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Abstract. In order to find the exact form of the electrostatic interaction between two proteins with disso-
ciable charge groups in aqueous solution, we have studied a model system composed of two macroscopic
surfaces with charge dissociation sites immersed in a counterion-only ionic solution. Field-theoretic repre-
sentation of the grand canonical partition function is derived and evaluated within the mean-field approx-
imation, giving the Poisson-Boltzmann theory with the Ninham-Parsegian boundary condition. Gaussian
fluctuations around the mean field are then analyzed in the lowest-order correction that we calculate analyt-
ically and exactly, using the path integral representation for the partition function of a harmonic oscillator
with time-dependent frequency. The first-order (one loop) free-energy correction gives the interaction free
energy that reduces to the zero-frequency van der Waals form in the appropriate limit but in general gives
rise to a monopolar fluctuation term due to charge fluctuation at the dissociation sites. Our formulation
opens up the possibility to investigate the Kirkwood-Shumaker interaction in more general contexts where
their original derivation fails.

1 Introduction

Kirkwood and Shumaker were the first to realize, more
than half a century ago, that there might exist anoma-
lously long-range interactions between proteins in aque-
ous solutions stemming from thermal charge fluctuations
of dissociable charge groups on their surface [1,2]. Within
the framework of statistical mechanical perturbation the-
ory they showed that this interaction is different from the
standard van der Waals (vdW) interaction [3], ubiquitous
between neutral bodies, primarily because of its extremely
long range. The Kirkwood-Shumaker (KS) interaction was
shown to scale with a lower inverse power of separation
between two proteins then the vdW interaction. Further-
more and contrary to vdW interactions, the KS forces are
not universal, but depend on whether and how the pro-
tein charge can respond to the local electrostatic poten-
tial, a salient property of dissociable charge groups that
is usually referred to as charge regulation and was first
formalized by Ninham and Parsegian [4].

Charge regulation implies that the effective charge on
a macroion, e.g. protein surface, responds to the local
solution conditions, such as local pH, local electrostatic
potential, salt concentration, dielectric constant varia-
tion and most importantly the presence of other vicinal
charged groups [5]. Although charge regulation is an old
concept, modern theories of electrostatic interaction be-
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tween macroions immersed in Coulomb fluids [6] mostly
deal with constant surface charge of a macroion, bypassing
the complications introduced by charge regulation [7–10].
Constant charge is of course a very stringent approxi-
mation and holds only in a very restricted part of the
parameter space. In general, however, the charge of a
macroion surface with dissociable groups always depends
strongly on the acid-base equilibrium that defines the frac-
tion of acidic (basic) groups that are dissociated [11–13],
and it is necessary to incorporate this property consis-
tently into a theoretical formulation. Our goal in this
work is thus to find a theoretical description which would
take into account charge regulation of dissociable surface
groups and would allow to generalize the original Ninham-
Parsegian derivation to include the contribution of fluctu-
ations around the mean field, as well as to pave the way
towards other approximations that go beyond the simple
mean-field Ansatz.

We will first show what is the correct free energy that
corresponds to the Ninham-Parsegian mean-field charge
regulation theory [4]. It will furthermore become clear as
we proceed that the KS interactions in fact correspond
to Gaussian monopolar charge fluctuations around the
Ninham-Parsegian state, different from the dipolar fluc-
tuations at the origin of the standard vdW forces. We
will derive explicitly an exact expression for the one-loop
correction of the free energy in the case of a counterion-
only system in a planar parallel slab geometry. The the-
ory presented here, while being explicitly formulated only
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Fig. 1. Schematic representation of two charged planar sur-
faces at a separation D with charge dissociation sites dis-
tributed uniformly along the surfaces and with counterions be-
tween the surfaces. The counterions originate from the charge
dissociation of the dissociable groups (AC) through the reac-
tion AC ↔ A− + C+.

for a restricted model, allows for many generalizations of
the monopolar fluctuation interactions that can be de-
rived within the same formalism. We will nevertheless not
pursue these generalizations here and relegate further de-
velopments to subsequent publications.

The plan of the paper is as follows: in sect. 2 we
start from the simplest model that retains the salient
features of charge regulation, composed of two planar
parallel macromolecular surfaces with surface distributed
charge dissociation sites, immersed in a Coulomb fluid
composed of counterions only. We base our analysis on a
field-theoretic description of the system’s partition func-
tion, whose Hamiltonian is generalized to include a surface
term which describes properly the charge regulation and
consequently the local charge fluctuation at the macro-
molecular surfaces. This model is introduced in sect. 3
together with its full free energy and is shown to coincide
with the Ninham-Parsegian Ansatz for the charge disso-
ciation equilibrium on the mean-field level and to reduce
to the Poisson-Bolzmann (PB) equation with the charge
regulation boundary condition in sect. 4. In sect. 6 we
address the Gaussian fluctuations around this mean-field
solution with its charge regulation boundary condition
that can in fact be solved exactly and analytically. The
exact one-loop free-energy correction is obtained by us-
ing the path-integral approach for a harmonic oscillator
with time-depended frequency with all the relevant tech-
nical details relegated to appendix A. Finally in sect. 7 we
present numerical results and comment upon its relevance
for the KS interaction in the Conclusions sect. 8.

2 The model

We consider two flat parallel plates, located at z = ±D/2
and immersed into an aqueous solvent, that carry dissocia-
ble charge groups of the type AC ↔ A− + C+, where the
counterion C is released into the aqueous solution, fig. 1.
We do not specify the identity of the released counterion
but assume it is the only mobile species in the consid-
ered model. Furthermore we assume a grand canonical
ensemble for the counterions, specified by a fixed value

of the activity. The number of the counterions in the so-
lution is thus not fixed but depends on the dissociation
state of the surfaces. While in standard formulations of
the counterion-only Coulomb fluids with fixed boundary
charge the grand canonical formulation is just a step to-
wards the final canonical ensemble, corresponding to a
fixed number of charges, in our case this is not fixed and
the grand canonical description is natural.

We need to note that in the Ninham-Parsegian model
the released counterion is a proton and the aqueous solu-
tion contains a salt mixture at a specified ionic strength
for both monovalent and divalent complements [4]. While
this model can be formalized in the same way as our sim-
plified model, we first solve the simplified case in order to
derived the proper level of description as well as to inves-
tigate the salient features of fluctuations in a case, where
they can be treated exactly.

In order to describe the surface charge dissociation
we introduce a lattice gas model with its own surface
free-energy contribution. This surface part of the free en-
ergy stems from the charge dissociation equilibrium and
describes the (free) energy penalty for a finite surface
charge density. We show furthermore that on the mean-
field level our formulation yields exactly the same result as
the Ninham-Parsegian charge regulation Ansatz, which is
not explicitly based on any surface free energy. The equi-
librium distribution of the counter ions is then obtained
from the saddle-point equation, that corresponds to the
minimum of the complete, i.e. volume plus surface, free
energy. The dielectric constant in the region between the
walls is taken as ε, while outside that region it is assumed
to be in general different and equal to ε′.

3 Field-theoretic description of the model

For describing this model system of interacting particles
it is advantageous to use the field-theoretic formalism to
derive the partition function. The configurational part of
the Hamiltonian of an auxiliary system of N counterions,
with a fixed surface charge density σ0 on the bounding
surfaces, can be written as

H =
1
2

∑

i�=j

u(�ri, �rj)eiej +
N∑

i=1

∮
u(�r, �ri)σ0d2�r, (1)

where
∮

implies an integration over all the charged bound-
ing surfaces and u(�r, �ri) is the electrostatic interaction ker-
nel, i.e. Green’s function of the Coulomb potential, which
satisfies the relation

∇2u(�r, �ri) = −δ(�r − �ri)
εε0

. (2)

The canonical configurational partition function of the
system can then be represented by an integral over all
positions of the counterions

QN =
∫

d�r1 . . . d�rNe−βH . (3)



Eur. Phys. J. E (2014) 37: 49 Page 3 of 12

After applying the Hubbard-Stratonovich transformation,
one can obtain the grand canonical partition function as
a functional integral over the fluctuating electrostatic po-
tential ϕ(�r )

Z =
∫

D[ϕ(�r )]e−S[ϕ(�r )], (4)

with the field-action of the form:

S[ϕ(�r )] =
1
2
βεε0

∫
d3�r |∇ϕ(�r )|2 + λ̃

∫
d3�r eiβeϕ(�r )

+iβ

∮
d2�r σ0ϕ(�r ), (5)

Here λ̃ is the absolute activity that will be obtained self-
consistently. The above field-action is universal in terms of
the non-linear volume interaction term, the second term
in the above equation, that corresponds exacty to the
van’t Hoff ideal osmotic pressure of the counterions. This
is a well-known result [14], which on the weak coupling
mean-field level, using substitution ϕ → iφMF, gives the
PB equation with fixed charged density boundary condi-
tion �n · �∇φMF = σ0 [6].

We now generalize this free-energy Ansatz so that it
will contain also a surface part, not necessarily linear in
the surface fluctuating potential, by assuming that the
surface free energy in eq. (5) can be modified as

i

∮
σ0ϕ(�r )d2�r −→

∮
f(ϕ(�r ))d2�r, (6)

where f(ϕ(�r )) is a general non-linear function of the lo-
cal potential. The exact form of this surface free-energy is
not universal and depends on the model of the surface-ion
interaction [15]. Here, we will delimit ourselves to a sur-
face lattice gas model, which was introduced in a different
context by Fleck and Netz [16], and derive the correspond-
ing free energy, as well as show that the same model in
fact corresponds exactly to the Ninham-Parsegian charge
regulation theory [17]. The surface lattice gas model of
dissociable charged groups gives [16,19]

f(ϕ(r)) = iσ0ϕ(r) − kBT
|σ0|
e0

ln
(
1 + eβμS+iβe0ϕ(r)

)
,

(7)
where μS is the free energy of dissociation. In the ar-
gument of the logarithm function one can recognize the
partition function for a system with uncharged ground
state and a charged state with an effective energy βμS +
iβeϕ(�r ). It is possible to generalize this model with other
surface free energies [20–22] that can capture other de-
tails of the surface-ion interaction. Furthermore, in the
limit of βμS −→ ∞, the sites are completely undissoci-
ated, the bounding surfaces are uncharged and there is
no contribution to the surface free energy. In the opposite
limit, βμS −→ −∞, the bounding surfaces are completely
dissociated and we are back to the fixed surface charge
f(ϕ(r)) = iσ0ϕ(r).

The complete field action of the model at hand thus
assumes the form

S[ϕ(�r )] =
1
2
βεε0

∫
d3�r |∇ϕ(�r )|2 + λ̃

∫
d3�r eiβeϕ(�r )

+iβ

∮
d2�rσ0ϕ(r) −

∮
d2�r

|σ0|
e0

× ln
(
1 + e−βμS+iβe0ϕ(r)

)
. (8)

While the volume part presents an exact field-theoretic
representation of the counterion partition function, the
surface part pertains to a specific model of the interaction
between the mobile charges and the bounding surfaces.

4 Mean-field approximation

The functional integral eq. (4), with the field-action func-
tional S[ϕ(�r )] decomposed as

S[ϕ(�r )] =
∫

V

fV (ϕ(�r )) d3r +
∮

S

fS(ϕ(�r )) d2r (9)

can not be evaluated exactly, since it is in general not
Gaussian. One thus has to take recourse to various ap-
proximations of which the mean-field approximation, be-
ing equivalent to the saddle-point approximation, is the
most straightforward one.

The mean-field potential φMF(�r ) of the field-action
eq. (9) is defined as a solution of the saddle-point equation
corresponding to δS[ϕ(�r )] = 0 at ϕ(�r ) = iφMF(�r ) where
φMF(�r ) is thus a solution of

∇
(

∂fV (φMF(�r ))
∂∇φMF(�r )

)
− ∂fV (φMF(�r ))

∂φMF(�r )
= 0 (10)

and

−βεε0
∂φMF(�r )

∂�n
=

∂fS(φMF(�r ))
∂φMF(�r )

= σ(φMF(�r )), (11)

where �n is the normal vector to the bounding surface(s),
and σ(φMF(�r )) is the effective surface charge at the
bounding surface(s). In extenso the first equation is ex-
actly the standard PB equation for the counterion-only
system

∇2φMF(�r ) = − λ̃e

εε0
e−βeφMF(�r ), (12)

while the second saddle-point equation with f(ϕ(�r )) from
eq. (7) reduces to the boundary condition

−βεε0
∂φMF(�r )

∂�n
= −σ0

2

(
1+tanh

1
2

(−βμS + βe0φMF)
)

.

(13)
Obviously the above surface charge density can span the
interval [−σ0, 0].

Assuming that βμS = − ln 10(pH − pK), with pK =
− log K and K being the dissociation equilibrium constant
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while pH = − log[H+] with [H+] the concentration of the
protons in the bath, the above boundary condition coin-
cides exactly with the charge regulation boundary condi-
tion of the Ninham-Parsegian site-dissociation model [17].
Should there be more then one type of dissociable groups
the proper generalization was introduced in ref. [18].

For the planar geometry the mean-field solution of
eq. (12) depends only on the z coordinate and has the
form

φMF(z) =
1
βe

ln[cos2(αz)], (14)

where α can be determined from the boundary condition
eq. (13) as

(1 + b)α tan(αD/2) + bα tan3(αD/2) =
1
μ

, (15)

with b being related to the dissociation free energy as
ln b = βμS . Here μ is the Gouy-Chapman length, which
represents the characteristic distance at which a counte-
rion interacts with a macromolecular flat surface, of sur-
face charge σ0, with an energy kBT and is defined as
μ = 2ε0ε/eβσ0.

5 Second-order (Gaussian) correction

After solving the mean-field equations, one proceeds to
analyze the fluctuations around the mean-field potential
by evaluating the partition function eq. (4) for the field-
action functional S[φ(�r ) = φMF(�r )+δφ(�r )]. To the lowest
Gaussian order in the field fluctuations δφ(�r ) the field-
action can be expanded

S[φ(�r )] = S[φMF(�r ) + δφ(�r )] = SMF[φMF] + S2[δφ(�r )],
(16)

where

S2[δφ(�r )] =
1
2

∫ ∫
δ2S

δφ(�r )δφ(�r )
|MF δφ(�r )δφ(�r ′)d3�rd3�r ′

+
1
2

∮
CS(φ(�r ′))|MFδφ(�r ′)2d2�r, (17)

and obviously decomposes into a volume and surface term
just like the complete field action. Above we introduced
the Hessian of the volume part of the field-action as

1
2

δ2S

δφ(�r )δφ(�r )
|MF =

1
2
β

(
u−1(�r, �r ′)− βλ̃

cos2(αz)
δ3(�r − �r ′)

)
,

(18)
while CS is the surface capacitance due to the non-linear
coupling of surface charge and surface electrostatic poten-
tial

CS(�r ) =
∂2f(φMF(�r ))
∂(βeφMF(�r ))2

=
∂σ

∂(βeφMF(�r ))
. (19)

We will show later on that in the original theory of KS
interactions it is this surface capacitance that quantifies
the thermal charge fluctuations [5].

The decomposition of the field action eq. (17) induces
a decomposition of the partition function into a product
of the saddle-point partition function and its first-order
correction, so that finally

Z = e−
1
2 ln[det βu(�r,�r ′)] × eS[φMF(�r )]

×
∫

D[δφ(�r)] eS2[δφ(�r)] = ZMF ×Z2. (20)

The last term is due to Gaussian fluctuation around the
saddle-point and thus corresponds to the one-loop correc-
tion in the free energy.

In order to proceed we first introduce the appropriate
field Green’s function

G
(
δφ1(�r ), δφ2(�r )

)
=

∫ δφ2

δφ1

D[δφ(�r )] e
1
2

RR

δ2S
δφ(�r )δφ(�r )

∣∣
MF

δφ(�r )δφ(�r ′)d3�r d3�r ′
(21)

that describes the field, or better the propagation of Gaus-
sian electrostatic potential fluctuations and will allow us
to formally separate the bulk and the surface terms in the
calculation of the one-loop partition function.

Since the kernel u−1(�r, �r ′) is isotropic in the transverse
directions ρ = (x, y), one can introduce the Fourier-Bessel
transform of the fluctuating potential as

δφ(�r ) = δφ(ρ, z) =
∫ ∞

0

dQJ0(Qρ)δφ(Q, z), (22)

where δφ(Q, z) depends only on the magnitude of the 2D
transverse wave vector, Q = |Q|. With this notation the
complete Green’s function can be presented as the product

G
(
δφ1(�r ), δφ2(�r )

)
= ΠQGQ

(
δφ(Q, z1), δφ(Q, z2)

)
, (23)

where GQ(δφ(Q, z1), δφ(Q, z2)) can be furthermore de-
rived in the form

GQ

(
δφ(Q, z1), δφ(Q, z2)

)
=

∫ δφ(Q,z2)

δφ(Q,z1)

D[δφ(Q, z)] exp

[
− 1

2
βεε0

∫ z=z2

z=z1

dz

×
((

d δφ

dz

)2

−
(

Q2 +
2α2

cos2 (αz)

)
δφ2

)]
. (24)

Obviously this is nothing but the Feynman propagator
of a harmonic oscillator with time-depended frequency,
where the z coordinate plays the role of “time” [23], and
the Wick’s rotation makes the action real instead of imag-
inary as in quantum mechanics. The general method of
solving this type of functional integrals was described by



Eur. Phys. J. E (2014) 37: 49 Page 5 of 12

Z2(D) = ΠQ

s

2e−DQQ(α2 + Q2)

2π((α tan[αD/2] + Q)2 − (α tan[αD/2] − Q)2e−2DQ)

×
s

1

CS1CS2 + βε′ε0(CS1 + CS2)Q + (βεε0)2N2 + (βε′ε0)2Q2 + (βεε0)(CS1 + CS2 + 2βε′ε0Q)M
, (26)

M =
Q(α tan[αD

2
] + Q)2 + (α2 + α2 tan2[αD

2
])(α tan[αD

2
] + Q)

(α tan[αD
2

] + Q)2 − (α tan[αD
2

] − Q)2e−2DQ

−
Q(α tan[αD

2
] − Q)2 − (α2 + α2 tan2[αD

2
])(α tan[αD

2
] − Q)e−2DQ

(α tan[αD
2

] + Q)2 − (α tan[αD
2

] − Q)2e−2DQ
;

N2 = M2 − 4e−2DQQ2(α2 + Q2)2
h

(α tan[αD
2

] + Q)2 − (α tan[αD
2

] − Q)2e−2DQ)
i2 . (27)

Khandekar and Lawande [24] and was adapted to this par-
ticular case as described in detail in appendix A.

The partition function, or specifically the part stem-
ming from Gaussian fluctuations, eq. (20), around the
mean-field can now be cast into the following form:

Z2(D) = ΠQ

∫
D[δφ1(�r)δφ2(�r )]

×G̃Q

(
0, δφ1(�r )

)
× e

− 1
2

R

S1
d2rCS1 (φMF)δφ2

1(�r )

×GQ

(
δφ1(�r ), δφ2(�r )

)
× e

− 1
2

R

S2
d2rCS2 (φMF)δφ2

2(�r)

×G̃Q

(
δφ2(�r ), 0

)
, (25)

where G̃Q stands for the Green’s function eq. (24) but with
α = 0, as there are no counterions behind the two bound-
ing surfaces. The exact form eq. (A.18) thus still remains
valid but evaluated explicitily for vanishing α. Of course in
that case the functional integral can be evaluated directly
in a trivial fashion. In addition, one needs to take the di-
electric constant as ε′ for G̃Q(0, δφ1(�r )) and G̃Q(δφ2(�r ), 0),
but as ε for GQ(δφ1(�r ), δφ2(�r )) in the definition eq. (24).

One could see the above formula as describing fluc-
tuations behind the surface at z = z1, described by
G̃Q(ε′; 0, δφ1(�r );∞), fluctuations behind the surface at
z = z2, described by G̃Q(ε′; δφ2(�r ), 0;∞), fluctuations in
the space between the two surfaces for z1 < z < z2, de-
scribed in their turn by GQ(ε; δφ1(�r ), δφ2(�r );D), and fi-
nally all of them coupled through the surface capacitance
and the surface potential fluctuations at the two surfaces
at z = z1 and z = z2 corresponding to the two exponential
terms.

After integration over the boundary electrostatic po-
tential fluctuations the final exact form of the partition
function can be written as

see eq. (26) above

with the functions M and N defined as

see eqs. (27) above

We have thereby derived the explicit and exact forms of
the partition function in the form of a mean-field term
and the one-loop or Gaussian fluctuation correction that
has not been calculated before.

What remains now is the evaluation of the correspond-
ing free energy and specifically the part of this free energy
that depends on the separation between the bounding sur-
faces, i.e. the interaction free energy.

6 Second-order correction: Interaction free
energy

Knowing the partition function for Gaussian fluctuations
around the mean field, one can straightforwardly calculate
the second-order or the one-loop correction to the free
energy as

F2(D)
S

= −kBT ln
Z2(D)

Z2(D → ∞)
, (28)

where we subtracted the free energy corresponding to in-
finite separation that contains the bulk free energy as well
as the surface self-energies.

Assuming furthermore that the surfaces have identi-
cal properties, i.e., CS1 = CS2 = CS we get the one-loop
correction as

F2(D)
S

=
kBT

4π

∫ ∞

0

QdQ ln
[ 1
(α2 + Q2)

Δ2
11(Q)

]

+
kBT

4π

∫ ∞

0

QdQ ln
(
1 − Δ2

12(Q) e−2QD
)
,

(29)



Page 6 of 12 Eur. Phys. J. E (2014) 37: 49

Δ11(Q) =
CS(α tan [αD/2] + Q) + βε0[ε

′Q(α tan [αD/2] + Q) + ε{Q(α tan [αD/2] + Q) + (α2 + α2 tan2 [αD/2])}]
CS + βε0Q(ε′ + ε)

, (30)

Δ12(Q) =
CS(α tan [αD/2] − Q) + βε0[ε

′Q(α tan [αD/2] − Q) − ε{Q(α tan [αD/2] − Q) − (α2 + α2 tan2 [αD/2])}]
CS(α tan [αD/2] + Q) + βε0[ε′Q(α tan [αD/2] + Q) + ε{Q(α tan [αD/2] + Q) + (α2 + α2 tan2 [αD/2])}] . (31)

where we defined the following quantities:

see eqs. (30) and (31) above

The second-order correction free energy eq. (29) consists
of two integrals. The first one corresponds to that part
of the self-energy of the two bounding surfaces that de-
pends on the inter surface separation, while the second
integral represents a generalization of the zero-frequency
(classical) vdW-Lifshitz term [25]. In fact it can be easily
seen that in the limit of no mobile ions between the sur-
faces, corresponding to α = 0, it reduces exactly to the
zero-frequency vdW term with

Δ2
12(Q) =

(ε′ − ε

ε′ + ε

)2

, (32)

while the first term vanishes. With mobile ions present,
the second-order correction is however very different from
this limit. In the limit of fixed surface charge (CS1 = CS2 =
0) and no dielectric discontinuity (ε′ = ε), the integral
reduces to the known result [26]:

F2(D)
S

=
kBT

4π

∫ ∞

0

Q̃dQ̃ ln

[
1

(α̃2 + Q̃2)

×
(

2Q̃ + 2Q̃2 + α̃2 + 1
2Q̃

)2
]

+
kBT

4π

∫ ∞

0

Q̃dQ̃

× ln

(
1 −

(
1 + α̃2

2Q̃ + 2Q̃2 + α̃2 + 1

)2

e−2D̃Q̃

)
,

(33)

leading to the attractive pressure which scales as ln D̃ ×
D̃−3 in a system composed of mobile counterions and fixed
surface charge. At the end we also consider a formal limit
of the free energy corresponding to no dielectric disconti-
nuity ε′ = ε, as well as no mobile ions α → 0, but nev-
ertheless assuming a non-vanishing surface capacitance C.
While this limit is not meaningful in our model, we will
nevertheless use it to show how the KS result [1,2], which
is based on a linear response formalism and considers no
coupling between the mean-field solution and the corre-
sponding values of the capacitances, is obtained from our
conceptual framework.

The KS limit could be obtained more directly if in-
stead of a counterion-only case dealt with here, we would
consider a uni-univalent salt as indeed was considered by
Kirkwood and Shumaker in their derivation of the long

range interaction between protein molecules with disso-
ciable surface groups [1, 2]. Nevertheless, for α → 0 our
general result reduces to

Δ2
12(Q) =

(
C

C + 2βεε0Q

)2

, (34)

which in its turn, to the lowest order in the surface capac-
itance leads to the disjoining pressure

p = − ∂

∂D

(
F2(D)

S

)
∼ C2D−1. (35)

As it depends quadratically on the surface capacitance,
this interaction presents the contribution of monopolar
fluctuations in the surface charge to the free energy. This
can be easily confirmed by evaluating the free energy of
two fluctuating charge distributions in the Gaussian ap-
proximation explicitly. Let us now show that interaction
pressure eq. (35) corresponds exactly to the KS interaction
between two planar surfaces.

In fact, the disjoining pressure eq. (35) starts to be-
come more familiar when we realize that a Hamaker-type
summation [3] for two thin planar surface sheets with a
pair interaction of the KS form scaling as V(R) ∼ R−2,
gives the interaction pressure as [1]

p =
F (R)

S
= − ∂

∂D

∫ ∞

D

2πR dR V(R) ∼ D−1. (36)

The two forms of the disjoining pressure, eqs. (35)
and (36), are thus identical, meaning that the KS inter-
action is nothing but a monopolar fluctuation interaction.
This is clear from the fact that the separation dependence
of the fluctuation interaction free energy between two sur-
faces is slower then in the case of standard vdW interac-
tions that stem from dipolar fluctuations between either
two semi-infinite media or two thin layers, scaling respec-
tively as [3]

p =
F (R)

S
= − A(D)

12πD2
and/or − 2A(D)a2

πD5
, (37)

respectively.
The KS fluctuation forces thus originate in monopolar

fluctuations and follow a different scaling either between
point particles, R−2, or between fluctuating surface lay-
ers, D−1, then in the case of dipolar fluctuations. They
arise directly from surface capacitance that is non-zero
only for a surface free energy that is non-linear, i.e. at
least quadratic, w.r.t. the local electrostatic potential.
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F̃2(D̃)

S̃
=

1

2
Ξ

Z ∞

0

Q̃dQ̃ ln

"

1 − e−2Q̃D̃

×
 

2(1 + Δ)b(1 + tan2[ α̃D̃
2

])(α̃ tan[ α̃D̃
2

] − Q̃)−(1 + b + b tan2( α̃D̃
2

))2[2ΔQ̃(α̃ tan[ α̃D̃
2

] − Q̃) − (1 + Δ)(α̃2 + α̃2 tan2[ α̃D̃
2

])]

2(1 + Δ)b(1 + tan2[ α̃D̃
2

])(α̃ tan[ α̃D̃
2

] + Q̃)+(1 + b + b tan2( α̃D̃
2

))2[2Q̃(α̃ tan[ α̃D̃
2

] + Q̃) + (1 + Δ)(α̃2 + α̃2 tan2[ α̃D̃
2

])]

!2 #

.

(42)

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
�

p�
0

Σ�Σ0

b�1

b�10

b�100

b�0.1

(a)

4 3 2 1 0 1

6

4

2

0

2

4

ln [   ]D

ln
 [

   
 ]

p 0

D 1.33

D 1.40

D 1.57

D 1.76

D 1.94

D 1

D 2

(b)

Fig. 2. (a) Rescaled mean-field disjoining pressure plotted as a function of rescaled surfaces separation for different values of
parameter b. The curve σ = σ0 corresponds to b = 0. (b) Rescaled mean-field pressure from (a) plotted in a log-log plot. The two
dotted lines represent the scalings D̃−1 and D̃−2 introduced solely to guide the eye. Obviously the scaling D̃−1 for mean-field
pressure sets in for small and D̃−2 for large values of the dimensionless separation.

7 Numerical results

It is convenient to introduce dimensionless quantities by
using the Gouy-Chapman length scale μ and σ2

0/2εε0
as the disjoining pressure scale. Hence, the length scale
(r,D), the free energy (F ), the disjoining pressure (p) and
the surface capacitance (C) can all be rescaled into dimen-
sionless variables r̃ = r/μ, D̃ = D/μ, F̃ = F/( σ2

0
2εε0

)μ3,

p̃ = p/( σ2
0

2εε0
) and C̃ = μC, respectively. We also introduce

the dielectric mismatch with Δ = (ε − ε′)/(ε + ε′). With
these definitions, the mean-field free energy becomes

F̃0(D̃)
S̃

= α̃2D̃ + 2 ln[1 + α̃2], (38)

where α̃ = μα is the solution of the boundary condition

(1 + b)α̃ tan (α̃D̃/2) + bα̃ tan3 (α̃D̃/2) = 1. (39)

The rescaled surface capacitance in terms of α̃ is then
equal to

C̃S1,S2 = 2βεε0b
1 + tan2[α̃D̃/2]

(1 + b + b tan2[α̃D̃/2])2
, (40)

which goes to zero for large values of b, limb−→∞ C̃S1,S2 →
0 as well as for vanishing b, limb−→0 C̃S1,S2 → 0. We also

invoke a coupling parameter Ξ, analogous to the one in-
troduced by Netz and Moreira [27], given as

Ξ =
e3
0σ0

8π(εε0kBT )2
(41)

for monovalent counterions. For a counterion-only sys-
tem with fixed surface charge the magnitude of the cou-
pling parameter defines a weak- and a strong-coupling
regime [6]. In our case the existence of the surface free
energy introduces also other length scales that preclude a
direct introduction of a unique electrostatic coupling pa-
rameter and it is thus in general not possible to establish
the presence of the weak and the strong coupling limits
strictu senso as exact limits of the partition function.

While the weak coupling limit can therefore not be
derived as an exact limit, the saddle-point can be defined
for any field-action. As explained in detail in ref. [6] we
thus use the saddle-point solution as the proxy for the
weak coupling limit and evaluate the contribution of the
fluctuations around the saddle-point to the free energy.

The surface interaction part of the Gaussian fluctuat-
ing free energy from eq. (29), in a dimensionless form is
then given as

see eq. (42) above

We first investigate the surface separation dependence
of the interaction free energy and the disjoining pressure
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Fig. 3. (a) Rescaled fluctuation disjoining pressure as a function of rescaled surface separation is plotted for different values of
parameter b with a fixed dielectric jump Δ = 0.95, and coupling parameter Ξ = 1. (b) Rescaled fluctuation disjoining pressure
from (a) plotted in a log-log plot to show the effective scaling of the disjoining pressure with the intersurface separation. The
scaling exponent is typically comparable with the case of the counterion-only Coulomb fluid between two surfaces with fixed
charges, which is −3, but its exact value depends on b.

between the surfaces pertaining to that dependence. The
mean-field rescaled pressure is shown in fig. 2(a), as a
function of the surface dissociation energy ln b = βμS

in a lin-lin and log-log plots. Clearly, the higher the en-
ergy penalty for charge dissociation at the surface, b, the
lower is the interaction pressure between the two sur-
faces until for large enough energy penalty the interac-
tion remains close to zero for all intersurface separations.
The scaling of the mean-field disjoining pressure with
the separation is shown in fig. 2(b). For constant surface
charge σ = σ0, i.e., corresponding formally to b = 0, the
asymptotic forms of the mean-field interaction pressure
are limD−→∞ p̃0(D) ∼ D̃−2 and limD−→0 p̃0(D) ∼ D̃−1,
see ref. [28]. This is in fact also what we observe in the
case of charge regulation, with the proviso that the regime
of validity of the two limits depends additionally on the
value of b; the smaller its value the more extended is the
region of D̃−1 scaling.

Because the surface capacitance depends on the mean-
field solution, the fluctuation correction to the free energy
and the corresponding disjoining pressure also depend on
the surface dissociation energy, as can be discerned from
fig. 3(a). This is very different from the standard vdW
interactions that do not depend on the mean-field solu-
tion, at least in the standard DLVO formulation [3]. The
scaling of the fluctuation part of the interaction pressure,
fig. 3(b), shows a robust value of the scaling exponent close
to −3, close to its value for the case of a counterion-only
Coulomb fluid between two surfaces with fixed charges,
where the fluctuation disjoining pressure scales exactly as
∼ ln D×D−3, see ref. [6] for details. The exact value of the
scaling exponent in the charge-regulated case, however,
depends on the value of the surface interaction parameter
b. Since the dielectric mismatch in this case is not zero,
the monopolar and vdW dipolar fluctuation interactions,

stemming from the surface capacitance and the dielectric
mismatch respectively, are always mixed together and can
not be disentangled in the separation dependence of the
fluctuation pressure.

Adding the mean-field and the fluctuation contribution
together, fig. 4, we note that for large values of the surface
dissociation energy, the fluctuation contribution becomes
dominant, a simple consequence of the fact that the mean
field vanishes while the fluctuation part remains finite.
While in general the fluctuation part is always subdomi-
nant to the mean-field solution, in this case the matters
are a bit more complicated as the charge regulation can
wipe out the mean field entirely but not the fluctuation
part. The fluctuation disjoining pressure for a vanishing
mean field again depends crucially on the presence of the
dielectric mismatch at the bounding surfaces and does not
necessarily coincide with the standard vdW interaction.
In fact for the case of complete dielectric homogeneity,
Δ = 0 see fig. 5, the interaction pressure scaling expo-
nent is in general smaller than for Δ �= 0. Asymptotically
for small separations in fact it approaches one, just as for
the KS interaction. For larger separations it tends to a
larger value but does not approach −3 as the fluctuations
it corresponds to, being due to the presence of counterions
between the surfaces, are never purely dipolar.

Finally, in order to get an idea about the strength of
the attractive interaction we compare the fluctuation dis-
joining pressure p2 with the pure van der Waals pressure
given as pvdW = −H(Δ)/12πD3, see ref. [3], where H(Δ)
is a Hamaker coefficient, which for illustration purposes we
chose to be 4.3 zJ [29]. We choose a large dielectric inho-
mogeneity (Δ = 0.95), and a separation between the sur-
faces of 1 nm (D = 1nm), bearing maximal surface charge
σ0 = 0.5e0/nm2. With the given set of parameters, we cal-
culate the fluctuation disjoining pressure pb=0 correspond-



Eur. Phys. J. E (2014) 37: 49 Page 9 of 12

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�2

�1

0

1

2

3

D
�

p�
0

�
p�

2

Σ�Σ0

b�1

b�10

b�100

b�0.1

��0.5

��0.95

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�2

�1

0

1

2

D
�

p�
0

�
p�

2

Σ�Σ0

b�1

b�10

b�100

b�0.1

��1

��0.95

(b)

Fig. 4. Rescaled total disjoining pressure as a function of the rescaled surface separation plotted for different values of the
parameter b, fixed dielectric jump Δ = 0.95 and for the following values of the coupling parameter: (a) Ξ = 0.5; (b) Ξ = 1.
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Fig. 5. (a) Rescaled fluctuation disjoining pressure as a function of rescaled surface separation is plotted for different values of
the parameter b but without any dielectric jump, Δ = 0, and Ξ = 1. (b) The scaling exponent γ for the effective scaling of the
disjoining pressure with the intersurface separation is defined as p̃2 ∼ D̃γ . For small separations it approaches −1 asymptotically,
whereas for large separations it tends to a value close but not equal to −3.

ing to a maximal charge at the surfaces, and the fluctuat-
ing disjoining pressure pb=100, corresponding to the case
of electroneutral surfaces. One finds that for this specific
choice of parameters the fluctuating pressure is compa-
rable to the vdW disjoining pressure: pvdW = −1.1 atm
while pb=100 = −1.3 atm and pb=0 = −0.8 atm.

8 Conclusion

In this paper we derived a theory describing electrostatic
interactions between macromolecular surfaces bearing dis-
sociable charge groups immersed in an aqueous solution
of dissociated counterions. Introducing a surface free en-
ergy corresponding to a simple model of charge regulation,
and formulating it in a field-theoretic language, we derived
the mean-field solution which is related to the Ninham-
Parsegian charge regulation theory and also obtained an

exact solution for the second-order fluctuations around the
mean field. The fluctuation contribution to the total free
energy is related to vdW interactions but is fundamen-
tally modified by the presence of dissociable charges on
the bounding surfaces as well as the counterions dissolved
in the space between them.

While for the model discussed, containing an addi-
tional surface term usually not present in Coulomb fluids
with fixed charges on interacting surfaces, a weak-coupling
approximation can not be consistently defined, we proceed
from the observation that the saddle-point and the fluc-
tuations around the saddle-point can be defined for any
field action [6]. The range of validity of this approxima-
tion should eventually be ascertained once compared with
detailed simulations of the same microscopic model.

What our methodology also clearly identifies is the
monopolar nature of the fluctuation interactions between
charge-regulated surfaces that singles them out from the
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dipolar fluctuation interactions as is the case for vdW fluc-
tuation interactions. This sets the two types of interac-
tions fundamentally apart as the range and scaling char-
acteristics of the two are vastly different. It also emerges
quite straightforwardly that the two types of fluctuation
interactions are not additive but are fundamentally in-
tertwined and can only be decoupled in extreme limiting
cases of either no dielectric discontinuity or in the case of
no surface capacitance. More specific predictions regard-
ing the role of monopolar fluctuation interactions between
dissociable charge groups corresponding to deprotonated
and protonated molecular groups, as is the case for pro-
teins, will be forthcoming once the model considered is
generalized to include the intervening salt solution at a
set value of the solution pH.

Suffice it to say at this point that in an appropriate
limit our theory is related to the KS interactions known
to be relevant in the protein context. More importantly
though, it allows to consistently generalize the theory of
KS interactions, or indeed any electrostatic interaction
that presumes charge regulation, in such a way that one
can use advanced concepts and methods of the Coulomb
fluid theory to solve it approximately. In this way we
pave the way to new developments in the theory of KS
and related interactions that would not be conceivable
within their original theoretical framework [1,2]. The field-
theoretic framework in fact allows to formulate a single-
particle partition function which can be used as a proxy for
the strong-coupling approximation, also not consistently
defineable in the case where the field action contains addi-
tional surface terms, as in the model introduced here [6].
We are currently working to extend the present formula-
tion to the case of symmetric as well as asymmetric ionic
mixtures containing monovalent and polyvalent ions.
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Appendix A. Exact evaluation of the path
integral

The path integral in eq. (24) can be written in the
form [24]

Gp

(
δφ(Q, z1), δφ(Q, z2)

)
=

√
1
2π

exp
[
− 1

2

∫ d

−d

dz

∫ 1

0

dμR(z, z, μ)
]

× exp
[
− βεε0

2

(
δφ(Q, z2)f ′(z2) − δφ(Q, z1)f ′(z1)

)]
,

(A.1)

where f(z) is a solution of the equation of motion given
as

f̈ − μ

(
Q2 +

2α2

cos2 (αz)

)
f = 0, (A.2)

where f = f(z;μ). The Green’s function equation is

d2

dz2
Q(z, z′|μ)−μ

(
Q2+

2α2

cos2 (αz)

)
Q(z, z′|μ) = −δ(z−z′),

(A.3)
with Q(−d, z′|μ)=Q(d, z′|μ)=0. The resolvent R(z, z′|μ)
obeys the equation

d2

dz2
R(z, z′|μ) − μ

(
Q2 +

2α2

cos2 (αz)

)
R(z, z′|μ) =

δ(z − z′)
(
Q2 +

2α2

cos2 (αz)

)
, (A.4)

with R(−d, z′|μ) = R(d, z′|μ) = 0. We can see that the re-
solvent satisfies R(z, z′|μ) = −

(
Q2 + 2α2

cos2 (αz′)

)
Q(z, z′|μ).

The Green’s function Q(z, z′|μ) has the form

Q(z, z′|μ) =

{
g(z, μ)h(z′, μ)/Δ(μ), z < z′,

g(z′, μ)h(z, μ)/Δ(μ), z > z′,
(A.5)

where g(z, μ) and h(z, μ) are two linearly independent so-
lutions of eq. (A.2) satisfying the conditions

g(−d;μ) = h(d;μ) = 0 (A.6)

and

Δ(μ) = ġ(−d, μ)h(−d, μ) = −g(d, μ)ḣ(d, μ). (A.7)

The integration of the resolvent operator yields
∫ d

−d

R(z, z|μ)dz=−
∫ d

−d

(
Q2+

2α2

cos2 (αz)

)
Q(z, z|μ)dz =

[−1/Δ(μ)]
∫ d

−d

(
Q2 +

2α2

cos2 (αz)

)
g(z, μ)h(z, μ)dz.

(A.8)

Consider now the equation satisfied by g

g̈ − μ
(
Q2 +

2α2

cos2(αz)

)
g = 0 (A.9)

and differentiating it with respect to μ, we have

−
(

Q2 +
2α2

cos2(αz)

)
g = g̈μ + μ

(
Q2 +

2α2

cos2(αz)

)
gμ.

(A.10)
Inserting this into the resolvent integral and integrating
by parts, one can get

∫ d

−d

R(z, z|μ)dz = [−1/Δ(μ)]

×[ġμ(−d, μ)h(−d, μ) − ḣ(d, μ)gμ(d, μ)] =

−gμ(d, μ)/g(d, μ) − ġμ(−d, μ)/ġ(−d, μ), (A.11)
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from which it follows that

∫ 1

0

dμ

∫ d

−d

dzR(z, z|μ) = ln [g(d, μ)/ġ(−d, μ)]|10 =

ln[(g(d, 1)/ġ(−d, 1))(ġ(−d, 0)/g(d, 0))]. (A.12)

As g(d, 0)/ġ(−d, 0) = 2d = D, we have

exp

[
−1

2

∫ 1

0

dμ

∫ d

−d

dzR(z, z|μ)

]
= [Dġ(−d, 1)/g(d, 1)]

1
2 .

(A.13)
Now, the solution of the equation of motion is given as a
linear combination of the solutions g and h as

f(z, 1) = δφ2g(z, 1)/g(d, 1)+δφ1h(z, 1)/h(−d, 1), (A.14)

so the exponent in the propagator eq. (A.1) becomes

exp
[
− βεε0

2

(
δφ(Q, z2)f ′(z2) − δφ(Q, z1)f ′(z1)

)]
=

exp
[
− βεε0

2

(
δφ2(Q, d)

ġ(d, 1)
g(d, 1)

−2δφ(Q, d)δφ(Q,−d)
ġ(−d, 1)
g(d, 1)

−δφ2(Q,−d)
ḣ(−d, 1)
h(−d, 1)

)]
. (A.15)

Finally the propagator can be written as

Gp

(
δφ(Q,−d), δφ(Q, d)

)
=

√
Dġ(−d, 1)
2πg(d, 1)

exp
[
− βεε0

2

(
δφ2(Q, d)

ġ(d, 1)
g(d, 1)

−2δφ(Q, d)δφ(Q,−d)
ġ(−d, 1)
g(d, 1)

−δφ2(Q,−d)
ḣ(−d, 1)
h(−d, 1)

)]
. (A.16)

Solutions g(z, 1) and h(z, 1), which satisfy eq. (A.2) when
μ = 1 and boundary conditions eq. (A.6), are given as

g(z) =
sinh[Q(d + z)](Q2 cot[αd] + α2 tan[αz])

α(Q2 + α2)

+
αQ cosh[Q(d + z)](1 + cot[αd] tan[αz])

α(Q2 + α2)
,

h(z) =
sinh[Q(−d + z)](Q2 cot[αd] − α2 tan[αz])

α(Q2 + α2)

+
αQ cosh[Q(−d + z)](−1 + cot[αd] tan[αz])

α(Q2 + α2)
.

(A.17)

After inserting these solutions back into eq. (A.16), one
obtains the final result in the explicit form:

GQ

(
δφ

(
Q,−D

2

)
, δφ

(
Q,

D

2

))
=

√
A

2πB
× exp

[
−βεε0

2B

([
δφ2

(
Q,−D

2

)
+δφ2

(
Q,

D

2

)]
C

−2δφ

(
Q,−D

2

)
δφ

(
Q,

D

2

)
A

)]
, (A.18)

where z2 = D/2, z1 = −D/2 while A, B and C are defined
as

A = Q(α2 + Q2) cot2(αD/2);

B = 2αQ cosh(DQ) cot(αD/2)

+(α2 + Q2 cot2(αD/2)) sinh(DQ);

C = Q cosh(DQ)(2α2 + (α2 + Q2) cot2(αD/2))

+2α(α2 + Q2 + Q2 cos(αD)) csc(αD) sinh(DQ).
(A.19)
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