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We have established a new dynamical model of microtubules based on their intrinsic
dipolar character. The model assumes a single angular degree of freedom per dimer
describing the conformational displacements of constituent dimers in radial direction. A
corresponding nonlinear dynamical equation of motion is solved both analytically, using
the simplest equation method, and numerically. It is shown by both approaches that kink
solitons could be elicited and sustained to propagate along the microtubule. We suggest
that this model could explain some dynamical functional properties of microtubules,
including the triggering of the onset of their depolymerization.

� 2014 Published by Elsevier Inc.
1. Introduction

Microtubules (MTs) form an important part of the cellular skeleton and represent a network for intracellular transport of
motor proteins. They also play a crucial role during cell division, forming a dynamic structure that spatially separates
duplicated chromosomes.

Microtubules represent hollow cylinders formed by protofilaments (PFs) aligned in directions that are parallel to their
axes [1–5]. There are in vivo usually 13 longitudinally ordered PFs covering the cylindrical walls of MTs. The lengths of
MTs span dimensions from the order of micrometers to the order of millimetre. The approximate values of the outer and
the inner radii of MT cylinder are 25 nm and 15 nm, respectively [6–8].

PF represents a series of proteins known as tubulin heterodimers. Each dimer is effectively an electric dipole whose length
is l ¼ 8 nm, as shown in Fig. 1. Its electric dipole moment and charge displacement are: p ¼ 337Debye ¼ 1:13� 10�27 Cm
and d � 4 nm, respectively [6,9–11].

Microtubules are very dynamic polymers whose polymerization and disassembly are determined by whether their
dimers are in a straight position within PFs or in radially displaced positions pointing out of cylindrical surface. These
circumstances are the basis for our attempt to describe MT dynamics relying on the nonlinear model expressed by this single
degree of radial displacement of tubulin dimer within PF.

The paper is organized as follows. In Section 2 we establish the nonlinear model of collective conformations of the dimers
within PF. Section 3 deals with the analytical solution of equation of motion in terms of the simplest equation method. The
numerical solutions of higher-order expansion of cosine function are presented in Section 4. The conclusions including the
possible biological implications are presented in Section 5.
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Fig. 1. A segment of three protofilaments (PF1, PF2 and PF3, from left to right) with the fields~E1 and~E2 in the point A, arising from the same protofilament
PF2 and from the neighbouring PFs, respectively. The dipole moment~p of the tubulin dimer has the displacement of the opposite charges depicted with d.
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2. Dynamical model of microtubules

A simplified picture, relevant for the model established in this paper, is shown in Fig. 1. Let us consider the dimer in the
middle, belonging to PF2. It feels electric fields of the neighbouring dimers. The field~E1 comes from the dimers belonging to
the same PF2, while~E2 is the longitudinal component of the field which originates from the dimers belonging to the neigh-
bouring PFs, i.e. PF1 and PF3. Details about the calculations of the above fields are published in Ref. [12]. It might be noticed
that PF1 and PF3, in Fig. 1, should be respectively displaced up and down in order to match the real MT structure, i.e. its
intrinsic helicity. These displacements lead to a component of~E2p in perpendicular direction to~E1. However, the component
~E2p is not taken into account in the present model as being irrelevant for the considered degree of freedom.

The tubulin dimers within PFs can perform conformational changes that may propagate along either individual PFs or
small groups of PFs. The bending of PFs during disassembly of MT is the consequence of such cooperative conformations
[13]. It was shown that the relative displacement of two neighbouring dimers can reach 32� prior disrupting PF. In addition,
the angular displacements of the monomers within a single dimer can be up to 13� [14]. These facts motivated us to restrict
our modeling to the angular conformations of dimers u in radial directions from the line of the dipolar electric field
~E ¼~E1 þ~E2. Therefore, we assume that the whole dimer rotates and the corresponding angular displacement is u. What
the point is, around which this rotation occurs, is not known in this moment. It may be a dimers tip, its centre or any point
in between. This is only important for the estimation of its moment of inertia, which is beyond the topic of this paper.

A dipolar potential energy of a single dimer is simply expressed as a scalar product
UðuÞ ¼ �~p �~E ¼ �qdE cos u; ð1Þ
where q represents the excess charge of the monomer within the dipole. It is assumed that the inequalities p > 0 and E > 0
hold.

In the nearest neighbour approximation, the expression for the Hamiltonian of one PF in a discrete version is
H ¼
X

n

I
2

_u2
n þ

k
2
ðunþ1 �unÞ

2 � pE cos un

� �
; ð2Þ
which, after a series expansion of the cosine function, becomes
H ¼
X

n

I
2

_u2
n þ

k
2
ðunþ1 �unÞ

2 � pEþ pE
u2

n

2
�u4

n

24

� �� �
: ð3Þ
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Here the dot means a first derivative with respect to time, I is a moment of inertia of the single dimer and k stands for
inter-dimer bonding interaction within the same PF, which is provided by the link between the corresponding protruding
loops [15]. The integer n determines the position of the dimer in the PF. It is obvious that the first term in Eqs. (2) and
(3) represents the dimer’s kinetic energy, while the second one is a potential energy of the chemical interaction between
the dimers belonging to the same PF. The chemical interaction between the neighbouring dimers belonging to different
PFs is much smaller and the corresponding energy is here safely neglected [16,17]. This does not mean that the influence
of the neighbouring PFs is completely ignored since the field ~E2 just comes from these PFs, as explained above. This is very
important fact since the magnitude of the electric moment j~pj and the MT length l bring about the pretty big value for ~E1.
Hence, the field ~E2, pointing in the opposite direction from ~E1, properly reduces the value of the total intrinsic field ~E.

Using common generalized coordinate qn ¼ un and angular momentum pn ¼ I _un, assuming the validity of a continuum
approximation unðtÞ ! uðx; tÞ and eventually taking a series expansion
un�1 ! u� @u
@x

lþ 1
2
@2u
@x2 l2 ð4Þ
we can straightforwardly obtain an appropriate dynamical equation of motion. If a viscosity momentum Mv ¼ �C _u, where C
stands for the viscosity coefficient, is adequately incorporated into the equation of motion, we obtain, according to Eq. (3), a
following partial differential equation (PDE)
I
@2u
@t2 � kl2 @

2u
@x2 þ pEu� pE

6
u3 þ C

@u
@t
¼ 0: ð5Þ
It is well known that an ordinary differential equation (ODE) can be obtained from Eq. (5) just introducing a unified coor-
dinate n defined as usual
uðx; tÞ ¼ uðnÞ � uðj x�x tÞ; ð6Þ
where j and x are constants, meaning the wave number and the frequency, respectively. Therefore, by combining Eq. (6)
and a suitable transformation
u ¼ w
ffiffiffi
6
p

ð7Þ
we can easily transform Eq. (5) into the following ODE
a
d2w

dn2 � q
dw
dn
þ w� w3 ¼ 0; ð8Þ
where the two dimensionless parameters a and q underlay physics of the pertaining model as follows
a ¼ Ix2 � kl2j2

pE
; q ¼ xC

pE
: ð9Þ
The parameter a represents the measure of competition between rotational kinetic energy of the tubulin dimer and its
potential energy of pertaining chemical bonds, additionally balanced by the strength of intrinsic electric field~E. The softness
of chemical bonds and the strong increase of dimer’s kinetic energy [18], caused by a release of 0:25 eV of energy produced
by GTP hydrolysis, yields that the parameter a must be positive. This means that kinetic energy should prevail, but the pres-
ence of additional dipolar potential is sufficient to prevent the degradation of PF when such excitation is away from MT ends.
This fact indicates that dipolar potential energy does play the decisive role in stabilizing of PFs and MT itself, thus sustaining
the polymerization. In what follows we assume that q is known and determine the crucial parameter a.

Before we proceed we want to compare Eq. (1) with the earlier models dealing with nonlinear dynamics of MTs. In Ref. [3]
the angular coordinate u was also used but the corresponding double-well potential is just postulated in the celebrated
Landau-Ginsburg version
f0ðuÞ ¼ �
A
2
u2 þ B

4
u4; A > 0; B > 0: ð10Þ
In Ref. [5] a longitudinal degree of freedom un was established instead of un and the potential energy of the form given by
Eq. (10) was also assumed. We argue that the present approach is more realistic since the intrinsic dipolar electrostatic
energy within MT is properly taken into account.

We stress here that the last three terms in Eq. (3) are coming from the series expansion of the cosine function which is not
disputable. Of course, the number of the terms in this series expansion is pretty crucial. It will be elaborated in very details
later on, in Section 4.

The explained model is obviously the radial one. It might be interesting to mention that longitudinal models have been
introduced as well [5,12,19]. All of them assume only one degree of freedom per dimer. An extension, which would take
more than one degree of freedom, is very interesting but also a tough job. This requires further research and is not the topic
of this paper.
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3. Analytical solutions of Eq. (8)

Eq. (8) can be solved analytically using a few mathematical procedures. A couple of examples for those methods can be a
standard procedure [5,20], extended tanh-function method [21–25], a procedure based on Jacobian elliptic function [26–28]
and a method of factorisation [29–32]. In this paper we are using the simplest equation method (SEM), which is more general
than any of the aforementioned procedures.

According to SEM we look for the possible solution of Eq. (8) in the form of a trial function w
w ¼ A0 þ
XN

k¼1

AkU
k þ Bk

U0

U

� �k
 !

; ð11Þ
where A0, Ak and Bk are coefficients that should be determined and U0 represents the first derivative. The function U is a
known solution of a so-called the simplest equation [33,34]. The simplest equation can be any nonlinear ordinary differential
equation of lower order than Eq. (8) with the known general solution. In this paper for the simplest equation we chose the
Riccati equation [33]
U0 þU2 � 2aU� b ¼ 0; a; b ¼ const: ð12Þ
To determine the positive integer N in Eq. (11) we should plug w ¼ c=np in Eq. (8) and concentrate our attention on the
leading terms [35]. These are the terms that lead to the least positive p and the balance of all the leading terms provides us
with the value of N. One can easily show that N ¼ 1 for Eq. (8).

To obtain the final expression for the function w we need to determine the values of the parameters b, A0, A1 and B1. Also,
we are looking for a, as was mentioned above. From Eqs. (11) and (12) we can obtain the expressions for w0, w00 and w3. All this
brings about the following expression
K0 þ K1Uþ K 01U
�1 þ K2U

2 þ K 02U
�2 þ K3U

3 þ K 03U
�3 ¼ 0; ð16Þ
which is satisfied if all the coefficients are simultaneously equal to zero. This brings about a system of seven equations. Two
of them are
K3 � 2aA1 � A3
1 � 2aB1 þ 3A2

1B1 � 3A1B2
1 þ B3

1 ¼ 0; ð17Þ
and
K 03 � 2ab3B1 � b3B3
1 ¼ 0: ð18Þ
Eq. (17) can be written as
ðB1 � A1Þ½ðB1 � A1Þ2 � 2a	 ¼ 0; ð19Þ
which determines the following two cases.
Case 1: B1 ¼ A1 ð20Þ
Eqs. (18) and (20) reduce the system mentioned above to the simpler one
�3aA2
1 � 3A1A0 þ q ¼ 0

1� 10a2A2
1 � 12aA1A0 � 3A2

0 � A2
1bþ 2aq ¼ 0

2aA1 � 8a3A2
1 þ A0 � 12a2A2

1A0 � 6aA1A2
0 � A3

0 � aA3
1b� A1bq ¼ 0

9>>>>=
>>>>;
; ð21Þ
where b – 0 is assumed. Using Mathematica or a similar software we easily obtain the following two solutions
Að1Þ0 ¼
1
6
ð3� 4aqÞ; Að1Þ1 ¼

2q
3

ð22Þ
and
Að2Þ0 ¼ �
1
6
ð3� 4aqÞ; Að2Þ1 ¼ �

2q
3
: ð23Þ
For the both solutions the expressions for the remaining two parameters are
b ¼ 9� 16a2q2

16q2 ; a ¼ 2q2

9
ð24Þ

Case 2: a ¼ ðA1 � B1Þ2

2
ð25Þ
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Eqs. (18) and (25) yield to
A1 ¼ 2B1; ð26Þ
which reduces the initial system to the system of five equations. This system can be solved only if
a ¼ 0; ð27Þ
which brings about the system
�3A0B1 þ q ¼ 0

1� 3A2
0 � 4bB2

1 ¼ 0

A0 � A3
0 � 6A0bB2

1 � 2bB1q ¼ 0

9>=
>;: ð28Þ
Its solutions are
Að1Þ0 ¼
1
2
; Bð1Þ1 ¼

2q
3

ð29Þ
and
Að2Þ0 ¼ �
1
2
; Bð2Þ1 ¼ �

2q
3
: ð30Þ
For the both solutions the expressions for the remaining two parameters are
b ¼ 9
64q2 ; a ¼ 2q2

9
: ð31Þ
Therefore, the values of all necessary coefficients have been found. To obtain the expression for the function w we should
know the function U. The well-known general solution of Eq. (12) is [33]
U ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ðn� n0Þ

j k
: ð32Þ
To obtain the expression (32) we can plug a trial function
U ¼ C þ C1 tanh½C2ðn� n0Þ	; ð33Þ
where C, C1 and C2 are constants, into Eq. (12), which brings about C ¼ a, C2 ¼ C1 and C2
1 ¼ a2 þ b. Some more information

about the general solution of the Riccati equation can be found in Refs. [36,37]. In what follows n0 ¼ 0 will be assumed.
Finally, we can write the expressions for the function w. Let w1 and w2 be the values of w for the cases 1 and 2, respectively.

To obtain w1 we should use Eqs. (20), (22)–(24) and (32) while Eqs. (26), (27), (29), (30), (31), and (32) yield w2. These func-
tions are
w1ðx; tÞ ¼ �
1
2

1þ tanh yþ 1

cosh2yðdþ tanh yÞ

" #
ð34Þ
and
w2ðx; tÞ ¼ �
1
2

1þ tanh
y
2

� �
þ 1

sinh y

� �
; ð35Þ
where
y ¼ 3
4q
ðjx�xtÞ: ð36Þ
To obtain Eq. (34) the parameter d has been introduced through
a ¼ 3
4q

d: ð37Þ
Obviously, w2 does not have physical meaning as its last term diverges for n ¼ 0. As for w1 its denominator is different
from zero for d > 1 and, of course, this solution may have physical meaning. This function is shown in Fig. 2 for three values
of the parameter d, suggesting that a kink soliton moves along MT. The graph was plotted for the positive sign in Eq. (34). If
we had chosen minus in Eq. (34) we would have obtained antikink soliton instead, which is physically equivalent. If d ¼ 1, i.e.
a ¼ 3

4q, then w1 ¼ 1 for any n.
To derive Eqs. (34) and (35) it was assumed that b–0. For b ¼ 0 direct integration of Riccati equation brings about
U0 ¼
2a

1þ e�2an
: ð38Þ
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Of course, this is nothing but U given by Eq. (32) for b ¼ 0. Following the same procedure as above we straightforwardly
obtain trivial solutions for Eq. (8), that are w ¼ 0 and w ¼ �1.

It is interesting to study the case B1 ¼ 0 in Eq. (11). This simplified version of SEM is nothing but extended tanh-function
method [21–25]. Following the same procedure as above we obtain Eqs. (20)–(24) again. This brings about the final result
wðx; tÞ ¼ �1
2
½1þ tanh y	: ð39Þ
If we plotted the functions w1 and w, given by Eqs. (34) and (39), we would notice that these are practically equal but
shifted functions. We can check if there is a certain shift d for which
1þ tanhðyþ dÞ ¼ 1þ tanh yþ 1

cosh2y ðdþ tanh yÞ
ð40Þ
holds. Using a formula
tanhðyþ dÞ ¼ tanh yþ tanh d
1þ tanh y tanh d

ð41Þ
we straightforwardly obtain
tanh d ¼ 1
d
: ð42Þ
This is very interesting result indicating that the trial function (11), for our Eq. (8), could have been simpler without the
third term. Its physical explanation is simple as both w1 and w describe same physics. Namely, both functions represent kink
solitons moving along PF with the same velocity and the shift is irrelevant.

A case A1 ¼ 0 corresponds to modified SEM [35,36]. This is less important as the mentioned system of seven equations can
be solved only if q ¼ 0, which is physically unacceptable.

Finally, according to Eqs. (7), (36), and (39) and for the positive sign in Eq. (39), we obtain
uðx; tÞ ¼
ffiffiffi
6
p

2
1þ tanh

3
4q
ðjx�xtÞ

� �� �
: ð43Þ
It is obvious that the solitonic width of the above kink is proportional to viscosity of physiological surrounding and inver-
sely proportional to pE, which can be seen from the second of Eq. (9).

The function wðnÞ is shown in Fig. 3, together with numerical solutions of Eq. (8), which will be explained later.
On the basis of the first of Eq. (9) we can see how the parameter a depends on the solitonic and the linear sound velocities,

denoted by v and c, respectively. Namely,
a ¼ Ij2

pE
ðv2 � c2Þ; ð44Þ
where
v ¼ x
j
; c2 ¼ kl2

I
: ð45Þ
As a > 0 we see that the above soliton belongs to the class of supersonic solitons, well-known from literature [38]. Also,
the expressions for a in Eqs. (9) and (24) yield the following useful relationship between v and c
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v ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2C2

9pEI

q > c: ð46Þ
This demonstrates that we deal with the supersonic soliton and imposes the necessary inequality
9pEI > 2C2: ð47Þ
4. Improved version of the model

Someone might complain that the series expansion of the cosine function may not be correct as the angle u has big val-
ues, up to

ffiffiffi
6
p

rad. In fact, to derive Eq. (8) we kept all terms to order n ¼ 4 in u, which can be seen from Eq. (3). Higher-order
expansions are obtained for larger values of n, and represent better approximations to the initial Hamiltonian. For n ¼ 6 and
n ¼ 8 we get the equations of motion with the nonlinearities of the orders 5 and 7. The latter one is
aw00 � qw0 þ w� w3 þ 0:3w5 � 0:3
7

w7 ¼ 0; ð48Þ
instead of Eq. (8). The SEM method cannot be applied any more so that numerical solutions of equations for n ¼ 6 and n ¼ 8
are required. In what follows, the results of numerical calculations are presented. The ODE (48) (as well as Eq. (8)) is numer-
ically solved by adopting standard shooting method with the Runge–Kutta integrator [39]. We found that good numerical
convergence is guarantied for the value of the numerical step h ¼ 10�6, thus in the following numerical results are generated
by it. We focused on solutions satisfying the following asymptotic conditions:
wð�1Þ ¼ 0; wðþ1Þ ¼ 1 ð49Þ
coming from Eq. (8) and the analytical solution. The numerical calculations had to start from the unstable attractor (wa ¼ 1)
and to be carried out backwards via a negative step size, until the stable attractor (wa ¼ 0) is reached.

Fig. 3 represents a comparison of analytical and numerical solutions of the equation of motion for n ¼ 4 microtubule
model for two values of the parameter q. Perfect agreements of the analytic and the numeric solutions are obvious.

If we keep all the terms in the expansion of cosine up to order n ¼ 6 in the Hamiltonian, the corresponding equation of
motion is Eq. (48) without the last term. However, it does not admit horizontal asymptotes wðnÞ ! wa when n! �1 as this
equation has only one real solution wa ¼ 0 when the derivatives are zero. Therefore, n ¼ 6 model cannot represent signal
propagation along PF, which is assumed to interpolate between two distinct states (horizontal asymptotes).

Higher-order model corresponding to n ¼ 8 leads to Eq. (48) which admits horizontal asymptotes. One can easily show
that, apart from wa ¼ 0, the solution of Eq. (48) may have two more horizontal asymptotes and these are
wa ¼ �q; q � 1:26 ð50Þ
This is shown in Fig. 4 where the solutions of Eqs. (8) and (48) are compared for q ¼ 2 and a given by Eq. (24). We used
the same numerical method as for Fig. 3. It is obvious that we were focused to the solution interpolating between 0 and q.
One can see that the additional terms in Eq. (48) bring about a certain shift from 1 to q. The graph also shows asymptotic
solutions of the linearized versions of Eqs. (8) or (48). This will be derived in a more elaborate version of this work. It suffices
now to notice that these asymptotes nicely describe the asymptotical behaviour of the numerical solutions.

5. Conclusions and biological implications

In this article a new dipolar model describing the collective nonlinear dynamics of tubulin dimers within the MTs is intro-
duced and elaborated. A very important and interesting result arises from the requirement for positive parameter a in Eq.
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(24). This implies that the inertial term (the first term in Eq. (5)) is larger than the second, elastic one. This is uncommon in
solid state physics, but seems possible in typical biological soft matter structures. To understand this circumstance we
should keep in mind that MTs are polymerized without strong covalent bonds. Instead, the links between dimers within
PF are mostly on the basis of very soft hydrogen bonds [15,16]. This means that the value of the stiffness parameter k in
Eq. (2) is adequately small.

It is also interesting to consider a case of balanced kinetic and elastic energy. Under these circumstances we set a ¼ 0.
Then Eqs. (5), (7) and (9) bring about
_w ¼ pE
C

wðw� 1Þðwþ 1Þ; ð51Þ
where the dot represents a first derivative with respect to time. If we apply a simple and standard stability analysis [40] we
see that the point w ¼ 0 is stable while the points w ¼ �1 are unstable. This certainly means that the state uð�1Þ ¼ 0 is sta-
ble (straight position of the dimers) while the strong angular conformation uðþ1Þ ¼

ffiffiffi
6
p

is unstable leading to depolymer-
isation of MT.

It might be interesting to point out that a ¼ 0 is not a rude approximation. To understand this we should compare the
terms in Eq. (5) using Eqs. (9), (31), and (43). Hence, the first two terms and the linear one are respectively
I
@2u
@t2 � kl2 @

2u
@x2 ¼ pE

ffiffiffi
6
p

f1ðyÞ; ð52Þ
and
pEuðx; tÞ ¼ pE
ffiffiffi
6
p

f2ðyÞ; ð53Þ
where y is given by Eq. (36). The function f2ðyÞ is nothing but the function w shown in Fig. 3. According to Eqs. (5), (9), (31),
and (43) we can see that
f1ðyÞ ¼ �
1
8

sinh y

cosh3y
: ð54Þ
This function is shown in Fig. 5. In the same way we can easily show that the first two terms are at least three times smal-
ler than the viscosity one. All this certainly indicates that a ¼ 0 is not the rude approximation.

A direct integration of Eq. (51) yield the pertaining function
w2
0 ¼

ec

1þ ec ¼
1
2

1þ tanh
1
q
ðjx�xtÞ

� �� �
; ð55Þ
where the index zero indicates a ¼ 0 case. Notice a square of w0 in Eq. (55). Fig. 6 shows both the function w corresponding to
a given by Eq. (24) and the function w0. It is obvious that both functions have equal physical meaning indicating again that
a ¼ 0 is the appropriate approximation.

A question arises if Eq. (8) can be solved for the negative value of the parameter a. Apparently this cannot be done by SEM
since this procedure brings about Eq. (24), i.e. positive a. But, on the basis of numerical approach it works and the solutions
for both positive and negative a are presented in Fig. 7. It appears that the asymptotic behaviours are the same for all the
three cases (a < 0; a ¼ 0; a > 0). All three functions are almost equal for small jnj and the solution for a < 0 exhibits damped
oscillations before the asymptotic values are reached.

It is apparent from Eq. (43) that the conformational angle u takes values from zero to
ffiffiffi
6
p

radians. Initially, in stable MT,
all dimers are in the straight configuration along pertaining PFs. When energy of hydrolysis of GTP molecules is imparted to
dimers the kink excitations should be created [18]. This means that the dimers rotate for the angle u from the main axes in
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radial direction. Of course, excited dimers will soon spontaneously move back in the initial stable configuration. The pair of
these excitations move towards the opposite ends of a single PF initiating the onset of depolymerization on the both sides of
the MT.

Importantly, it appears that this localized wave propagates with supersonic velocity, as explained above. A key question is
what happens when this wave reaches the positive end of MT. The last dimer has only one neighbour belonging to the same
PF. Hence, the big angle of

ffiffiffi
6
p

radians will not be suppressed in any way and the last dimer will be shifted towards outside.
This means that MT starts to crumble and this is what really happens [13,16]. This could be the mechanism for triggering MT
instability since its structure is dynamically very unstable. The dimers lifetime in normal cells is in the range of 2–4 h while
the complete depolymerisation occurs in a few seconds.

It might be interesting to point out that depolymerisation always starts from the more active biologically positive end, i.e.
negatively electrically charged end. This could suggest that the above kinks preferably go towards this MT end.

It is also interesting to consider the possible active role of such conformational kinks in the regulation of intracellular traf-
fic, performed along MTs in terms of two classes of motor proteins, kinesin and dynein. These kinks could facilitate the
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Fig. 7. Numerical solutions of Eq. (8) for the three different values of the parameter a.
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attachment of the proper motor for MT providing the onset of transport of different organelles, such as mitochondria, in the
cell’s compartment where in the need for them.
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