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Geometric Phase for Analytically Solvable Driven
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Geometric phase for novel analytical solutions (Barnes and Das Sarma) of time-dependent two-level quantum
systems is discussed, speci�cally for a general single-axis driving term, which is represented by a function J(t) in the
Hamiltonian, and its corresponding evolution operator. It is demonstrated how general results for corresponding
phases (total, dynamic and geometric) can be obtained. Using a speci�c case, it was found that over time in which
the driving �eld is appreciably di�erent from zero, the corresponding geometric phase changes (in the speci�c
example by ∆β ≈ 0.8 radians) thus enabling detection. The results are relevant to qubit control and to quantum
computing applications.
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1. Introduction

Driven two-level systems are ubiquitous in quantum
mechanics. Examples of exactly soluble two-level prob-
lems include Landau�Zener [1, 2], and Rabi [3] problems,
Jaynes�Cummings [4] model, and others [6�11]. A new
theoretical approach to the driven two-state system was
recently introduced by Barnes and Das Sarma [12]. This
uses a single-axis control �eld along the z axis, which is
represented by a driving �eld J(t) in the Hamiltonian
(the time varying energy splitting between states):

H(t) =
1

2

[
J(t) h

h −J(t)

]
. (1)

Here h represents a constant (an energy splitting between
the two levels). The evolution operator, from an initial
time t = 0, to a later t, and corresponding to H is repre-
sented by the 2× 2 unitary matrix

U(t) =

[
U11 −U∗21
U21 U∗11

]
, (2)

with |U11(t)|2 + |U21(t)|2 = 1.
One then uses an innovative approach [12] to solve the

corresponding time-dependent Schrödinger equation for
the evolution operator and obtains the forms for the ma-
trix elements of the evolution operator, Eqs. (12)�(16)
in [12].
It turns out that the driving �eld, J(t), appearing in

the Hamiltonian (1) is related to a function q(t), with
corresponding initial conditions given by Eq. (17) in [12],
via

J(t) =
q̈ + h2q√

h2(1− q2)− q̇2
. (3)

Such a simple prescription enables one to generate a num-
ber of novel, analytically solvable two-state problems to-
gether with their explicit solutions.
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With such solutions one is able (at least in principle)
to determine corresponding total, dynamic and geomet-
ric phases [13�19], in order to study and monitor the
time development of the state vectors evolving under the
Hamiltonian given by Eq. (1). This is of interest in the
context of qubit control and quantum computing. The
phases, for a pure state, are as follows. The total phase,
ϕ(0, t), of the state vector |Ψ , t〉 = U(t)|Ψ , 0〉, accumu-
lated during the evolution from an initial time 0 to a
�nal t, is determined by the argument of the inner prod-
uct

〈Ψ , 0|Ψ , t〉 ≡ r(0, t) exp (iϕ(0, t)) ,

ϕ(0, t) = arg [〈Ψ , 0|Ψ , t〉] . (4)

Here we restrict ourselves to r(0, t) > 0, so that the two
states in question are not orthogonal, and the relative
phases can be determined. By convention the result of
the argument of the complex number z, arg(z), is always
between −π and +π. Thus the total phase is in radians
and ranges across this interval. A part of the total phase
is the dynamic phase, which is given by the time integral
of the expectation value of the Hamiltonian (we use units
~ = 1)

δ(0, t) ≡ −
∫ t

0

〈Ψ , τ |H(τ)|Ψ , τ〉dτ. (5)

The geometric phase is then simply the surplus in the
total phase over δ(0, t):

β(0, t) ≡ ϕ(0, t)− δ(0, t). (6)

Thus, in order to determine the geometric phase, the
road is in principle simple. If one can solve the time-
-dependent Schrödinger equation (and this is precisely
the case treated in [12]), the total phase is determined by
the argument of the inner product 〈Ψ , 0|Ψ , t〉, Eq. (4).
Subsequently, the corresponding dynamic phase follows
from the time integral of the expectation value of the
Hamiltonian, Eq. (5). Finally, the di�erence between the
two, Eq. (6), yields the geometric phase. There are nu-
merous papers related to the geometric phase e.g. [20�22].

Here, in Sect. 2, we �rst present in some detail the the-
ory on which the results of the calculations reported here
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are based, while in the subsequent Sect. 3 we describe
the calculation of the phases. Finally a brief summary is
presented.

2. Spin polarization vector

It is convenient to parametrize the time dependent
Hamiltonian operator of a two-level system as

H(t) = H0(t)12 +H(t) · σ, (7)

where σ denotes the vector of three Pauli 2 × 2 matri-
ces (σ1, σ2, σ3), and 12 denotes the 2 × 2 unit matrix.
In the case of the Hamiltonian (1) one has H0(t) = 0,
H1(t) = 1

2h, H2(t) = 0 and H3(t) = 1
2J(t).

Similarly one parametrizes the 2 × 2 unitary matrix
Eq. (2) as

U(t) = U0(t)12 + iU(t) · σ, (8)

with additional condition which stems from the unitarity
condition of the evolution operator U(t): U(t) · U(t) +
U2
0 = 1. In the case of (2) one has U0(t) = <{U11(t)},

U1(t) = ={U21(t)}, U2(t) = −<{U21(t)}, and U3(t) =
={U11(t)}, where < and = denote the corresponding real
and imaginary parts, respectively. Finally, the corre-
sponding 2× 2 density matrix is of the form

ρ(t) = |Ψ , t〉〈Ψ , t| = 1

2

(
12 + P (t) · σ

)
. (9)

Here P (t) denotes the time dependent average spin
polarization vector. Using this notation one has, from
Eqs. (5) and (6)

ϕ(0, t) = arg (Tr (U(t)ρ(0))) =

arctan

(
U(t) · P (0)

U0(t)

)
≡ arctanα, (10)

with α = α(t) ≡
(
={U21}(t)P1(0) − <{U21(t)}P2(0) +

={U11(t)}P3(0)
)
/<{U11(t)}, and

δ(0, t) = −
∫ t

0

Tr (H(τ)ρ(τ)) dτ

= −
∫ t

0

(
H0(τ) +H(τ) · P (τ)

)
dτ

= −1

2
h

∫ t

0

P1(τ)dτ − 1

2

∫ t

0

J(τ)P3(τ)dτ. (11)

With the known evolution operator, given by Eqs. (2),
(3) and (8), the average spin polarization vector is ob-
tained readily from the formal solution of the quantum
Liouville equation

P (t) · σ = U(t)
(
P (0) · σ

)
U†(t) = U(t)A(t), (12)

where part of the rhs is an auxiliary 2× 2 matrix A(t) ≡(
P (0) ·σ

)
U†(t). For a general case of the initial spin po-

larization vector P (0) = (P1(0), P2(0), P3(0)), one �nds
the matrix elements

A11(t) = P3(0)U∗11 + [P1(0)− iP2(0)](−U21),

A12(t) = P3(0)U∗21 + [P1(0)− iP2(0)]U11,

A21(t) = [P1(0) + iP2(0)]U∗11 − P3(0)(−U21),

A22(t) = [P1(0) + iP2(0)]U∗21 − P3(0)U11.

Since in Eq. (12) the rhs is a known 2 × 2 matrix, and

because the lhs is the 2× 2 matrix

P (t) · σ =

[
P3(t) P1(t)− iP2(t)

P1(t) + iP2(t) −P3(t)

]
, (13)

by equating the corresponding elements of the two ma-
trices one determines the components of the spin polar-
ization vector at a time t. One �nds

P1(t) = <{U11(t)A12(t)− U∗21A22(t)},
P2(t) = ={U11(t)A12(t)− U∗21A22(t)},
P3(t) = <{U11(t)A11(t)− U∗21A21(t)}. (14)

Let us note that the magnitude of P (t) is a constant
throughout the evolution and is, in fact, equal to one for
a pure state.

3. Calculation of phases

Despite the existence of a number of analytical solu-
tions to the time-dependent Schrödinger equation for rel-
atively simple examples describing a driven two-level sys-
tem provided in [12], these are mainly not translated to
the corresponding analytical expressions for the phases
and one has to turn to numerical analysis. This neverthe-
less enables an e�cient analysis in a number of cases. We
illustrate the typical results for the total, dynamic and
geometric phases, obtained from Eqs. (10), (11) and (6).
For a typical case considered in [12], namely the choice
(Eq. (19) in [12])

q(t) = exp
(
(−2/a) sinh2(

√
aht/2)

)
, (15)

with a real constant a ≤ 2, and the corresponding driving
�eld is from Eq. (3)

J(t)

h
=

1
a sinh2(

√
aht)− 2 sinh2(

√
aht/2)√

e
4
a sinh2(

√
aht/2) − 1

a sinh2(
√
aht)− 1

. (16)

For such a driving �eld, the total, dynamic and geomet-
ric phases, as functions of time t are plotted in Figs. 1
and 2 for h = 1 and a = 2

3 .
It is seen that from an initial time t = 0 to a �nal

t = 10, during which the driving �eld J(t) is appre-
ciably di�erent from zero, the corresponding geometric
phase changes (by ∆β ≈ 0.8 radians) thus enabling de-
tection. Analogous results are also obtained for other
driving �elds considered in [12].

4. Conclusions

Phase is a fundamental notion in quantum mechan-
ics, and in particular the study of geometric phases is
an attempt to understand quantum mechanics better. It
is known that the total phase and visibility are directly
observable in an interference experiment [23]. Geometric
phases have some implications in quantum information
theory. These phases can form the basis of any quan-
tum computation [24, 25], resilient to certain types of
errors. It o�ers the potential of a fault-tolerant way of
performing geometric quantum computation. Two refer-
ences concerning the robustness of the geometric phase
for non-Abelian gates and Berry phase are [26, 27].
Here we determine the geometric phase corresponding

to a new type of driven two-state system [12] which is
thus of relevance to qubit control. The main result of
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Fig. 1. Total phase ϕ(0, t) (solid curve) and dynamic
phase δ(0, t) (dashed curve), in radians, for driven time-
-dependent two-level quantum system, with the Hamil-
tonian (1), and in the case of the driving �eld Eq. (16).
The initial spin polarization vector is P (0) = (1, 0, 0),
completely along the x-axis, while the two other con-
stants are h = 1 and a = 2

3
. It is seen that the dynamic

phase is a smooth, monotonically decreasing function of
the elapsed time t. The two jumps by +π radians in
the total phase, stem from the multiple-valued arctan
function appearing in Eq. (10) for the total phase, rep-
resent the change of sign in the probability amplitude,
and are experimentally observable. By using the princi-
pal value of the function arctan, one removes the jumps
and obtains for the total phase the dotted curve.

Fig. 2. Geometric phase β(0, t), in radians (solid
curve), for driven time-dependent two-level quantum
system, with the Hamiltonian (1), and in the case of
the driving �eld Eq. (16). It is seen that there is a con-
siderable change in the geometric phase of ≈ 5.5 radians
(solid curve). By removing the jumps in the total phase
(there are two jumps of +π), one �nds a slight net de-
crease in geometric phase of ≈ 0.8 rad (dotted curve).
The initial spin polarization vector is P (0) = (1, 0, 0),
while the two other constants are h = 1 and a = 2

3
.

The resulting geometric phase re�ects the behavior of
the total and dynamic phases presented in Fig. 1.

our work is contained in Eqs. (11) and (14), which give
explicit expressions for computing geometric phase for a
given evolution.
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