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We present a theoretical description of the effect of polyvalent ions on the interaction between
titratable macroions. The model system consists of two point-like macroions with dissociable sites,
immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a
dressed ion strong coupling theory, based on the decomposition of the asymmetric ionic mixture
into a weakly electrostatically coupled monovalent salt and into polyvalent ions that are strongly
electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as
fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, pH of the
solution, and salt concentration) through a simple charge regulation model. The approach presented,
yielding an effective polyvalent-ion mediated interaction between charge-regulated macroions at
various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker
interaction. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4952980]

I. INTRODUCTION

Charged colloidal particles such as proteins,1 surfactant
micelles and vesicles,2 and nanoparticles3 are seldom
describable as possessing a fixed charge or a fixed potential,
though this notion does not cease to be popular.4 A more
realistic point of view considers colloidal particles immersed
in an aqueous electrolyte solution as possessing ionizable
surface groups that respond to the local solution conditions.5,6

Formally this perspective is equivalent to the assumption
that one can characterize the chargeable surface of the
colloid particles with a specific free energy describing
the dissociation/association equilibrium of surface ionizable
groups or adsorption/desorption equilibrium of charged ions
from solution to the surface7 and is referred to as charge
regulation (CR). This concept was first introduced implicitly
by Linderstrom-Lang almost a century ago in the context
of pH titration of proteins8 and was later invoked through
“proton occupation variables” in the context of protein
charge-fluctuation interactions by Kirkwood and Shumaker
in the 1950s9,10 as well as in the context of dissociable
lipid membrane interactions by Ninham and Parsegian in the
1970s,11 based on the generalization of the boundary condition
within the Poisson-Boltzmann (PB) theory of electrostatic
interactions.12

The implementation details of the CR paradigm can vary.
Chemical dissociation equilibrium of surface binding sites
with the corresponding law of mass action was introduced
already in Ref. 11 and was later generalized in different
contexts.13–16 A surface-site partition function or indeed
a surface free energy model leads to the same basic
self-consistent boundary conditions for surface dissociation
equilibrium, but without an explicit connection with the law of
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mass action.7,17–27 The relationship between various boundary
conditions that can be derived was elucidated recently.23

Charge regulation has been invoked and widely applied
in the context of various colloidal systems: stability and
inter-surface forces due to the electrostatic double-layers,7,28

dissociation of amino acids and the corresponding electrostatic
protein-protein interactions,29,31–33 charge regulation of pro-
tein aggregates and viral shells,34 and of polyelectrolytes and
polyelectrolyte brushes,35–38 as well as charge regulation of
charged lipid membranes.39–41 Here, we specifically dedicate
ourselves to the problem of the connection between charge
regulation and electrostatic interactions between proteins in
ionic solutions.1,30 We recently showed how the Kirkwood-
Schumaker (KS) interaction9,10 follows directly from charge
regulation, based on different surface free energy models,19–21

and presented a theory of fluctuation interaction between
macroions subject to charge regulation, thereby generalizing
the KS perturbation approach.9,10

We formulated this generalized KS problem by decou-
pling the system composed of two charge-regulated macroions
and an intervening bathing ionic solution into two parts: the
solution part and the surface part.19–21 These were then treated
within separate approximation schemes. The solution part was
treated on the linearized weak-coupling Debye-Hückel (DH)
level,42 while the surface part was shown to be amenable to
an exact evaluation. This decomposition allowed us to derive
a closed-form expression for the total effective interaction
between macroions that we were able to connect with the
original KS expression. In fact, our generalized fluctuation-
mediated interaction reduces exactly to the KS result in the
limit of large separations between macroions and in fact
presents a one-loop (Gaussian fluctuation) correction to the
mean-field DH result. As such, it is only valid for a weakly
charged system, where the salt ions mediating the mean-field
as well as fluctuation interactions are electrostatically weakly
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coupled to the macroions. No such approximations were
necessary in a 1D model that can be evaluated exactly21 and
supports the conclusions based on the weak coupling (WC)
approximation.

We now change the perspective and consider a case
where the bathing solution contains not only weakly charged
monovalent salt ions but also polyvalent ions that are strongly
electrostatically coupled to the charged macroions, mediating
the interaction between them. A possible realization would
correspond to a mixture of multivalent ions in a bathing
solution of monovalent ions, a situation rather typical
in the context of e.g., semiflexible biopolymers, where
multivalent ions are believed to play a key role in their
condensation.43,44 With the presence of polyvalent ions in the
system, the WC paradigm in general breaks down and the
existence of KS interactions becomes dubious.42 However,
there exists a theory, the dressed ion theory, based on an
asymmetric treatment of the different components of the
bathing electrolyte solution, that would allow us to analyze the
effect of charge regulation of macroions also in the presence
of polyvalent salt ions in the bathing solution.43,44 It is based
on the fact that one can use the WC DH approach in order to
describe the monovalent salt ions, while a strong coupling
(SC) approach is preferable for the polyvalent ion part.
This combined weak-strong coupling approach43,44 effectively
leads to dressed interactions between polyvalent ions and
thus also affects the interactions mediated by polyvalent
counterions between two like charge-regulated macroions.
The ensuing effective interactions between macroions would
then correspond to a generalized KS interaction, mediated
by strongly coupled salt ions and not by weakly coupled
monovalent salt. This generalized KS interaction would
consequently also cease to be fluctuational in nature, i.e., of
the type proposed in the original work of Kirkwood and
Shumaker,9,10 but would show a different behavior stemming
from the polyvalent ion mediated interactions coupled to the
charge regulation response of the dissociation equilibrium at
the macroion surfaces.

Our approach as detailed below is composed of disjoined
parts brought together to describe this new type of generalized
KS interaction, and a short guided tour through the conceptual
and calculational flowchart is thus in order. The dissociable
surfaces of the two identical macroions, representing two pro-
teins with dissociable amino acids, are described with a charge-
regulation surface free energy that allows the effective charge
to vary between a positive and a negative maximal value. We
then contract the macroion to a point particle merely as a calcu-
lational device, since we can then disregard the angular distri-
bution of the dissociable groups along the surface, remaining
solely with the monopolar charge as the only characteristics of
the macroion. The bathing solution for the macroions, assum-
ing to be an ionic mixture of monovalent salt and polyvalent
ions, is then treated within the dressed ion theory, i.e., the
monovalent salt is described within the WC and the polyvalent
ions within the SC paradigm, an approximate approach that
has already proved valuable in other contexts.43,44 We then
further approximate the non-linear surface charge regulation
free energy with a Gaussian expansion proved to be a good
description on the WC level.19,20 Finally, we study the obtained

expressions for the effective generalized KS interaction be-
tween the macroions in the various parts of the parameter space
and comment on the results.

The dressed ion theory, as a variant of the SC theory,42

does not hold the same status as the original SC theory,
valid exactly for a counterion-only system in the limit of
large coupling constant.45–47 In fact the regime of validity of
this approach can be only checked against explicit-ion Monte
Carlo simulations, showing that the dressed ion theory can
indeed give quantitatively accurate results in a wide range of
realistic parameter values.43,44,48

II. GENERAL FORMALISM

A. Model

We study the system which consists of two equal titratable
macroions immersed in a bathing solution, itself composed
of a mixture of monovalent salt ions as well as polyvalent
ions of valency q, see Fig. 1. Two macroions, representing
for instance two titratable proteins in the context of a second
virial coefficient pair-interaction calculation, immersed in a
monovalent salt solution with a small admixture of multivalent
salt, are located at r1 and r2 so that their separation is equal
to |r1 − r2| = R. The macroions are assumed to be identical
with a radius of a/2 and can have either sign. Furthermore,
the macroions are charge-regulated with adsorption sites,
which can exchange a proton from the environment, and are
described with the lattice gas free energy, see below, with a
site number coefficient of α = 2. This implies that there are
twice as many proton adsorption/dissociation sites as there
are negative fixed charges. This allows the total charge of the
macroion to span negative as well as positive values, a basic
tenet of our charge regulation model.

The macroion charge is thus not fixed, but responds to the
local solution conditions. We also assume that the macroions
are “small” in the specific sense that the angular variation of the
local electrostatic potential along their surface is negligible.

FIG. 1. Schematic representation of the model: two charge regulated macro-
ions, representing two proteins with titratable surface groups, immersed in a
mixture of monovalent-polyvalent salt solution. The microscopic model (left)
shows the different types of ions and the surface dissociation equilibrium on
the surface of the macroion. The coarse-grained dressed ion model (right)
shows the effective DH potential (light colored corona) of the macroion as
well as the polyvalent solution ions. In a cylindrical coordinate system with
the z-axis connecting the two macroions, having its origin in the middle
between the macroions, the macroions are located at r1= (x, y,−R/2) and
r2= (x, y,R/2), respectively.
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This implies that we only deal with effective monopolar
fluctuations, disregarding the subdominant higher multipolar
fluctuations that would correspond to a generalization of
the full van der Waals interaction potential.49 The higher
multipolar KS interactions remain as a possible future topic
of our investigation.

B. Charge regulation

For charge-regulated titratable macroions we have
recently introduced several models,19,20 based on a charge
dissociation free energy that generalizes the law of mass action
charge-regulation approach of Ninham and Parsegian.11 In
these models the charge regulation is described by a surface
free energy fS(r) = fS(φ(r)) that depends on the surface
electrostatic potential φ(r). For each macroion the total charge
regulation free energy F[φ(r)] would thus be a functional of
the surface potential amount to

F[φ(r)] =

S

fS(φ(r))d2r, (1)

where S is the surface area of the macroion. At this point we
simplify matters by furthermore assuming that the macroions
are spherical and of vanishing radius, i.e., they are point
particles. Of course this approximation will only work
for sufficiently large separations between them and small
separation regime would need to be analyzed separately.
It will soon become clear why this type of approximation
simplifies the calculation substantially.

While the approximation of contracting the macroion to
a point particle is a convenient analytical device to make the
calculations tractable, it obviously entails some additional
limitations to their validity. The most severe one is the
disregard of non-spherically symmetric charge fluctuations,
or equivalently of fluctuating higher order multipoles. A
macroion of finite extension, with an angular distribution
of surface dissociable sites, will typically show fluctuating
monopoles, dipoles, etc., that depend on the local electrostatic
potential. The point-particle simplification retaining only
the monopolar fluctuations can be argued to be the most
important contribution in the large separation limit, while the
higher order multipoles are subdominant. In addition, higher
order multipoles—starting with the dipole—would invariably
couple the charge fluctuation interaction with the standard van
der Waals interaction.

In addition, the point macroion approximation disregards
the electrostatic interaction between dissociable groups,
as they are represented by a single point-like charge
regulated moiety. A finite size of the macroion with angular
dependence of the dissociation site distribution would bring
in also the electrostatic interactions between the sites
on the same macroion, which could furthermore lead to
potentially important new facets in the interaction between
two macroions. While this line of reasoning can certainly be
pursued, and will be in the future, it is important to have the
“baseline” point-macroion results first in order to assess the
importance of other contributions.

Assuming then that the macroion is located at (r0) and
has a vanishing radius a −→ 0, the integral of the dissociation

free energy over the surface of the macroion, Eq. (1), simply
gives a total dissociation energy of the point-like macroion
as a function of the local potential at the point r = r0. The
point-like approximation for the macroion therefore disregards
the angular variation of the local electrostatic potential along
the surface of the macroions and can describe only monopolar
charge regulation, while higher multipoles are ignored.

In the next step one needs to assume a model for
fS(φ(r)). We already invoked several models19,20 related to
the original Ninham-Parsegian model.11 Focusing on a simple
two-parameter model we introduce the following ansatz for a
charge regulated point-like macroion:20

F(φ(r0)) = lim
a→0


S

fS(φ(r))d2r

−→ −Ne0φ(r0) − αN kBT log
(
1 + be−βe0φ(r0)

)
, (2)

where φ(r0) is now the local electrostatic potential at the
position of the ion, while N and α are two parameters
characterizing the dissociation process. The site number
coefficient α quantifies the number of dissociation sites,
and log b = βµS incorporates the free energy of charge
dissociation µS.

In the case of protonation of the titratable surface charge, it
furthermore follows that log b = log 10(pH − pK), where pK
is the dissociation constant and pH = − log[H+] is the proton
concentration in the bulk, differing from the local value of pH
at the dissociation site.19,20 It is straightforward to see that the
free energy Eq. (2) is composed of the electrostatic energy of
N fixed negatively charged sites with the total charge −Ne0
and αN lattice gas sites, that can be filled with adsorbing
protons from the solution; in fact 1 + eµ is nothing but the
lattice gas partition function for single occupation sites, with
zero energy for the empty site and µ for the filled site, while
log (1 + eµ) is just the corresponding grand canonical surface
pressure.

The form of the charge regulation free energy then allows
us to derive the effective charge of the charge-regulated
macroion as a function of the local electrostatic potential in
the form

e (φ) = ∂F(φ)
∂φ

, (3)

where F(φ) is the dissociation free energy Eq. (2) yielding

e (φ) = e0N
((
α

2
− 1

)
− α

2
tanh [− 1

2 (ln b − βe0φ)]
)
. (4)

The effective charge of the macroion then varies in the
interval−Ne0 < e(φ) < (α − 1)Ne0. Choosing the site number
coefficient to be α = 2, one thus remains with a symmetric
charge regulated macroion whose effective charge varies
within the interval −Ne0 < e(φ) < +Ne0. This is the generic
charge regulation model that we will consider as a simple
description of the protein charge regulation in what follows.

C. Field theory–general formalism

We proceed by writing the partition function through the
Hubbard-Stratonovich transform for the Coulomb potential as
explained in detail elsewhere.50 This leads to a field theory,
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where the classical partition function is represented as a
functional integral over the fluctuating electrostatic potential.
Two explicit exact limiting results are then obtainable from
this representation in the case of a counterion-only system:42

the saddle-point of this field-theory in fact corresponds to the
mean-field Poisson-Boltzmann (PB) approximation, while the
Gaussian fluctuation correction together with the PB theory
constitutes the WC theory; the first order virial expansion of
the partition function then constitutes the SC theory, unrelated
to the PB approximation. The latter can be further generalized
in the case of a mixed system by treating the monovalent salt
on the WC level while the polyvalent ions are described on
the SC level, i.e., their contribution to the partition function
is written as a second order virial expansion theory. This
approximation was dubbed the “dressed ion theory.”43,44

Assuming that the fluctuating electrostatic potential of
the macroions is φ(r = r1) = ϕ1 and of the other one is
φ(r = r2) = ϕ2, located at r1 and r2, respectively, the partition
function of the system within the dressed ion theory can be
derived in the field-theoretic form as19,20

Z =


dϕ1e−βF(ıϕ1)G(ϕ1, ϕ2)e−βF(ıϕ2)dϕ2, (5)

where F(ıϕ) is charge regulation free energy, Eq. (2), evaluated
at imaginary values of the fluctuating electrostatic potential,
and the field propagator or the Green function, giving the
probability of field configurations with φ(r = r1) = ϕ1 and
φ(r = r2) = ϕ2, is given by

G(ϕ1, ϕ2) =

D[ϕ(r)]e−βH [ϕ]δ(ϕ(r1) − ϕ1)δ(ϕ(r2) − ϕ2),

(6)

with the bulk field action,

− βH[ϕ] = −βH0[ϕ] + λc


dreiβqeϕ(r), (7)

where λc is the fugacity of the polyvalent ions with valency q
and H0[ϕ] is the DH field Hamiltonian

− βH0[ϕ] = 1
2 ϵϵ0


drdr′ϕ(r)u−1

DH(r,r′)ϕ(r′)
= 1

2 ϵϵ0
 ((∇ϕ(r))2 + κ2ϕ2(r))dr. (8)

Here we have assumed that the monovalent salt is weakly
coupled to the rest of the charges and can be treated on the
DH level. The inverse square of Debye length was introduced
as

κ2 = 4πℓBnb = 4πℓB(2n0 + qc0), (9)

with ℓB the Bjerrum length and obviously nb = 2n0 + qc0,
where n0 is the bulk concentration of the monovalent salt and
c0 is the bulk concentration of the multivalent ions, assumed
to originate in dissociation of a q:1 salt. The DH interaction
kernel u−1

DH(r,r′) implies a screened effective DH interaction
potential

uDH(r,r′) = 1
4πϵϵ0

e−κ |r−r′|

|r − r′| =
1

4πϵϵ0
ũDH(r,r′) (10)

between the polyvalent ions and the macroions. On this
level the polyvalent ions are thus treated explicitly, but
their interactions with the macroions are described with

a dressed electrolyte-mediated effective DH potential. By
explicit polyvalent ions we understand the fact that in the final
expressions the positions of the polyvalent ions still need to
be traced over, while the monovalent salt is present only via
its screening length.

The strong asymmetry in the system, implied by the
presence of polyvalent mobile ions, together with their small
concentration leads straightforwardly to the virial expansion
for their contribution to the partition function that yields to
the lowest order,43,44,48

e−βH [ϕ] = e−
1
2 β


drdr′ϕ(r)uDH (r,r′)ϕ(r′)

× (1 + λc


V

dr0eiβqeϕ(r0) + · · ·), (11)

furthermore implying that the propagator G(ϕ1, ϕ2) can be
decomposed into

G(ϕ1, ϕ2) = G0(ϕ1, ϕ2) + λc


V

dr0G1(ϕ1, ϕ2; r0). (12)

The propagator G1(ϕ1, ϕ2; r0) describes the field propagation
from macro-ion at r1 to macro-ion at r2 mediated by the
presence of the polyvalent ion q at r0 integrated over the
fluctuating potential at the positions of both macroions.
Formally this can be expressed as

G1(ϕ1, ϕ2; r0)
=


D[ϕ(r)]δ(ϕ(r1) − ϕ1)e−βH1[ϕ;r0]δ(ϕ(r2) − ϕ2), (13)

where the effective field action H1[ϕ; r0] can be decomposed
into the DH part due to the weakly coupled monovalent salt
ions and the coupling between fluctuating potential and the
polyvalent ion of valency q located at r0, i.e.,

βH1[ϕ; r0] = βH0[ϕ] − i β


ρ(r0)ϕ(r)dr. (14)

The last term describes the interaction with the polyvalent ion
with density,

ρ(r0) = qδ(r − r0).
This formal expression for the propagator G1(ϕ1, ϕ2; r0) is
thus identical to the partition function of two macroions at
positions r1,2 with set values of the fluctuating potential ϕ1,2
interacting via the DH interaction with an additional point
particle of charge qe0 at r0 at the positions of the two point-
like macroions. The functional integral in Eq. (13) simply
indicates the summation over all fluctuating potentials that
satisfy these constraints.

With these definitions the full dressed ion partition
function can then be cast into the sum of two disjoint
terms, one corresponding to two isolated polyvalent ions
interacting directly via DH potential and the other describing
the polyvalent ion mediated interaction,

Z =


dϕ1e−βF(ϕ1)

G0(ϕ1, ϕ2)

+ λc


V

dr0G1(ϕ1, ϕ2; r0)

e−βF(ϕ2)dϕ2 = Z0 + λcZ1,

(15)

with obvious definitions for the two terms in the sum.Z0 and
Z1 by definition then give the zero order and the first order
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polyvalent ion virial expansion contributions in the partition
function. Z0 has been already analyzed in Ref. 20 and Z1
will be evaluated below. The above decomposition of the full
partition functionZ = Z(R) is the essence of the dressed ion
theory and the corresponding free energy will describe the
interactions between the two macroions as a function of their
separation and model parameters.

D. Dressed ion theory and charge regulation

The first order virial expanded Green function
G1(ϕ1, ϕ2; r0) can be reduced to Gaussian functional integrals,
see Appendix, and can be derived in an explicit form

G1(ϕ1, ϕ2; r0) =
exp

� 1
2 Φ̃i(r0)G−1

i j(r1,r2)Φ̃ j(r0)�
det Gi j(r1,r2)

, (16)

where we introduced

Φi(r0) = iϕ1 + qe0uDH(r0,ri) (17)

and

Gi j(r1,r2) = kBT
(

a−1 uDH(r1,r2)
uDH(r1,r2) a−1

)
, (18)

for i, j = 1,2. From the above expressions it is clear that
the macroions interact with themselves as well as with
the polyvalent ion whose position within the system will
be finally integrated over. The terms with a−1 describe the
self-interaction of the macroions with diameter a, while the
interaction between the macroions as well as between the
macroions and the polyvalent ion are given by the DH screened
interaction potential. In a cylindrical coordinate system with
the z-axis connecting the two macroions, having its origin
in the middle between the macroions, themselves separated
by R, the position of the polyvalent ion with respect to both

macroions can be written as |r0 − r1| =

ρ2

0 + (R/2 + z0)2 and

|r0 − r2| =

ρ2

0 + (R/2 − z0)2, respectively.
Going back to the definition of the partition function Z1,

Eq. (15), one can finally write

Z1 = λc


V

dr0


dϕ1e−βF(ıϕ1)


G1(ϕ1, ϕ2)


e−βF(ıϕ2)dϕ2.

(19)

While the Green function G1(ϕ1, ϕ2) is Gaussian in the
two fields, the surface field action F(ıϕ) is not. Additional
considerations are therefore needed to proceed. First we note,
as amply elucidated in Ref. 20, that an exact method of
evaluation of Z1 is available if one expands the surface field
action into a series, yielding

e−βF(ıϕ) = e−iβNe0ϕ(1 + beiβe0ϕ)2N

=

2N
n=0

*
,

2N
n
+
-

e−iβNe0ϕbneiβe0nϕ. (20)

While the above expansion, giving a sum over surface terms
linear in the fluctuating potential, could in principle be used
for a direct numerical evaluation of the partition function,
we have already shown19,20 that an additional approximation,
simplifying the calculation extensively, yields an accurate
result that compares well with the exact summation. This
further step relies on the Gaussian approximation for the
binomial coefficient in the above expansion,

lim
N≫1

*
,

2N
n
+
-
≃ 22N

√
πN

e−
(N−n)2

N , (21)

valid strictly in the limit of a large number of adsorption
sites, N ≫ 1. Introducing the auxiliary fields x1 = N − n1 and
x2 = N − n2, summation in Eq. (20) can thus be replaced with
an integration, so that the partition function assumes a much
simplified and easily calculable form

Z1 = λc


V

dr0


dϕ1dϕ2


dx1dx2

es(q2;r1,r2)+ln 10 (pH−pK)(x1+x2)−
x2

1
N −

x2
2

N
det Gi j(r1,r2)

exp

− 1

2
ϕiG−1

i j(r1,r2)ϕ j + ıβe0ϕi(−xi + qyi)

.

(22)

Here the effective interaction matrix Gi j(r1,r2) has been already defined in Eq. (18), while G−1
i j(r1,r2) is its matrix inverse. In

addition we introduced two additional auxiliary fields with no other role but to make the notation more compact,

y1 =
a2

1 − a2

R2 e−2κR

(
1
a

ũDH(r0,r1) − e−κR

R
ũDH(r0,r2)

)
(23)

and

y2 =
a2

1 − a2

R2 e−2κR

(
e−κR

R
ũDH(r0,r1) − 1

a
ũDH(r0,r2)

)
. (24)

The effective self-energy of the polyvalent ion, s(q2; r1,r2), mediated by both macroions, is proportional to the square of the
polyvalent ion charge and is given by

s(q2; r1,r2) = 1
2

q2 lBa

1 − a2

R2 e−2κR
×

(
ũ2
DH(r0,r1) + ũ2

DH(r0,r2) − 2
a
R

e−κRũDH(r0,r1)ũDH(r0,r2)
)
. (25)
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After integrating out the xi-auxiliary fields and the fluctuating potentials of the two macroions, ϕ1, ϕ2, one obtains the final result
in the form of an integration over the position of the polyvalent ion,

Z1 =Z0λc


V

dr0 × exp


qℓBN(pH − pK) ln 10 (ũDH(r0,r1) + ũDH(r0,r2))
2 + NlB 1

a
[1 + a

R
e−κR]



× exp


1
2

q2ℓ2
B

(
C11ũ2

DH(r0,r1) + C22ũ2
DH(r0,r2) − 2C12ũDH(r0,r1)ũDH(r0,r2)

)
, (26)

where Z0 is the partition function of a system of two isolated
charge-regulated macroions on the WC approximation level,
already derived within the context of the weakly coupled
macroions in monovalent salt solution19,20 and given by

Z0 =

exp


N [(pH−pK) ln 10]2
2+NlB

1
a [1+ a

R e−κR]



4
N2 +

2
N

lB
a
+

l2
B

a2 [1 − a2

R2 e−2κR]
. (27)

Above we also introduced the generalized self and mutual
capacitances as

C11 =C22 =

lB
a
+ 2

N(
lB
a
+ 2

N

)2
− e−2κR

R2/l2
B

;

C12 =

lBe−κR

R(
lB
a
+ 2

N

)2
− e−2κR

R2/l2
B

.

(28)

While they do not have the standard form of the capacitances,
since they both contain also contributions from mutual
interactions, in the limit of large separations between the
macroions they do reduce to the expected values. The
difference in the definition of capacitances is a consequence
of the fact that the dressed ion theory is not Gaussian as
far as the fluctuating potential is concerned, in contrast to

the WC case analyzed before,19,20 but is a non-linear SC
theory. Capacitance is a WC concept, pertaining to Gaussian
fluctuations and thus does not have a direct equivalent in the
SC theory.

We now write down the free energy difference between
the state where the two macroions are at a finite spacing R
and the state corresponding to two isolated macroions with
R −→ ∞. This SC free energy difference, Eq. (15), finally
assumes the form

βF = − ln[Z0] − λc
Z1

Z0
= F̃0 + c0F̃1. (29)

Here, in the grand canonical ensemble, the fugacity λc is
identical to polyvalent ion concentration in the bulk c0 and

F̃0 = − ln[Z0], (30)

where Z0 is defined in Eq. (27) and extensively analyzed in
Refs. 19 and 20. For the sake of completeness we nevertheless
write it down in an explicit form

F̃0 = −
N[(pH − pK) ln 10]2

2 + NlB 1
a
[1 + a

R
e−κR]

+ 1
2 ln

(
1 + N lB

2a +
l2
B

(2a)2 N2[1 − a2

R2 e−2κR]
)
. (31)

On the other hand, F̃1, as defined above yields the final
expression

F̃1 =


V

dr0

(
exp


qN(pH − pK) ln 10 (uDH(r0,r1) + uDH(r0,r2))

2 + NlB 1
a
[1 + a

R
e−κR]



× exp


1
2

q2
(
C11u2

DH(r0,r1) + C22u2
DH(r0,r2) − 2C12uDH(r0,r1)uDH(r0,r2)

)
− 1

)
, (32)

with explicitly subtracted free energy value of two isolated
macroions with R −→ ∞. The structure of this complicated
expression is as follows: the first exponent corresponds to
the screened DH interactions of the q-valent polyvalent ion
with both macroions, whose charge is determined by the
bulk pH of the solution and is proportional to pH − pK,
while the second exponent corresponds to the electrostatic
self-interaction of the polyvalent ion in the presence of both
macroions. Finally the product of the two expressions needs to
be integrated over all the possible positions of the polyvalent
ion. The constants C11 and C22, Eq. (28), can be interpreted
as generalized self-capacitances and mutual capacitance C12

of the macroions, originating in the interaction between the
three charged particles. At the end, we subtracted the non-
interacting part of two isolated macroions proportional simply
to the volume of the system V .

In addition, we note that both F̃0(R) as well as F̃1(R)
contain parts which are due to polyion mediated interaction
between the macroions, proportional to qN(pH − pK), as
well as polyion self-interaction mediated by the macroions
and proportional to q2. The division into a “mean interaction”
and “fluctuations” is thus not possible due to the fact that
our theory is not of a mean-field type that would allow for
fluctuations around the mean-field configuration.
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In the case of absent charge regulation, where the
system consists of two macroions with fixed charge Ne0,
immersed in the same bathing solution with a strongly

coupled oppositely charged polyvalent ion, one can repeat
the above analysis and obtain the final free energy in the
form

F̃0 + c0F̃1 = N2lB

(
1
a
+

e−κR

R

)
− c0


V

dr0

(
exp


qN (uDH(r0,r1) + uDH(r0,r2))


− 1

)
. (33)

This is very instructive, since obviously without charge
regulation the self-interaction contributions proportional to q2

are absent, and the interaction energy reduces to the macroion-
macroion repulsion proportional to the charge squared, (Ne0)2,
and a contribution stemming from the interaction of macro-
ions with the polyvalent ion, proportional to the product of
both charges, q(Ne0). The above equations represent the final
result of the dressed ion theory for the interaction between
two identical point-like charge regulated macroions in the
presence of small concentrations of a polyvalent salt and they
have to be evaluated numerically.

III. RESULTS AND DISCUSSION

The effective interaction free energy between the charge-
regulated macroions is obtained directly from Eq. (27) after
performing the numerical integration over volume in Eq. (32).
We calculate the total interaction free energy, βF (R), as a
function of the separation between the macroions as

βF (R) = F̃0(R) + c0F̃1(R). (34)

We study the separation dependence of the force,

F̃(R̃) = −dF̃0(R̃)
dR̃

− c0
dF̃1(R̃)

dR̃
= F̃0(R̃) + F̃1(R̃), (35)

for different values of the parameters, differentiating in
particular the case of pH − pK = 0, i.e., the point of zero
charge (PZC), corresponding to macroions that are on the
average uncharged. In spite of this, the self-energy of the
polyvalent ion in this case still contains the non-vanishing
electrostatic self-interaction of the polyvalent ion mediated by
both charge regulated macroions.

We first analyze the term F̃1(R), obtained from Eq. (32),
which corresponds to the interaction force mediated by
the polyvalent q-ion only. Obviously, see Figure 2(a), this
interaction force leads to an attractive contribution to the
force at PZC, stemming solely from the self-interaction of
the polyvalent ion, mediated by the charge regulation of the
macroions, whose magnitude depends quadratically on q. The
screening effect of the monovalent salt is clearly discernible.
In summary, the polyvalent self-interaction at PZC yields an
attractive interaction that gets stronger and more long-ranged
on increase of the valency q of the polyvalent ion and on
decrease of the monovalent salt concentration n0. We should
note that this PZC polyvalent ion-mediated attraction in the
SC dressed ion approach is much stronger then the residual
WC (KS) attraction between charge regulated macroions in a
monovalent salt solution (black lines) Fig. 2(a).

We have not specified yet the sign of the q polyvalent ion.
In fact the product q(pH − pK) can have either sign. In Fig. 2
we thus study how the sign of polyvalent ions modifies the
polyvalent ion-mediated contribution to the total interaction
force. For both cases, q(pH − pK) positive, Fig. 2(b), and
for q(pH − pK) negative, Fig. 2(c), the interaction force
corresponds to attractive polyvalent ion-mediated forces but
of vastly different magnitude, being much larger in the former
case then in the latter. In both cases the attraction is again
larger in the lower screening regime (less n0, bigger q).

The total interaction force between the two titratable
macroions, F̃(R̃) = F̃0(R̃) + F̃1(R̃), is presented in Figs. 3
and 4. Obviously, the interaction force is attractive when
q(pH − pK) ≥ 0, due to the strongly coupled polyvalent
ion mediated interaction, and is in general screened by the
monovalent salt. Interestingly enough, in this case even the

FIG. 2. Interaction force contribution F̃1(R), calculated from Eq. (32), originating in the presence of polyvalent ions, for (a) pH− pK= 0; (b) pH− pK= 3; and
(c) pH− pK=−3. Blue lines (marked with an open circle), q = 3; red lines (marked with a filled circle), q = 4; black lines (marked with star), q = 0 (standing
for the attraction coming from Eq. (31)). Solid lines correspond n0= 150 mM, dashed n0= 300 mM, while dotted stand for n0= 500 mM in (b) and (c), while
in (a) monovalent salt concentration is chosen as n0= 100 mM solid lines and n0= 150 mM dashed lines. Macroions diameter a = 1 nm, number of adsorption
sites N = 7, and c0= 1 mM.
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FIG. 3. The total interaction force for pH− pK= 3 (solid lines) and
pH− pK=−3 (dashed lines), at fixed values of parameters as shown in
legend. Macroions of diameter a = 1 nm, with the number of adsorption sites
N = 7 and salt concentration c0= 1 mM.

interaction at small separations remains attractive and the bare
macroion repulsion is not observed. The reason for this is not
the polyion mediated electrostatic attraction but its size: in fact
for small separation the polyvalent counterion cannot enter
the space between the macroions and thus exerts an additional
effective osmotically generated attraction between them in
general akin to the depletion effect, already noticed in a
similar context for net-neutral surfaces at small separations.48

In the opposite case, when q(pH − pK) < 0, the repulsion in
general prevails, except at large separations where one can
detect a small residual attraction, possibly as a consequence of
an asymmetrical charge fluctuation due to charge regulation.
At smaller separations the bare repulsion between macroions
is reduced partly due to the charge regulation effects and
partly due to depletion effects. In Fig. 4 one can additionally
notice how the two cases, one with small pH − pK, immersed
in a solution of low salt concentration, and the other one with
large pH − pK, but immersed in concentrated salt solution,
have quite similar behavior, indicating that the valency of the
polyion and the screening of the monovalent salt somehow
act in parallel.

FIG. 4. Total interaction force between macroions with small pH− pK val-
ues at low salt concentration compared with the total interaction force in
concentrated salt solutions between macroions with large pH− pK. Dotted
lines correspond to q being a counterion, dashed q is coion, while solid lines
stand for q = 0. Macroions diameter a = 1 nm, number of adsorption sites
N = 7, and c0= 1 mM.

FIG. 5. The comparison of the total interaction force for non-regulated case
(black full line) with total regulated interaction force at q(pH− pK) < 0 (dot-
ted lines) and q(pH− pK) > 0 (dashed lines), at fixed values of parameters
as shown in legend. Macroions of diameter a = 1 nm, with the number of
adsorption sites N = 7 and salt concentration c0= 1 mM.

In Fig. 5 the total interaction force is now compared for
the two cases with and without charge regulation, Eqs. (32) and
(33), respectively. The charge non-regulated case corresponds
to fixed values of the macroion charge equal to Ne0. Here, one
can notice the important effect of charge regulation through
the polyvalent mediated interaction, ruled by the pH value,
which determines the overall strength of the charge regulation
interaction, that can then appear as either smaller or larger than
the one corresponding non-regulated interaction energy. This
non-monotonic effect of charge regulation hinges on the two
terms in the dressed ion free energy that respond differently
to titration of the macroion charges.

The dressed ion theory obviously predicts an attractive
interaction between charge regulated macroions, which can
sometimes dominate the overall interaction. This is different
from the WC case,19,20 where the fluctuation attraction, or the
KS interaction, is subdominant to the DH repulsion, except
close to the PZC, where it indeed becomes dominant. In
the SC dressed ion theory the attraction can clearly become
dominant either with or without the charge regulation, though
it can be stronger in the latter case and remains important for
any value of pH. The salt effect acts mostly to quench the
correlation polyvalent ion-mediated attraction and diminish
its spatial range.

The mesoscale model of charge regulation introduced
depends only on the difference pH − pK as a free parameter
and the value of pK should be taken from other considerations.
The physical dimensions of the interaction force can be
obtained by multiplying the dimensionless force with kBT/lB.
Since kBT is 4.114 pN nm and lB is 0.7 nm this then leads
to the physical force of the order ∼10 pN at nanometer-
ranged separations. The interaction force of that order of
magnitude is found, for example, in the experiments with
charge–regulated silica particles in the presence of multivalent
cations as described in Ref. 51.

The attraction between two identical charge regulated
macroions, seen in the dressed ion theory, has a different
origin from the WC KS interactions, where they are due
to thermal monopolar charge fluctuations around the mean-
field solution, enabled by the dissociation equilibrium of
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the surface of the macroion. In the dressed ion theory, the
polyvalent ion-mediated attraction could be seen as being
due to the electrostatic bridging interaction involving the
polyvalent ion. This should in general not be confused with
the s.c. salt bridging interaction sometimes invoked even in
weakly coupled monovalent salt solutions.

IV. CONCLUSION

The main goal of this research was to present a theoretical
description for the phenomenon of charge regulation as
affected by the presence of polyvalent ions. We formulated a
SC dressed ion theory, describing the electrostatic interactions
between macroions undergoing charge regulation processes,
in a mixture of monovalent-polyvalent salt solution. Using the
proper description of charge regulation, suitable for treating
it in the field-theoretic framework, the partition function is
derived in the form of a virial expansion valid for small
concentration of the polyvalent salt. The first term in such
expansion corresponds to the direct interaction between
titratable macroions in a monovalent salt solution, while
the first order correction stems from the interaction of the
polyvalent ion with each macroion. The asymmetry in the
ionic solution allowed us to decouple the system into the
monovalent salt component, addressed on a week coupling
level, while the polyvalent ion component was assumed to be
strongly coupled with macroions. In both cases, titration of
the macroions is treated on the Gaussian approximation level
involving an expansion of the exact charge regulation free
energy valid in general for highly charged macroions.

We have shown that the presence of polyvalent ion
brings about a strong attraction between two symmetrically
charged macroions. In the case when polyvalent ion acts
like a counterion, the attraction is big enough to overcome
repulsion between the macroions, while in the opposite
case, the repulsion between macroions turns into a small
attraction at large separations due to the asymmetric charge
fluctuations at macroions surface, induced by the presence
of the polyvalent salt. The polyvalent-ion mediated attraction
remains appreciable even at conditions, when macroions reach

the point of zero charge. From the derived expressions for the
free energy of interaction, it is clear that the polyvalent
ion-mediated attractive contribution stems from the charge-
induced charge type of the interaction, since it is proportional
to the square of the polyvalent ion charge. Our results show
that the polyvalent ion-mediated attraction is significantly
stronger then the KS interaction, obtained for the same system
described in the WC regime, i.e., without any polyvalent salt.
We therefore derived a generalized form of the KS interaction,
with the range of validity extended to the regime, where their
original KS derivation fails.

By calculating the interaction between point-like charge
regulated macroions in the WC and SC approximations, based
within the field representation of the partition function, we
have opened a new way to analyze the interactions between
proteins in ionic solutions. Our approach brings together the
charge regulation theory as well as the general WC and
SC dichotomy of the field representation of the partition
function of Coulomb fluids. The results seem interesting and
we will endeavor to compare them with detailed Monte Carlo
simulations in the near future.
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APPENDIX: FLUCTUATING ELECTROSTATIC
POTENTIAL PROPAGATOR

The propagator G1(ϕ1, ϕ2), describing how the electro-
static potential propagates from one macroion to another in
the presence of a polyvalent ion q at r0, is given as

G1(ϕ1, ϕ2) =

D[ϕ(r)]δ(ϕ(r1) − ϕ1)δ(ϕ(r2) − ϕ2)e− 1

2

drdr′ϕ(r)u−1

DH
(r,r′)ϕ(r′)+iβ 

V ρ(r)ϕ(r)dr (A1)

with ρ = qδ(r − r0). The delta function entering the above expression can be written via a Fourier integral representation
as

δ(ϕ(ri) − ϕi) =


dkeik(ϕ(ri)−ϕi) =


dke−ikϕi+ik

drρi(r)ϕ(r), (A2)

where ρi(r) = δ(r − r1), i = 1,2. One notes that this is an ordinary and not a functional Fourier integral representation, as the
propagator is defined for two vertex points in the real space. Our strategy now will be to first evaluate the functional integral
over the fluctuating electrostatic potential field ϕ(r) and then calculate the remaining integral over the auxiliary fields stemming
from the Fourier representation of the delta functions. Therefore it follows that
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G1(ϕ1, ϕ2) =


dk1e−ik1ϕ1


dk2e−ik2ϕ2


D[ϕ(r)]

× exp

− 1

2


drdr′ϕ(r)u−1

DH(r,r′)ϕ(r′) + i


[t(r) + βqe0δ(r − r0)]ϕ(r)d3r


(A3)

with the field t(r) denoting

t(r) = k1ρ1(r) + k2ρ2(r).
The above integral is a general Gaussian functional integral for the fluctuating potential ϕ(r) and can be evaluated explicitly and
exactly. The result is then an ordinary Gaussian integral over the variables k1 and k2.

One has in fact

δ(ϕ(r1) − ϕ1)δ(ϕ(r2) − ϕ2) =


dk1eik1(ϕ(r1)−ϕ1)


dk2eik2(ϕ(r2)−ϕ2) (A4)

after which one can derive

G1(ϕ1, ϕ2) = det u−1/2
DH (r,r′)


dk1e−ik1ϕ1


dk2e−ik2ϕ2e−

1
2

drdr′[t(r)+βqe0δ(r−r0)]uDH (r,r′)[t(r′)+βqe0δ(r′−r0)]

= det u−1/2
DH (r,r′)

 +∞

−∞

 +∞

−∞
dk1dk2e−ik1ϕ1−ik2ϕ2 × e−

1
2 k

2
1uDH (r1,r1)− 1

2 k
2
2uDH (r2,r2)−k1k2uDH (r1,r2)

× e−
1
2 β

2q2e2
0uDH (r0,r0)− 1

2 βqe0[2k1uDH (r0,r1)+2k2uDH (r0,r2)]. (A5)

The fluctuating electrostatics potential propagator has
thus been reduced to simple integrals in the variable
k = (k1, k2).

The vacuum fluctuations term, det u−1/2
DH (r,r′), as

well as the polyvalent ion bare self-interaction term
e−

1
2 β

2q2e2
0uDH (r0,r0), will be neglected since they do not depend

on the separation between the point-like macroions and thus
make no contribution to the interactions between them. If
the macroions had finite dimensions det u−1/2

DH (r,r′) would
describe the thermal Casimir (van der Waals) interactions
between them.

If one introduces a 2D wave-vector k, together with the
Einstein summation convention, this integral can be rewritten
simply as

G1(ϕ1, ϕ2) =


d2k e− f (k), (A6)

where we introduced the function f (k) as

f (k) = k j(iϕ j + βqe0uDH(r0,r j)) + 1
2 k juDH(r j,rl)kl . (A7)

Since this is a Gaussian integral, it can be evaluated explicitly
as

G1(ϕ1, ϕ2) = det u−1/2
DH (r,r′) exp


1
2 (iϕi + βqe0uDH(r0,ri)) u−1

DH(ri,r j) �iϕ j + βqe0uDH(r0,r j)�

. (A8)

The above expressions typically involve the Coulomb or the
DH self-interaction uDH(r,r), or indeed its inverse. This
quantity is not unambiguously defined because the field
representation does not describe the sizes of the charges
in a consistent description. However, one usually assumes that
the finite size can be approximately included as an ultraviolet
cutoff in the Fourier space, or indeed by assuming that one
has the Coulomb self-energy uDH(r,r) ∼ 1/4πεε0a, where a
is the radius of the charge; to be consistent one needs to take
κa −→ 0 in the DH expression, which gives its bare Coulomb
limit.

1A. Warshel, P. K. Sharma, M. Kato, and W. W. Parson, Biochim. Biophys.
Acta 1764, 1647-1676 (2006).

2W. M. Gelbart, A. Ben-Shaul, and D. Roux, Micelles, Membranes,
Microemulsions, and Monolayers, 1st ed. (Partially Ordered Systems)
(Springer, 1994).

3A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F.
Klaessig, V. Castranova, and M. Thompson, Nat. Mater. 8, 543-557 (2009).

4E. J. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic
Colloids (Elsevier, Amsterdam, 1948).

5S. H. Behrens and M. Borkovec, J. Phys. Chem. B 103, 2918-2928 (1999).
6S. H. Behrens and M. Borkovec, J. Chem. Phys. 111, 382-385 (1999).
7R. Podgornik and V. A. Parsegian, J. Chem. Phys. 99, 9491-9496 (1995).
8K. Linderstrom-Lang, C. R. Trav. Lab. Carlsberg. 15, 1-28 (1924).
9J. Kirkwood and J. B. Shumaker, Proc. Natl. Acad. Sci. U. S. A. 38, 855
(1952).

10J. Kirkwood and J. B. Shumaker, Proc. Natl. Acad. Sci. U. S. A. 38, 863
(1952).

11B. W. Ninham and V. A. Parsegian, J. Theor. Biol. 31, 405-428 (1971).
12T. Markovich, D. Andelman, and R. Podgornik, in Handbook of Lipid

Membranes, edited by C. Safynia and J. Raedler (Taylor & Francis, 2016),
Chap. 9.

13D. Chan, J. W. Perram, L. R. White, and T. W. Healy, J. Chem. Soc.,
Faraday Trans. 1 71, 1046-1057 (1975).

14D. C. Prieve and E. Ruckenstein, J. Theor. Biol. 56, 205-228 (1976).
15R. Pericet-Camara, G. Papastavrou, S. H. Behrens, and M. Borkovec, J. Phys.

Chem. B 108, 19467-19475 (2004).
16H. H. von Grunberg, J. Colloid Interface Sci. 219, 339-344 (1999).
17G. S. Longo, M. Olvera de la Cruz, and I. Szleifer, Soft Matter 8, 1344-1354

(2012).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  212.235.211.47 On: Thu, 02 Jun

2016 09:40:59

http://dx.doi.org/10.1016/j.bbapap.2006.08.007
http://dx.doi.org/10.1016/j.bbapap.2006.08.007
http://dx.doi.org/10.1038/nmat2442
http://dx.doi.org/10.1021/jp984099w
http://dx.doi.org/10.1063/1.479280
http://dx.doi.org/10.1021/j100023a029
http://dx.doi.org/10.1073/pnas.38.10.855
http://dx.doi.org/10.1073/pnas.38.10.863
http://dx.doi.org/10.1016/0022-5193(71)90019-1
http://dx.doi.org/10.1039/f19757101046
http://dx.doi.org/10.1039/f19757101046
http://dx.doi.org/10.1016/S0022-5193(76)80053-7
http://dx.doi.org/10.1021/jp0473063
http://dx.doi.org/10.1021/jp0473063
http://dx.doi.org/10.1006/jcis.1999.6487
http://dx.doi.org/10.1039/C1SM06708G


214901-11 N. Adžić and R. Podgornik J. Chem. Phys. 144, 214901 (2016)

18G. S. Longo, M. Olvera de la Cruz, and I. Szleifer, ACS Nano 7, 2693-2704
(2013).

19N. Adzic and R. Podgornik, Euro. Phys. J. E 37, 49 (2014).
20N. Adzic and R. Podgornik, Phys. Rev. E 91, 022715 (2015).
21A. C. Maggs and R. Podgornik, EPL 108, 68003 (2014).
22T. Markovich, D. Andelman, and R. Podgornik, Europhys. Lett. 106, 16002

(2014).
23T. Markovich, D. Andelman, and R. Podgornik, EPL 113, 26004 (2016).
24H. Diamant and D. Andelman, J. Phys. Chem. 100, 13732 (1996).
25P. M. Biesheuvel, J. Colloid Interface Sci. 257, 514-522 (2004).
26D. Ben-Yaakov, D. Andelman, D. Harries, and R. Podgornik, J. Phys.:

Condens. Matter 21, 424106 (2009).
27D. Ben-Yaakov, D. Andelman, R. Podgornik, and D. Harries, Curr. Opin.

Colloid Interface Sci. 16, 542-550 (2011).
28R. Podgornik and V. A. Parsegian, Chem. Phys. 154, 477-483 (1991).
29D. Leckband and S. Sivasankar, Colloids Surf., B 14, 83-97 (1999).
30D. Leckband and J. Israelachvili, Q. Rev. Biophys. 34, 105-267 (2001).
31M. Lund and B. Jonsson, Biochemistry 44, 5722 (2005).
32F. L. Barroso da Silva, M. Lund, B. Jonsson, and T. Åkesson, J. Phys.

Chem. B 110, 4459 (2006).
33F. L. Barroso da Silva and B. Jonsson, Soft Matter 5, 2862 (2009).
34R. J. Nap, A. L. Bozic, I. Szleifer, and R. Podgornik, Biophys. J. 107, 1970

(2014).
35R. R. Netz, J. Phys.: Condens. Matter 15, S239 (2003).
36I. Borukhov, D. Andelman, R. Borrega, M. Cloitre, L. Leibler, and H. Orland,

J. Phys. Chem. B 104, 11027 (2000).
37R. Kumar, B. G. Sumpter, and S. M. Kilbey, J. Chem. Phys. 136, 234901

(2012).

38R. Kumar, B. G. Sumpter, and S. M. Kilbey, Langmuir 27, 10615
(2011).

39W. B. S. de Lint, P. M. Biesheuvel, and H. Verweij, J. Colloid Interface Sci.
251, 131 (2002).

40C. Y. Leung, L. C. Palmer, S. Kewalramani, B. Qiao, S. I. Stupp, M. Olvera
de la Cruz, and M. J. Bedzyk, Proc. Natl. Acad. Sci. U. S. A. 110, 16309
(2013).

41G. Pabst, N. Kucerka, N. Mu-Ping, and J. Katsaras, Liposomes, Lipid Bi-
layers and Model Membranes: From Basic Research to Application (CRC
Press, New York, 2014).
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