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Abstract. Reversible random sequential adsorption of binary mixtures of extended objects on a
(wo-dimensional triangular lattice 1s studied numerically by means of Monte Carlo simulations. The
depositing objects are formed by sell-avoiding lallice steps. We concentrate here on the influence
of the symmetry properties ol the shapes on the kinetics of the adsorption-desorption processes in
two-component mixtures. We provide a detailed diseussion of the significance of coliective events
for governing the time coverage behavior of component shapes with different rotational symmetries.
Jror the mixtures of equal sized objects, we propose a simple formula for predicting the value of the
steady-state coverage [raction of a mixture from the values of the steady-state coverage fractions of’
pure component shapes.
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INTRODUCTION

Random scquential adsorption (RSA) is a typical model for irreversible deposition of
macromolecules and microscopic particles such as polymers. colloids, bacteria, protein
or latex particles on solid surfaces. In two dimensions (2D), RSA is a typical model for
irreversible and sequential deposition of macromolecules at solid/liquid interfaces. Some
examples of the wide range of applicability of this model include adhesion of colloidal
particles, as well as adsorption of proteins to solid surfaces, with relaxation times much
longer than the formation time of the deposit. See Evans [ 1] for a comprehensive survey.

There is a number of physical processes that involve both adsorption and desorption
of particles. Adsorption-desorption processes are important in the binding of ions to a
Langmuir monolayer [2], the interaction of proteins with DNA |3]. and in many catalytic
rcactions. Recently. there has been a renewed interest in the reversible RSA because of
its successful application to compaction of granular materials. The results of numerical
simulations showed a crucial role of the geometrical character and symmetry propertics
of the extended objects in the reversible RSA dynamics [4].

Particles in nature, such as colloidal and bioparticles. arc not monodisperse. Because
their sizes and shapes vary considerably, polydispersity is almost an inevitable property
in many experimental situations. The binary mixture is the simplest and the first step
toward the understanding of polvdisperse systems. In this paper we present the results
of Monte Carlo simulations for the reversible RSA of a two-component mixture of
extended objects on a triangular lattice.
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DEFINITION OF THE MODEL AND THE SIMULATION
METHOD

Simulations are performed for objects of various shapes, that are modeled by self-
avoiding walks on the two-dimensional triangular lattice. A sclf-avoiding shape of length
¢isascquence of distinct vertices (y, . . ., @y) such that each vertex is a nearest neighbor
of its predecessor. 1.¢.. a walk of length ¢ covers £ + | lattice sites.

The process that we have investigated in this paper consists of the random deposition
and desorption of extended objects from Table | on a triangular lattice of size 1. = 120
Periodic boundary conditions are used along all directions. The reversible RSA process
for a binary mixture is as follows. From a large reservoir of shapes we choose one shape
at random. We randomly select a lattice site and try to deposit the chosen shape of
length ¢ with probability .. If the selected site is unoceupicd. we fix the beginning ot
the walk that makes the chosen shape at this site. Then we randomly pick one of the
six possible orientations with equal probability. start the corresponding (-step walk in
that direction and scarch whether all successive ¢ sites are unoccupied. If so. we occupy
these £ + 1 sites and deposit the object: othenwise, the deposition attempt is rejected.
Each adsorption attempt is followed by a desorption one with probability P, that starts
by choosing a lattice site at random. If the selected site 1s occupied by an adsorbed
object. the object 1s removed from the lattice. The kineties of the adsorption-desorption
model depends only on the ratio K — £, /P, In order to save the computer time it is
convenient to take the adsorption probability to be 2, = 1. 1.c.. to try an adsorption at
cach Monte Carlo step.

The time 7 15 counted by the number of adsorption attempts and scaled by the total
number of lattice sites 2. The quantity of interest is the [raction of total lattice sites,
00 (1), covered by the deposited objects (x) and (v) at time 7. 0¢(s) and 6U)(¢)
denote the coverage fraction of cach specics adsorbed at time 1. The output data arc
averaged over 100 independent runs for cach choice of mixture and cach desorption
probability P_.

DENSIFICATION KINETICS

We mvestigate the role that the mixture composition and the symmetry properties of the
shapes play in the deposition process. We will mainly concentrate on the case of binary
mixtures. composed of the shapes of equal number of segments.

The time behavior of the coverage fraction for the mixture (B) | (') in Table 1 is
presented in Fig. 1.1 where two relatively low values of P = 0.002 and 0.001 have been
used. The relaxation of the system toward its equilibrium coverage fraction ol W s a
two-stage process: at very carly times of the process, when the coverage fraction is small.
the adsorption process is dominant and the coverage grows rapidly in time; for large
enough coverages (8% W (1) > 0}(-;‘,',3"'“') ) the growth of the coverage fraction requires
the rearrangement of the increasing number of particles in order to open a hole large
cnough for the insertion of an additional particle, and the role of desorption is crucial.
This strongly suggests that the collective cvents arc responsible for the cvolution of
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TABLE [. Coverage [raclion 0N Y for various binary mixtures. Jam-

jnn
ming coverages shown are for # — 00 — 1 /2
N () 1 Y i lad
L{.\') () shapes a gy ‘ £ 4. W) : /-(";’" o
| (B)+(©) b, 241 | 2+2 | 08526 |
(C)+ (D) g A fdi | 242 0.8624
| (B)+ (D) + .\ 2+3 | 2+2 | 08591 |
‘ () +(G) vt 3+6 \ 545 | 06833 {
, () +(J) + 2+6 6+6 0.7125
‘ () + (K) TR 6+1 6+6 | 0.7087 ‘
O (1) for QWU (1) > 9;;,,]” . Because these events involve the maltiple particle

transinons_ [11(._\ oceur on a longer time scale than the simple adsorption/desorption
events.
Figure 1.1 shows the time dependence of the coverages 6 B)( and U‘( '( ) resulting

from the reversible RSA of binary mixture of (B) and (C') shapes, for (&) = HO =172
and for two values of -~ 0.002. 0.001. For the shape (B) oFlm_,hu order OFs\mmLtn
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FIGURE 1. Steadyv-state coverages lor the mixtures 1)vs time: 2) vs .

0'%)(1) is a monotonously increasing function of time and has the same general features
as the coverage 0% (“1(1). On the other hand. for the shape (C') of lower order of
symmetry, 0/ (1) reaches a broad maximum. One clearly observes that a larger value
for the maximum of 0'“(¢) is reached for the smaller desorption probability P~ and that
the maximum of 07 (r) shifts towards larger times as the P decreascs.

+=(v)

One striking feature of Fig. 1.1 is the fact that the steady-state value 6. was
reached before the coverages 0 (1) and 097(r) achieved their asymptotic values 0
and 6.7 The thin vertical line in Fig. 1.1 indicates the beginning of the cquilibrium
plateau in the time evolution of the coverage fraction 8 W(r). In this regime, the
coverage fraction of the mixture fluctuates around 1ts steadv-state value E)f';‘l" ‘ "r), but the
coverage fraction of the shape with the symmetry axis of higher order continues to gro
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at the expense of the coverage of the component with the symmetry axis of lower order.
that decreases.

COMPOSITION DEPENDENCE OF THE STEADY-STATE
COVERAGE FRACTION

Like many other statistical-mechanical problems, exact solutions for the steady-state
coverage and for the kinetics of the reversible RSA process in onc-component systems
exist only in onc dimension. Therefore, much of the information about the reversible
RSA kinetics of mixtures in higher dimension is provided by numerical simulations or
by experiment. We have analyzed the simulation data in order to find a dependence of
the steady state coverage fraction of a mixture on the steady-state coverage fractions of
pure lattice shapes. We propose the following simple formula for calculating the steady-
state coverage fraction 659" i the mixture (x)+ (v) of equal sized shapes (x) and (y)
with fractional concentrations /& and ") = 1 — #¥) in the infinite reservoir:

| | i
N SR - (el on_—
0(.r)+(_\') 4 eifx) L7 e_(v)’ (D)

where 687 and 62 are the steady-state coverage fractions of purc lattice shapes.

Formula (1) is supported by a good agreement with the numerical simulations. Fig. 1.2
comparcs the steady-state coverage fraction 6577 of some mixturcs from Table 1 as a
function of /. with the valucs obtained using Eq. (1). Objects (x) and (v) are deposited
with fractional concentrations ) — 0.8 and r%) — 0.2, respectively. Closed symbols
refer to the data obtained from the numerical simulations, and the results obtained from
Eq. (1) are shown for comparison as opened symbols.

CONCLUDING REMARKS

We have performed extensive numerical simulations of the reversible RSA using binary
mixtures composed of the shapes of different rotational symmetries on a triangular
lattice. The simulations have shown that the coverage kinetics of a mixture strongly
depends on the symmetry propertics of the component shapes. We have proposed a
simple formula (1) that can be used to predict the value of a stcady-state coverage
fraction of a mixturc from the values of the steady-state coverage fractions of pure
component shapes.

REFERENCES

LW Evans, Rev. Mod. Phys. 65, 1281 (1993).

R.S. Ghaskadvi and M. Dennin, Phys. Rev. I£ 61, 1232 (2000).

E. I'rey and A. Vilfan. Chem. Phys 284, 287 (2002).

Lj. Budinski-Petkovié, M. Petkovic, Z. Juk8ié and 8. Vrihovae, Phys. Rev. 1< 72, 046118 (2003).

o R 89

188




