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Abstract. Network science provides an indispensable theoretical framework for
studying the structure and function of real complex systems. Different network
models are often used for finding the rules that govern their evolution, whereby
the correct choice of model details is crucial for obtaining relevant insights. Here,
we study how the structure of networks generated with the aging nodes model
depends on the properties of the growth signal. We use different fluctuating
signals and compare structural dissimilarities of the networks with those obtained
with a constant growth signal. We show that networks with power-law degree
distributions, which are obtained with time-varying growth signals, are correlated
and clustered, while networks obtained with a constant growth signal are not.
Indeed, the properties of the growth signal significantly determine the topology
of the obtained networks and thus ought to be considered prominently in models
of complex systems.
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1. Introduction

Emergent collective behavior is an indispensable property of complex systems [1]. It
occurs as a consequence of interactions between a large number of units that compose
a complex system, and it cannot be easily predicted from the knowledge about the
behavior of these units. The previous research offers definite proof that the interaction
network structure is inextricably associated with the dynamics and function of the
complex system [2–9]. The structure of complex networks is essential for understanding
the evolution and function of various complex systems [10–13].

The structure and dynamics of real complex systems are studied using complex
network theory [1, 10, 11]. It was shown that real networks have similar topological prop-
erties regardless of their origins [14]. They have broad degree distribution, degree–degree
correlations, and power-law scaling of clustering coefficient [11, 14]. Understanding
how these properties emerge in complex networks leads to the factors that drive their
evolution and shape their structure [2].

The complex network models substantially contribute to our understanding of the
connection between the network topology and system dynamics and uncover underlying
mechanisms that lead to the emergence of distinctive properties in real complex networks
[15–17]. For instance, the famous Barabási–Albert model [15] finds the emergence of
broad degree distribution to be a consequence of preferential attachment and network
growth. Degree–degree anti-correlations of the internet can be explained, at least to a
certain extent, by this constraint [18, 19]. Detailed analysis of the emergence of clustered
networks shows that clustering is either the result of finite memory of the nodes [20] or
occurs due to triadic closure [21].

Network growth, in combination with linking rules, shapes the network topology
[22]. While various rules have been proposed to explain the topology of real networks
[10], most models assume a constant rate of network growth, i.e., the addition of a
fixed number of nodes at each time step [15, 20, 21]. However, empirical analysis of
numerous technological and social systems shows that their growth is time-dependent
[23–26]. The time-dependent growth of the number of nodes and links in the networks
has been considered as a parameter in uncovering network growth mechanisms [27]. The
accelerated growth of nodes in complex networks is the cause of the high heterogeneity
in the distribution of web pages among websites [23] and the emergence of highly cited
authors in citation networks [26]. The accelerated growth of the number of new links
added in each time step changes the shape and scaling exponent of degree distribution
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in the Barabási–Albert model [28] and model with preferential attachment with aging
nodes [29].

The growth of real systems is not always accelerated. The number of new nodes
joining the system varies in time, has trends, and exhibits circadian cycles typical for
human behavior [24, 25, 30]. These signals are multifractal and have long-range corre-
lations [31]. Some preliminary evidence shows that the time-varying growth influences
the structure and dynamics of the social system and, consequently, the structure of
interaction networks in social systems [25, 30, 32–34]. Still, which properties of the real
growth signal have the most considerable influence, how different properties influence
the topology of the generated networks, and to what extent is an open question.

In this work, we explore the influence of real and computer-generated time-varying
growth signals on complex networks’ structural properties. We adapt the aging nodes
model [35] to enable time-varying growth. We compare the networks’ structure using the
growing signals from empirical data and randomized signals with ones grown with the
constant signal using D-measure [36]. We demonstrate that the growth signal determines
the structure of generated networks. The networks grown with time-varying signals
have significantly different topology compared to networks generated through constant
growth. The most significant difference between topological properties is observed for the
values of model parameters for which we obtain networks with broad degree distribution,
a common characteristic of real networks [10]. Our results show that real signals, with
trends, cycles, and long-range correlations, alter networks’ structure more than signals
with short-range correlations.

This paper is divided as follows. In section 2, we provide a detailed description of
growth signals. In section 3, we briefly describe the original model with aging nodes and
structural properties of networks obtained for different values of model parameters [35].
We also describe the changes in the model that we introduce to enable time-varying
growth. We describe our results in section 4 and show that the values of D-measure
indicate large structural differences between networks grown with fluctuating and ones
grown with constant signals. This difference is particularly evident for networks with
power-law degree distribution and real growth signals. The networks generated with real
signals are correlated and have hierarchical clustering, properties of real networks that
do not emerge if we use constant growth. We discuss our results and give a conclusion
in section 5.

2. Growth signals

The growth signal is the number of new nodes added in each time step. Real complex
networks evolve at a different pace, and the dynamics of link creation define the time unit
of network evolution. For instance, the co-authorship network grows through establishing
a link between two scientists when they publish a paper [37]. In contrast, the links in an
online social network are created at a steady pace, often interrupted by sudden bursts
[38]. A paper’s publication is thus a unit of time for the evolution of co-authorship
networks, while the most appropriate time unit for social networks is 1 min or 1 h.
While systems may evolve at a different pace, their evolution is often driven by the
related mechanisms reflected by the similarity of their structure [10].
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Figure 1. Growth signals for TECH (a) and MySpace (b) social groups, their ran-
domized counterparts, and random signal drawn from Poissonian distribution with
mean 1. The cumulative sums of signals’ deviations from average mean value are
shown in insets.

In this work, we use two different growth signals from real systems figure 1: (a) the
data set from TECH community from Meetup social website [39] and (b) two months
dataset of MySpace social network [40]. TECH is an event-based community where
members organize offline events through the Meetup site [39]. The time unit for TECH
is event since links are created only during offline group meetings. The growth signal
is the number of people that attend the group’s meetings for the first time. MySpace
signal shows the number of new members occurring for the first time in the dataset [40]
with a time resolution of 1 min. The number of newly added nodes for the TECH signal
is N = 3217, and the length of the signal is T s = 3162 steps. We have shortened the
MySpace signal to T s = 20 221 time steps to obtain the network with N = 10 000 nodes.
The signals in the inset of figures 1(a) and (b) show the cumulative sum of deviations
of signals from their average mean value, which is 1.017 for TECH and random TECH
signal, 0.47 for MySpace and random MySpace, and 1 for Poissonian signal.

Real growth signals have long-range correlations, trends and cycles [25, 30, 40]. We
also generate networks using randomized signals and one computer-generated white-
noise signal to explore the influence of signals’ features on evolving networks’ structure.
We randomize real signals using a reshuffling procedure. The reshuffling procedure con-
sists of E steps. We randomly select two signal values at two distinct time steps and
exchange their position in each step. The number of reshuffling steps is proportional
to the length of the signal T s, and in our case, it equals 100T s. Using this procedure,
we keep the signal length and mean value, the number of added nodes, and the proba-
bility density function of fluctuations intact, but destroy cycles, trends, and long-range
correlations. Besides, we generate a white-noise signal from a Poissonian probability dis-
tribution with a mean equal to 1. The length of the signal is T = 3246, and the number
of added nodes in the final network is the same as for the TECH signal.

We characterize the long-range correlations of the growth signals calculating Hurst
exponent [41, 42]. Hurst exponent describes the scaling behavior of time series
M(xt) = xHM(t). It takes values between 0.5 and 1 for long-range correlated signals
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and H = 0.5 for short-range correlated signals. The most commonly used method for
estimating Hurst exponent of real, often non-stationary, temporal signals is detrended
fluctuation analysis (DFA) [41]. The DFA removes trends and cycles of real signals and
estimates Hurst exponent based on residual fluctuations. The DFA quantifies the scal-
ing behavior of the second-moment fluctuations. However, signals can have deviations
in fractal structure with large and small fluctuations that are characterized by different
values of Hurst exponents [31].

We use multifractal detrended fluctuation analysis (MFDFA) [31, 43] to estimate
multifractal Hurst exponent H(q). For a given time series {xi} with length N , we first
define global profile in the form of cumulative sum equation (1), where 〈x〉 represents
an average of the time series:

Y (j) =

j∑
i=0

(xi − 〈x〉), j = 1, . . . ,N. (1)

Subtracting the mean of the time series is supposed to eliminate global trends.
Insets of figure 1 show global profiles of TECH, MySpace, their randomized signals
and Poissonian distribution. The profile of the signal Y is divided into N s = int(N/s)
non overlapping segments of length s . If N is not divisible with s the last segment will be
shorter. This is handled by doing the same division from the opposite side of time series
which gives us 2N s segments. From each segment ν, local trend pmν,s—polynomial of order

m—should be eliminated, and the variance F 2(ν, s) of detrended signal is calculated as
in equation (2):

F 2(ν, s) =
1

s

s∑
j=1

[
Y (j)− pmν,s(j)

]2
. (2)

Then the qth order fluctuating function is:

Fq(s) =

{
1

2Ns

2Ns∑
ν

[
F 2(ν, s)

] q
2

} 1
q

, q �= 0

F0(s) = exp

{
1

4Ns

2Ns∑
ν

ln
[
F 2(ν, s)

]}
, q = 0.

(3)

The fluctuating function scales as power-law Fq(s) ∼ sH(q) and the analysis of log–log
plots Fq(s) gives us an estimate of multifractal Hurst exponent H(q). Multifractal signal
has different scaling properties over scales while monofractal is independent of the scale,
i.e., H(q) is constant.

Figures 1(a) and 2 show that the TECH signal has long trends and a broad prob-
ability density function of fluctuations. The trends are erased from the randomized
TECH signal, but the broad distribution of the signal and average value remain intact.
MFDFA analysis shows that real signals have long-range correlations with Hurst expo-
nent approximately 0.6 for q = 2, figure 2. The TECH signal is multifractal, resulting
from both broad probability distribution for the values of time series and different long-
range correlations of the intervals with small and large fluctuations. Reshuffling of the
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Figure 2. Dependence of Hurst exponent on parameter q for all five signals shown
in figure 1 obtained with MFDFA.

time series does not destroy the broad distribution of values, which is the cause for the
persistent multifractality of the TECH randomized signal is figure 2.

MySpace signal has a long trend with additional cycles that are a consequence of
human circadian rhythm, figure 1(b). Circadian rhythm is an internal process that regu-
lates the sleep-wake cycle and activity, and its period for humans is 24 h [44]. Circadian
rhythm leads to periodic changes in online activity during the day and the emergence
of a well-defined daily rhythm of activity that we see in figure 1(b). MySpace signal is
multifractal for q < 0, and has constant value of H(q) for q > 0, figure 2. In MFDFA,
with negative values of q, we emphasize segments with smaller fluctuations, while for
positive q, the emphasis is more on segments with larger fluctuations [43]. Segments
with smaller fluctuations have more persistent long-range correlations in both real sig-
nals, see figure 2. Randomized MySpace signal and Poissonian signal are monofractal
and have short-range with H = 0.5 correlations typical for white noise.

Detailed MDFA analysis of real, shuffled, and computer-generated sig-
nals are shown in figure S1 and table S1 of the supplementary material
(https://stacks.iop.org/JSTAT/2021/013405/mmedia). In figure S1 we show in details
how the Fq(s) depends on s for different values of parameter q. The curve Fq(s) exhibits
different slopes for different values of q for multifractal signals, i.e., TECH, random
TECH, and MySpace. Fq(s) curves for monofractal signals are parallel. We provide the
estimated values of H(q) with estimated errors for q in a range from −4 to 4 for all five
signals in table S1 of the supplementary material.

3. Model of aging nodes with time-varying growth

To study the influence of temporal fluctuations of growth signal on network topology,
we need a model with linking rules where linking probability between network nodes
depends on time. We use a network model with aging nodes [35]. In this model, the
probability of linking the newly added node and the old one is proportional to their age
difference and an old node’s degree. In the original version of the model, one node is
added to the network and linked to one old node in each time step. The old node is
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chosen according to probability

Πi(t) ∼ ki(t)
βτα

i (4)

where ki(t) is a degree of a node i at time t, and τ i is age difference between node i
and newly added node. As was shown in [35], the values of model parameters β and α
determine the topological properties of the resulting networks grown with the constant
signal. According to this work, the networks generated using constant growth signals
are uncorrelated trees for all values of model parameters. The phase diagram in α–β
plain, obtained for β > 0 and α < 0, shows that the degree distribution P (k) ∼ k−γ with
γ = 3 is obtained only along the line β(α∗), see [35] and figure S2 in the supplementary
material. For α > α∗ networks have gel-like small world behavior, while for α < α∗ but
close to line β(α∗) networks have stretched exponential shape of degree distribution [35].

Here we slightly change the original aging model [35] to enable the addition of more
than one node and more than one link per newly added node in each time step. In each
time step, we add M � 1 new nodes to the network and link them to L � 1 old nodes
according to probability Πi given in equation (4). Again, the networks with broad degree
distribution are only generated for the combination of the model parameters along the
critical line β(α∗). This line’s position in the α–β plane changes with link density, while
the addition of more than one node in each time step does not influence its position.
Our analysis shows that the critical line’s position is independent of the growth signal’s
properties, see figure S2 in the supplementary material showing phase diagram. For
instance, for L = 1 networks and α = −1.25 and β = 1.5 we obtain networks with power-
law degree, while for L = 2 and β = 1.5 we need to increase the value of parameter α
to −1.0 in order to obtain networks with broad degree distribution. Networks obtained
for the values of model parameters β(α∗), L � 2, and constant growth have power-
law degree distribution, are uncorrelated and have a finite non-zero value of clustering
coefficient which does not depend on node degree, figure 4(b). If we fix the value of
parameter β and lower down the value of parameter α to −1.5, the resulting networks
are uncorrelated with a small value of clustering coefficient, see figure 4(a). For α < α∗ we
obtain networks with stretched exponential degree distribution, without degree–degree
correlations and small value of clustering exponent that does not depend on node degree
(see figure S2 in the supplementary material). For α � α∗ the resulting networks are
regular graphs. If we keep the value of α to 1.0 but increase the value β to 2.0 we enter
the region of small world gels, see figure 4(c). The networks created for the values of
α > α∗ are correlated networks with power-law dependence of the clustering coefficient
on the degree (see figure S2 in the supplementary material). However, these networks
do not have a power-law degree distribution.

The master equation approach is useful for studying the model with aging nodes
when M(t) = 1 [45]. However, this approach is not sufficient for time-varying growth
signals. In this work, we use numerical simulations to explore the case when M(t) is a
correlated time-varying function and study how these properties influence the structure
of generated networks for different values of parameter −∞ < α � 0 and β � 1 and
constant L.
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4. Structural differences between networks generated with different growth
signals

We generate networks for different values of L, and different growth signal profiles
M(t). To examine how these properties influence the network structure, we compare
the network structure obtained with different growth signals with networks of the same
size grown with constant signal M = 1. The M = 1 is the closest constant value to
average values of the signals, which are 1.017 for TECH, 0.47 for MySpace, and 1 for
Poissonian signals. We explore the parameter space of the model by generating networks
for pairs of values (α, β) in the range −3 � α � −0.5 and 1 � β � 3 with steps 0.5. For
each pair of (α, β) we generated networks of different link density by varying parameter
L ∈ 1, 2, 3, and for each combination of (α, β,L), we generate a sample of 100 networks
and compare the structure of the networks grown with M = 1 with the ones grown with
M(t) shown in figure 1.

We quantify topological differences between two networks using D-measure defined
in [36]

D(G,G′) = ω

∣∣∣∣∣∣
√

J(P1, . . . ,PN)

log(d+ 1)
−

√
J(P ′

1, . . . ,P
′
N)

log(d′ + 1)

∣∣∣∣∣∣+ (1− ω)

√
J(μG,μG′)

log 2
. (5)

D-measure captures the topological differences between two networks, G and G′, on a
local and global level. The first term in equation (5) evaluates dissimilarity between two
networks on a local level. For each node in the network G one can define the distance dis-
tribution P i = {pi(j)}, where pi(j) is a fraction of nodes in network G that are connected
to node i at distance j. The set of N node-distance distributions {P 1, . . . ,PN} contains a
detailed information about network’s topology. The heterogeneity of a graph G in terms
of connectivity distances is measured through node network dispersion (NND). In [36]
authors estimate NND as Jensen–Shannon divergence between N distance distributions
J(P 1, . . . ,PN) normalized by log(d+ 1), where d is diameter of network G, and show
that NND captures relevant features of heterogeneous networks. The difference between
NNDs for graph G and G′ captures the dissimilarity between the graph’s connectivity
distance profile.

However, certain graphs, such as k -regular graphs, have NND = 0 and can not be
compared using NND. For these reasons, authors also introduce average node distance
distribution of a graph μ(G) = {μ(1), . . . , μ(d)}, where μ(k) is the fraction of all pair
of nodes in the network G that are at a distance k. The Jensen–Shannon divergence
between μ(G) and μ(G′) measures the difference between nodes’ average connectivity in
a graph G and G′. This term captures the differences between nodes on a global scale.

The original definition of D-measure also includes the third term, which quantifies
dissimilarity in node α-centrality. The term can be omitted without precision loss [36].
The parameter ω in equation (5) determines the weight of each term. The extensive
analysis shows that the choice ω = 0.5 is the most appropriate for quantifying structural
differences between two networks [36].

The D-measure takes the value between 0 and 1. The lower the value of D-measure
is the more similar two networks are, with D = 0 for isomorphic graphs. The D-measure
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Figure 3. The comparison of networks grown with growth signals shown in figure 1
versus ones grown with constant signal M = 1, for value of parameter α ∈ [−3,−1]
and β ∈ [1, 3]. M(t) is the number of new nodes, and L is the number of links
added to the network in each time step. The compared networks are of the same
size.

outperforms previously used network dissimilarity measures such as Hamming distance
and graph editing distance and clearly distinguishes between networks generated with
the same model but with different values of model parameters [36].

For each pair of networks, one grown with constant and one with the fluctuating
signal, we calculate the D-measure. The structural difference between networks grown
with constant and fluctuating growth signal for fixed L and values of parameters α and β
is obtained by averaging the D-measure calculated between all possible pairs of networks,
see figure 3. We observe the non-zero value of D-measure for all time-varying signals.
The D-measure has the largest value in the region around the line β(α∗). The values
of D-measure in this region are similar to ones observed when comparing Erdös–Rényi
graphs grown with linking probability below and above critical value [36]. For values
β < β(α∗), the structural differences between networks grown with constant signal and
M(t) still exist, but they become smaller as we are moving away from the critical line.
Networks obtained with constant signal and fluctuating signals have statistically similar
structural properties in the region of small-world network gels, i.e., α > α∗.
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We focus on the region around the critical line and observe the significant structural
discrepancies between networks created for constant versus time-dependent growth sig-
nals for all signals regardless of their features. However, the value of D-measure depends
on the signal’s properties, figure 3. Networks grown with multifractal signals, TECH,
random TECH, and MySpace signals, are the most different from those created by a
constant signal. The D-measure has the maximum value for the original TECH signal,
with Dmax = 0.552, the signal with the most pronounced multifractal properties among
all signals shown in figure 2. Networks generated with randomized MySpace signal and
Poisson signal are the least, but still notably dissimilar from those created with M = 1.

Randomized MySpace signal and Poissonian signal are monofractal signals with
Hurst exponent H = 0.5. To investigate the influence of monofractal correlated sig-
nals on the network structure, we generate six signals with a different value of
H ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, see figure S3 in the supplementary material. We use
each of these signals to generate networks following the same procedure as for signals
shown in figure 1. The results shown in figure S4 of the supplementary material confirm
that short-range correlated signals create networks with different structures from ones
grown with the constant signal. The increase of the Hurst exponent leads to increases
in the D-measure. However, D-measure’s maximal value is smaller than one observed
for multifractal signals shown in figure 3.

The value of D-measure rises with a decline of α∗. This observation can be explained
by examining linking rules and how model parameters determine linking dynamics
between nodes. The ability of a node to acquire a link declines with its age and grows
with its degree. A node’s potential to become a hub, node with a degree significantly
larger than average network degree, depends on the number of nodes added to the net-
work in the T time steps after its birth. The length of the interval T decreases with
parameter α. For constant signal, the number of nodes added during this time inter-
val is constant and equal to MT . For fluctuating growth signals, the number of added
nodes during the time T varies with time. In signals that have a broad distribution of
fluctuations, like TECH signals, the peaks of the number of newly added nodes lead to
the emergence of one or several hubs and super hubs. The emergence of super hubs,
nodes connected to more than 30% of the nodes in the network, significantly alters the
network’s topology. For instance, super hubs’ existence lowers the value of average path
length and network diameter [10]. The emergence of hubs occurs for values of parame-
ter α relative close to −1.0 for signals with long-range correlations. As we decrease the
parameter α, the fluctuations present in the time-varying signals become more impor-
tant, and we observe the emergence of hubs even for the white-noise signals. The trends
present in real growth signals further promote the emergence of hubs. The impact of
fluctuations and their temporal features on the structure of complex networks increases
with link density.

The large number of structural properties observed in real networks are often conse-
quences of particular degree distributions, degree correlations, and clustering coefficient
[47]. Figure 4 shows the degree distribution P (k), dependence of average neighboring
degree on node degree 〈k〉nn(k), and dependence of clustering coefficient on node degree
c(k) for networks with average number of links per node L = 2. The significant struc-
tural differences between networks grown with real time-varying and constant signals
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Figure 4. Degree distribution, the dependence of average first neighbor degree on
node degree, dependence of node clustering on node degree for networks grown
with different time-varying and constant signals. Model parameters have the values
α = −1.5, β = 1.5 (a), α = −1.0, β = 1.5 (b), α = −1.0, β = 2.0 (c), and L = 2 for
all networks.
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are observed for the values of model parameters α = −1.0 and β = 1.5, figures 3 and
4(b). The degree distribution of networks generated for real signals shows the occur-
rence of super hubs in these networks. In contrast, degree distributions of networks
generated with white-noise like signals do not differ from one created with constant
signal, figure 4(b). Networks obtained for the real signals are disassortative and have a
hierarchical structure, i.e., their clustering coefficient decreases with the degree. On the
other hand, networks generated with constant and randomized signals are uncorrelated,
and their clustering weakly depends on the degree.

We observe a much smaller, but still noticeable, difference between the topologi-
cal properties of networks evolved with constant and time-varying signal for α < α∗,
figure 4(a). The difference is particularly observable for degree distribution and depen-
dence of average neighboring degree on node degree of networks grown with real TECH
signal. The fluctuations of time-varying growth signals do not influence the topological
properties of small-world gel networks, figure 4(c). For α > α∗, the super hubs emerge
even with the constant growth. Since this is the mechanism through which the fluctu-
ations alter the structure of evolving networks for α � α∗, the features of the growth
signals cease to be relevant.

5. Discussion and conclusions

We demonstrate that the resulting networks’ structure depends on the time-varying
signal features that drive their growth. The previous research [25, 30] indicated the pos-
sible influence of temporal fluctuations on network properties. Our results show that
growth signals’ temporal properties generate networks with power-law degree distribu-
tion, non-trivial degree–degree correlations, and clustering coefficient even though the
local linking rules, combined with constant growth, produce uncorrelated networks for
the same values of model parameters [35].

We observe the most substantial dissimilarity in network structure along the critical
line, the values of model parameters for which we generate broad degree distribution
networks. Figure 3 shows that dissimilarity between networks grown with time-varying
signals and ones grown with constant signals always exists along this line regardless of
the features of the growth signal. However, the magnitude of this dissimilarity strongly
depends on these features. We observe the largest structural difference between networks
grown with multifractal TECH signal and networks that evolve by adding one node in
each time step. The identified value of D-measure is similar to one calculated in the
comparison between sub-critical and super-critical Erdös–Rényi graphs [36] indicating
the considerable structural difference between these networks. Our findings are further
confirmed in figure 4(b). The networks generated with signals with trends and long-
range temporal correlations differ the most from those grown with the constant signal.
Our results show that even white-noise type signals can generate networks significantly
different from ones created with constant signal for low values of α∗.

Randomized and computer-generated signals do not have trends or cycles. Never-
theless, networks grown with these signals have a significantly different structure from
ones grown with constant M . Our results demonstrate that growth signals’ temporal
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fluctuations are the leading cause for the structural differences between networks evolved
with the constant and time-varying signal. We observe the smallest, but significant,
difference between networks generated with constant M and monofractal signal with
short-range correlations. As we increase the Hurst exponent, the value of the D-measure
increases. The most considerable differences are observed for multifractal signals TECH,
random TECH, and MySpace.

The value of D-measure declines as we move away from the critical line, figure 3. The
primary mechanism through which the fluctuations influence the structure of evolved
networks is the emergence of hubs and super hubs. For values of α � α∗, the nodes
attache to their immediate predecessors creating regular networks without hubs. For
α � α∗ graphs have stretched exponential degree distribution with low potential for the
emergence of hubs. Still, multifractal signal TECH enables the emergence of hub even
for the values of parameters for which we observe networks with stretched-exponential
degree distribution in the case of constant growth figure 4(a). By definition, small-world
gels generated for α > α∗ have super-hubs [35] regardless of the growth signal. Therefore
the effects that fluctuations produce in the growth of networks do not come to the fore
for values of model parameters in this region of α–β plane.

In this work, we focus on the role of the node growth signal in evolving networks’
structure. However, real networks do not evolve only due to the addition of new nodes,
but also through addition of new links [27–29, 38]. Furthermore, the deactivation of
nodes [48] and the links [48] influence the evolving networks’ structure. Each of these
processes alone can result in a different network despite having the same linking rules.
The next step would be to examine how different combinations of these processes influ-
ence the evolving networks’ structure. For instance, in [28], authors have examined the
influence of the time-dependent number of added links L(t) on the Barabási–Albert
networks’ structure. They show that as long as the average value of time-dependent
signal 〈L(t)〉 is independent of time, the generated networks have a similar structure
as Barabási–Albert networks, and that the degree distribution depends strongly on the
behavior of 〈L(t)〉. It would be interesting to examine how correlated L(t) signals influ-
ence networks’ structure with aging nodes, where the age of a node plays a vital role
in linking between new and old nodes. Moreover, we expect that the combination of
time-varying growth of the number of nodes and the number of links will significantly
influence these networks’ structure.

Evolving network models are an essential tool for understanding the evolution of
social, biological, and technological networks and mechanisms that drive it [10]. The
most common assumption is that these networks evolve by adding a fixed number of
nodes in each time step [10]. So far, the focus on developing growing network models was
on linking rules and how different rules lead to networks of various structural properties
[10]. Growth signals of real systems are not constant [25, 30]. They are multifractal,
characterised with long-range correlations [25], trends and cycles [40]. Research on tem-
poral networks has shown that temporal properties of edge activation in networks and
their properties can affect the dynamics of the complex system [12]. Our results imply
that modeling of social and technological networks should also include non-constant
growth. Its combination with local linking rules can significantly alter the structure of
generated networks.
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[30] Mitrović M and Tadić B 2012 Emergence and Structure of Cybercommunities (Springer Optimization and Its
Applications) vol 57 (Berlin: Springer) p 209

[31] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin S, Bunde A and Stanley H E 2002 Multifractal
detrended fluctuation analysis of nonstationary time series Physica A 316 87
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