a rectangular container of width L = 1, with a flat bot-
tom at y = 0 and opened top. A gravitational field g
acts along the negative y direction. One shake cycle of
the granular assembly (corresponding to one time step
of our simulation) is decomposed in two stages: 1) ver-
tical dilatation of the disk packing, in proportion to the
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shaking acceleration Γ and 2) formation of static granu-
lar pack in the presence of gravity. Repeated application
of the shaking algorithm builds a sequence of static pack-
ings where each new packing is built from its predecessor.
Shaking acceleration Γ is defined as the ratio of the peak
acceleration of a tap to the gravitational acceleration.

In the first phase of the shake cycle, free volume is
introduced uniformly throughout the whole packing. A
disk at height y is raised to a new height y′ = (1 + ξ)y.
This models the dilation phase of a vibrated granular
medium. In that sense, the parameter ξ in our model
plays a similar role as Γ in real experiments. After di-
lation, we give a random initial velocity to each disk, in
such a way that the total momentum is equal to zero.
The choice of the initial velocity distribution function
does not play a substantial role in our simulation.

In the second phase of the shake cycle, the packing is
compressed under gravity, using an efficient event-driven
molecular-dynamics algorithm [12]. The disks are as-
sumed to be inelastic with rough s subject to Coulomb
friction. In the event driven method the disks follow an
undisturbed motion, under the influence of gravity, un-
til an event occurs. An event is either the collision of
two disks or the collision of one disk with the wall. The
trajectories between collision events are parabolic arcs
due to the presence of the gravitational field. Particle
collisions are modeled using the Walton model [13, 14].
This model implies that two disks at contact either slide,
following the Coulomb’s law, or stick together. The colli-
sion rule (given in detail in the [13]) takes into account a
reduction of normal relative velocity of the two particles
and a reduction of total tangential relative velocity. The
collisions with the wall are treated in the same way as
the collisions between particles, except the wall has an
infinite mass. To prevent an inelastic collapse [15, 16],
we use a coefficient of restitution which depends on the
relative colliding velocity of the particles [17].

Due to dissipative collisions, the potential energy of the
system tends towards a constant, while its kinetic energy
tends towards zero in the long time limit. A static con-
figuration of disks with zero kinetic energy is reached by
imposing the following stopping criteria. A disk is con-
sidered to be at rest if both translational and rotational
kinetic energy of the disk in the last ten collisions falls
below a threshold value E

(t)
tr and E

(r)
tr , respectively. Here

E
(t)
tr and E

(r)
tr are the free parameters that are chosen to

optimize the computational method. In this study, we
used very small values E

(t)
tr = 5× 10−5 and E

(r)
tr = 10−6,

in dimensionless units in which the container width L,
mass m and gravitational acceleration g all equal unity.
However, in a subsequent presentation of the results on
the compaction dynamics, the time T is measured in the
number of taps.

These simulations were performed on the parallel clus-
ter computer consisting of 100 Intel processors. A typical
simulation of entire compaction process used 3 CPU days
on a single processor.

3. Results and numerical simulations

In the simulations, we employ the Walton
model [13, 14] that captures the major features of
granular interactions. We describe the roughness of the
surfaces and the energy dissipation, using the parameters
µ (coefficient of friction) and β0 (coefficient of maximum
tangential restitution). Further mechanisms of energy
dissipation are the permanent deformation of a particle
during the contact and the transfer of kinetic energy
to thermal energy. We account for these effects using
the velocity dependent coefficient of normal restitution
ε. In order to examine the effects of inelastic and
friction properties of grains on compaction dynamics, we
used two sets of material parameters. More dissipative
and rough disks (referred hereafter as disks (A)) are
characterized by coefficients ε0 = 0.6 and µ = 0.4,
whereas with parameters ε0 = 0.9 and µ = 0.2 we
characterize the less dissipative disks (disks (B)). For all
of the simulations in this paper we set β0 = 0.5 [18]. We
used the same inelasticity and friction coefficients for
the grain-grain and the grain-wall collisions including
the horizontal base.

Fig. 1. Temporal evolution of the packing fraction ρ(t)
obtained for the grains of type (A) and for various tap-
ping intensities ξ = 0.1 %, 0.7%, 2%, 3% and 5%. The
dashed curves are the Mittag-Leffler fits of Eq. (1). In-
set: evolution of the normalized packing fraction for two
kinds of the grains (disks (A) - solid line and disks (B)
- dashed line), at ξ = 3%.

The variation of the packing fraction ρ(t) with the
number of shakes t for several tapping intensities ξ is
presented in Fig. 1, where more dissipative grains (disks
(A)) have been used. The inset of Fig. 1 compares
the evolution of the normalized packing fraction ρ̃(t) =
(ρ(t) − ρ(0))/(ρ(1) − ρ(0)) for the two kinds of grains
(A) and (B), for ξ = 3%. The simulation curves are
in a good qualitative agreement with the experimental
data obtained in the experiments with a reduced lat-
eral confinement [2, 3]. We have observed that the com-
paction dynamics gets slower when the tapping inten-
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sity ξ decreases. Actually, when a small tapping in-
tensity is applied, the evolution of the density toward
the steady-state value ρ∞ takes place on a much wider
time scale and finally a larger value of the asymptotic
packing fraction is achieved. Several empirical and the-
oretical models have been proposed in the literature to
describe the density relaxation, primarily in tapping ex-
periments [5, 19–21]. Recently, we showed [22] that the
resulting compaction dynamics is well described by the
fractional Mittag-Leffler law for relaxation:

ρ(t) = ρ∞ −∆ρEα[−(t/τ)α],

∆ρρ∞ − ρ0, 0 < α < 1, (3.1)
where ρ0 is the initial packing fraction and ρ∞ is the
packing fraction at the steady state. Eα denotes the
Mittag-Leffler function of order α [23]. It is interesting to
note that the Mittag-Leffler model has been shown to de-
scribe the relaxation of granular materials under very dif-
ferent modes of external excitations: that is tapping [22],
vibration [24], and thermal cycling [25].

A further insight into the dynamical mechanisms which
take place during the compaction can be gained by ana-
lyzing the microstructural properties of the packings.

The study of how space is shared among the grains is
essential for understanding how efficiently the disks are
arranged locally. The first problem to address is how
to divide the whole space occupied by the granular ma-
terial into parts associated with the local environment
around each disk. A natural way to subdivide the space
into smaller portions is the Voronoi Tesselation (VT) [26].
For a given two-dimensional distribution of disks the VT
is a uniquely defined set of convex cells, each of which
encloses one and only one of these disks. A Voronoi cell
(polygon in 2D) associated with a disk is defined as an
assembly of points which are closer to that disk than to
any of the other disks in the packing. Two disks shar-
ing a common cell edge are neighbors. Each vertex of
this tessellation is equidistant to three neighboring disks.
The individual characteristics of Voronoi cells as, e.g.,
number of edges, circumference, surface, etc., are not
able to characterize the tiny structural effects [27, 28]
in detail, and have very poor sensitivity to the packing
properties [29]. However, a better indicator of structural
changes is the shape factor ζ (parameter of nonspheric-
ity) which combines the circumference C and the area S
of Voronoi cells [10, 30], which is defined by

ζ =
C2

4πS
. (3.2)

For a circle, this coefficient is equal to 1. For a convex
polygon, the more anisotropic the polygon, the higher is
ζ > 1.

The shape factor is able to identify the occurrence
of different domains in numerically obtained packings of
particles. Every domain is made up of the grains whose
Voronoi polygons have similar values of the shape factor.
In order to quantify the structural changes in the pack-
ings during the compaction in a better way, we consider
here the probability distribution P (ζ) of the shape fac-

tor ζ. The distribution function P (ζ) is related to the
probability of finding the Voronoi cell with a shape fac-
tor ζ. It is normalized to unity, namely,

∫∞
0

dζP (ζ) = 1.
Note that the distribution of the shape factor (the oc-
currence probability of different polygons) for the fluid
of two-dimensional hard disks depends on the packing
fraction [10].

Figures 2 and 3 show the temporal evolution of the
P (ζ) for the more dissipative disks (A) at two different
tapping intensities, ξ = 0.7%, 3%. In the initial stage
of density relaxation the particles are distributed ran-
domly, no specific figures are formed, and we thus get
a flat and very broad distribution P (ζ). The distribu-
tion P (ζ) tends to narrow during the compaction. As
the density increases, the distribution becomes more lo-
calized around the lowest values of the shape factor (for
a regular hexagon, ζ = 6/

√
3π2 ≈ 1.103). The curves

of distribution P (ζ) are asymmetric with a long tail on
the right-hand side, which progressively reduces while the
packing structure gets more compact. This narrowing of
the probability distribution P (ζ) corresponds to the in-
crease of the fraction of more regular (round) figures. In
other words, the Voronoi cells become more circular at
higher values of the packing fraction and their occurrence
starts prevailing. As one can see from Figs. 2 and 3, the
narrowing of the P (ζ) during the compaction is more
pronounced for the larger tapping intensity ξ.

The probability distribution P (ζ) is also sensitive to
the material properties of disks.

Fig. 2. The temporal evolution of the probability dis-
tribution P (ζ) of the shape factor ζ for the more dissi-
pative disks (A) at tapping intensity ξ = 3%.

Figures 4 and 5 show the temporal evolution of the
P (ζ) for less dissipative disks (B) at two different tapping
intensities, ξ = 0.7%, 3%.

Here again, the curves of distribution P (ζ) are asym-
metric with a quite long tail on the right-hand side. The
tails of such distributions reduces more quickly for the
less dissipative grains (B) than for the more dissipative
grains (A). Indeed, for the less dissipative disks (B) there
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Fig. 3. The temporal evolution of the probability dis-
tribution P (ζ) of the shape factor ζ for the more dissi-
pative disks (A) at tapping intensity ξ = 0.7%.

Fig. 4. The temporal evolution of the probability dis-
tribution P (ζ) of the shape factor ζ for the less dissipa-
tive disks (B) at tapping intensity ξ = 3%.

is a rapid approach to the steady-state density. However,
for a given tapping intensity ξ, the system of disks (B)
achieves a larger value of the asymptotic density than
the system of more dissipative disks (A). Consequently,
in the case of disks (B) the system ends up in steady-
state configurations where large clusters of nearregular
Voronoi cells (hexagonal domains) are found.

4. Experimental procedure and results

Experiments were carried out on a 2D granular
medium, i.e., the motion of the grains was confined to
a plane. The host granular packing is constituted of
metallic cylinders contained in a rectangular box made of
two parallel glass plates, with an inner gap of thickness
3.4 mm, slightly larger than the height of the cylinders,
h = 3.00 ± 0.01 mm. The axes of the cylinders are per-
pendicular to the low frictional glass plates. The lateral

Fig. 5. The temporal evolution of the probability dis-
tribution P (ζ) of the shape factor ζ for the less dissipa-
tive disks (B) at tapping intensity ξ = 0.7%.

walls of the box, made of duraluminum, delimit a rect-
angular frame of height H = 340 mm and an adjustable
width of typically L = 300 mm. The box is secured on a
heavy plane able to be inclined at different rates by means
of a pulley system so that we could set an arbitrary in-
clination angle θ from the horizontal. The cylinders of
diameter d = 4.00, 5.00, and 6.00 ± 0.05 mm were used
to prepare the monodisperse packings containing about
4500 grains.

The packing fraction ρ is measured in a rectangular
frame at distance 3d from lateral walls of the box. Then
ρ is calculated considering the area contribution of each
disk to this rectangular region. Disordered packings are
prepared by pouring grains onto an initially horizontal
glass plate at once. They are then spread with a knife
edge until a flat layer is obtained, where the cylinders are
randomly deposited without contact between them and
at rest. The angle of the plane is then slowly increased
up to an angle θ = 90◦, at constant angular velocity of ≈
5◦ s−1. During the plane rotation, grains therefore freely
slide downward and reach a mechanically stable state.
The measured packing fractions of these disordered pack-
ings are ρ = 0.79÷0.80±0.01. Partially ordered packings
are obtained by using the same initial procedure followed
by vibration of the inclined plane before starting the ex-
periment with a hammer-like device installed below the
container. The packing fraction of densely packed sys-
tems is ρ = 0.81 ÷ 0.86 ± 0.01. Those densities are far
from the close packing limit ρcp = π/(2

√
3) ≈ 0.91. The

packing fractions have been calculated from an average
over 10 initial preparations of host packing.

The experimental study of collective rearrangements
of grains requires to get a precise measurement of the
grain positions. For this reason, the development of an
accurate image processing technique has been a central
aspect of the design of the experimental setup. During
an experiment, the granular layer is repeatedly scanned
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by means of HP Scanjet 3800. The scanner is firmly fixed
to the plane narrowly below the bottom glass plate of the
rectangular container. The scanner frame covers an area
of 210×297 mm. The images are systematically acquired
in resolution 600×600 dpi and 256 gray levels. Both cen-
ter and diameter of each grain are accurately determined
using the image processing program based on the Stan-
dard Hough Transform (SHT) [31]. In the output bitmap
image, the diameters of grains are d1 ≈ 94, 118, and 142
pixels. This analysis allows one to detect both the cen-
ters and the diameters of cylinders with a high resolution
of 0.04 mm. More details about the experimental setup
can be found in Ref. [32].

Let us now compare the simulation results of Figs. 2–5
to the experimental ones. Figure 6 shows the experimen-
tal result for the distribution P (ζ) of the shape factor
ζ, which corresponds to the packing of disks of diameter
d = 6 mm at density ρ = 0.828. Also included in Fig. 6
are the results from the numerical simulations for the less
dissipative grains (B) after the second tap, at ξ = 0.7%,
and 3%. The corresponding packing fractions are 0.825
and 0.830, respectively. Here we see that the agreement
between the simulation and the experimental results is
very good. Similar degree of agreement has been found
for all the experimentally studied values of density.

Fig. 6. Simulation (lines) and experimental (symbols)
results for the probability distribution P (ζ) of the shape
factor ζ. Experimental result corresponds to the pack-
ing of disks of diameter d = 6 mm at density ρ = 0.828.
The simulation results correspond to the packings of less
dissipative disks (B) at densities 0.825 (ξ = 0.7 %) and
0.830 (ξ = 3%), after the second tap.

5. Final remarks

In this paper, we have reported some numerical and
experimental results concerning the slow relaxation in
granular media. Both the global evolution and the mi-
croscopic behaviour of the grains have been investigated.
Our model is based on realistic granular dynamics. One
of its main features is that during the second phase of

the shake cycle the whole system is reassembled by us-
ing the event-driven moleculardynamics algorithm. We
employed the Walton model [13, 14] that captures the
major features of granular interactions. Our data show
that the compaction dynamics strongly depends on the
material properties of the grains. It was shown that the
relaxation behavior is appreciably slowing down with the
increase of the inelasticity of the grains.

We have shown that our simulations provide a direct
microscopic observation of nonsequentially reorganized
granular structures. The organization of grains at local
level was studied by analyzing the time evolution of the
probability distribution P (ζ) of the shape factor ζ. It
has been pointed out that this distribution is very sen-
sitive to small structural changes of the system. The
shape factor of Voronoi volumes has a distribution with
a long tail that progressively reduces while the packing
gets more compact. We have observed that the collec-
tive rearrangements of the grains in the two-dimensional
system lead to growth of hexagonal domains [4].

We have also investigated a granular organization of
two-dimensional packings at local level experimentally.
The distributions P (ζ) of the shape-factor obtained nu-
merically for the less dissipative grains (B), at various
tapping intensities, are consistent with our experimental
results.
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