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Market fragmentation and market consolidation: Multiple steady states
in systems of adaptive traders choosing where to trade
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Technological progress is leading to proliferation and diversification of trading venues, thus increasing the
relevance of the long-standing question of market fragmentation versus consolidation. To address this issue
quantitatively, we analyze systems of adaptive traders that choose where to trade based on their previous
experience. We demonstrate that only based on aggregate parameters about trading venues, such as the demand-
to-supply ratio, we can assess whether a population of traders will prefer fragmentation or specialization towards
a single venue. We investigate what conditions lead to market fragmentation for populations with a long memory
and analyze the stability and other properties of both fragmented and consolidated steady states. Finally, we
investigate the dynamics of populations with finite memory; when this memory is long the true long-time steady
states are consolidated but fragmented states are strongly metastable, dominating the behavior out to long times.
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I. INTRODUCTION

Whether a consolidated or a fragmented market is more
beneficial to a population of traders is a long-standing debate
[1–6]. In a consolidated or concentrated market, the majority
of trades occurs in one (or a few) as opposed to numerous
trading venues. With technological advances we have seen a
proliferation of trading venues such as online marketplaces.
Even more recently, alternative or dark trading venues have
appeared, e.g., dark pools. These are popular not least for
their lack of transparency, which makes them interesting for
trading large quantities of shares without strongly influencing
the price (see, e.g., [6,7]).

The emergence of collective behavior in systems of au-
tonomous agents is a research topic that has seen widespread
interest among physicists in the past couple of decades.
The main reason for this is the recognition that statistical
physics techniques, which contributed to the understanding
of macroscopic phenomena arising in large systems of in-
teracting microscopic entities, can be applied to a range of
biological, economic, and social systems. A large body of
work exists in the physics literature on collective effects in
socioeconomic systems [8,9], e.g., mass movement of people
[10,11], herd behavior of traders [12], and voting patterns
[13,14]. One of the most prominent examples is the minority
game, which continues to attract interest due to its simplicity
and its ability to reproduce at least “stylized” facts about
financial markets [15,16]; extensions of the model also predict
interesting grouping phenomena when multiple assets are
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available to agents [17]. In a similar vein, in this paper, we
investigate whether fragmentation and consolidation can arise
solely as a consequence of interactions at the level of the
agents, combined with individual adaptation.

Some studies of stylized models of market competitions
already exist, often pointing out the emergence of monopolies
whereby the majority of trades occurs in one trading venue.
Pagano [18] argued that when markets are identical (in terms
of their transaction costs), risk averse traders will concentrate
in a single market. On the other hand, when there is asym-
metry, fragmentation might arise with traders being clustered
based on the sizes of their desired transactions. Chowdhry
and Nanda [2] reached the same conclusion in a system with
asymmetrically informed traders and a general number of
markets.

Ellison et al. [19] and Shi et al. [20] also studied com-
petition among markets and the conditions under which such
competition can lead either to monopolies or to coexistence of
multiple markets. The authors named two significant effects in
a competition of double auction trading venues. One of them
is the positive size effect, i.e., agents prefer to trade in a market
where there are already many traders of the opposite type.
As an example, sellers like trading at markets where there
are many buyers as this gives them a wider choice of offers.
The authors of Refs. [19,20] also suggested the existence of
a negative size effect in a double auction market: Agents
will prefer being in the minority group of traders more often,
with, e.g., buyers benefiting from trading at a market where
there are not many other buyers (see, e.g., [21]). Ellison et al.
[19] pointed out that such negative size effects can enable the
coexistence of many markets. On the other hand, Shi et al. [20]
investigated which of the two effects is stronger and found that
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due to more substantial positive effects, a monopoly will be
the favored end state in many situations. The authors of [20]
argued that market coexistence remains a possibility when
there is strong market differentiation, especially for markets
that have different pricing policies: One market might charge
a fixed participation fee while another might take a profit fee.
A common feature of the studies mentioned above is that some
form of Nash equilibrium analysis was used, assuming perfect
information about the activity of all traders and maximization
of an underlying utility function for the agents.

The increased proportion of trades that take place in
dark trading venues—15% of the U.S. share market volume
was traded in dark pools in 2013 [22]—suggests increased
fragmentation at least between traditional and dark trading.
Calling for more research on reasons behind market frag-
mentation, Gomber et al. [23] suggested the heterogeneity of
traders and their needs as one of the main drivers of market
fragmentation. However, studies of similar effects such as the
emergence of market loyalty in fish markets [24], herding
[12], and grouping of agents in multiresource minority games
[17] show that fragmentationlike phenomena may also be
emergent. Nonetheless, existing models for such emergent
fragmentation often assume a considerable amount of struc-
ture, e.g., in the connectivity among agents, the information
available about the actions of other players, the rules of in-
teraction via the market mechanism, the asymmetry between
buyers and sellers, etc. In contrast, we study here a model
in which initially homogeneous agents adapt only to their
private information and show that even in such a system both
market fragmentation and consolidation can occur depending
on global system parameters.

Based on observations from the CAT tournament [25],
where the spontaneous emergence of long-lived market loyal-
ties was seen in complicated systems of adaptive markets and
traders, we hypothesize that the reason for fragmentation may
not lie in the intricacies of different market mechanisms or
trading strategies. Instead, we conjecture that fragmentation
is a collective phenomenon arising as a consequence of the
continuous adaptation of the individual agents to an evolving
system. To test this hypothesis, we developed a stylized
model of double auctions and adaptive traders [26,27] that
does indeed predict emergent fragmentation under minimal
assumptions on the complexity of market and trading mech-
anisms. The model also shows market consolidation under
some circumstances. Our focus in this study is to pin down
under what conditions fragmentation and consolidation occur
and what relative benefits they bring for the traders. As we
will see, the behavior of the model is remarkably rich in
spite of its simplicity, with multiple steady states coexist-
ing in the limit of long agent memory. For finite memory
length, this can lead to the existence of long-lived metastable
states that dominate before the true steady state is reached
eventually.

We start with a short description of the model [27] in
Sec. II and then proceed to the large memory limit analysis
of small systems with N = 2 and 4 agents in Sec. III. These
can be thought of as two- and four-player games. They are
convenient as we can easily track each trader’s adaptation.
At the same time they already reveal qualitative phenomena
related to those we find later in large systems, in particular

coordination at the same market (for N = 2) and onset of
fragmentation via pairwise coordination (for N = 4). Moving
on to the large population limit (N → ∞), we then first
analyze a population with homogeneous buying preferences in
Sec. IV A. We develop the relevant mathematical framework
and techniques of analysis here and then generalize the results
to systems with separate buyer and seller agent types. Finally,
we study the system dynamics in some detail to go beyond the
steady-state analysis in Sec. V.

Overall we follow a typical statistical physics philosophy
in using a model that reduces the underlying market choice
dynamics to its key ingredients, allowing us to obtain detailed
insights into the origins of the resulting collective behavior.
The analysis also relies significantly on statistical physics con-
cepts and methods: We focus mostly on the thermodynamic
limit of large agent populations, where we exploit the fact
that the behavior of N interacting agents for N → ∞ can be
captured by the dynamics of a single agent subject to self-
consistently determined population-level order parameters.
The main outcome from this physical point of view is the
emergence of multiple nontrivial steady states in the large
interacting nonequilibrium systems that we study.

II. MODEL

Here we summarize basic assumptions and properties of
the model introduced in [26,27], which is the foundation for
the analysis in this paper.

Learning. In the model, agents choose among the available
markets once in every trading period and submit their order to
the chosen market. A key assumption is that agents base their
decision of where to trade on their previous experience at the
different markets. Agents rely on the following reinforcement
rule, which is based on the experience-weighted attraction rule
[28,29] but neglects knowledge about the other markets (via
so-called fictitious payoffs):

Ai
m(n + 1)

=
{

(1 − r)Ai
m(n) + rSi

m(n) for m chosen in round n

(1 − r)Ai
m(n) otherwise.

(1)

Here Ai
m(n + 1) is agent i’s attraction to market m at trading

period n + 1 given the agent’s score or return Si
m(n) obtained

in the previous trading period (discussed below) and the
previous attraction Ai

m(n). To understand the role of r, one can
write down the resulting general expression for the attraction
at trading round n:

Ai
m(n) =

n−1∑
j=0

r(1 − r)n− jδmi ( j),mSi
m( j) + (1 − r)nAi

m(0),

where the Kronecker δ restricts updates to rounds where the
agent’s chosen market mi( j) is the one (m) being considered.
The factor r(1 − r)n− j in this expression is a weight that
decays exponentially into the past, becoming small once n − j
is of order 1/r. Thus each agent effectively averages scores
over a sliding window into the past of length approximately
equal to 1/r, so 1/r can be thought of as setting the length of
the agents’ memory.
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To choose a market at each trading round, an agent
translates the learned attractions into probabilities of choos-
ing each markets, using the multinomial logit or softmax
function

Pi
m(n) = exp

[
βAi

m(n)
]∑

m′ exp
[
βAi

m′ (n)
] . (2)

This aspect of the model is also in line with the experience-
weighted attraction literature [28,29]; β is the intensity of
choice and regulates how strongly the agents bias their prefer-
ences towards actions with high attractions. For β → ∞ the
agents choose the option with the highest attraction, while
for β → 0 they choose randomly and with equal probabilities
among all options.

We study agents whose choice of the type of trading order
(to buy or to sell) is not adaptive but rather set by a fixed
buying preferences pi

B. This assumption simplifies the anal-
ysis while still allowing both consolidation and fragmentation
behavior as shown previously [27].

Trading strategies. Agents do not have sophisticated
trading strategies in our model and are essentially zero-
intelligence traders [30–32]. Their orders to buy (bid) or sell
(ask) a single unit of the underlying good at a certain price
are independent of previous returns or other information.
We assume specifically that bids b and asks a are normally
distributed as a ∼ N (μa, σ

2
a ) and b ∼ N (μb, σ

2
b ), where we

fix μb > μa as in [27]. After each round of trading, each
agent receives a score, reflecting their payoff in the trade. This
depends on the global trading price set by a chosen market
m as well as the order the agent has submitted. The scores
of agents who do trade are assigned as in previous studies
[30,33]: buyers value paying less than they offered (b) and so
their score is S = b − π . Sellers value trading for more than
their ask a and so S = π − a is a reasonable model for their
payoff; in both cases π is the trading price.

Market mechanism. In the spirit of keeping the model as
simple as possible we consider double auction markets in
discrete time, counted as before in trading rounds. In every
round the global trading price is set by the market: Once all
orders have arrived, these are used to determine the average
bid 〈b〉 and average ask 〈a〉 and set the price

π = 〈a〉 + θ (〈b〉 − 〈a〉), (3)

where θ fixes the price closer to the average bid (θ > 0.5)
or the average ask (θ < 0.5), as in [26]. This parameter thus
represents the bias of the market towards buyers or sellers.
Once the trading price has been set, all bids below this price,
and all asks above it, are marked as invalid orders as they
cannot be executed at the current trading price. The remaining
orders are executed by randomly pairing buyers and sellers.
Excess buyers or sellers, i.e., those that cannot be paired,
receive zero score, as do the agents who submitted invalid
orders.

Note that traders are not informed about the market biases,
or the market mechanism in general. The only information
they have at their disposal to adapt their market preferences is
their personal score.

III. FINITE N

A. Two traders: Coordination

To understand collective effects in trading systems, we first
build up some intuition by looking at a very simple model
with only one buyer and one seller. The traders have a choice
between two markets with different biases. As the system
consists of only two agents and two markets, fragmentation
(or segregation as introduced previously [27]), in which a pop-
ulation will split into distinctive groups favoring one option,
is not feasible. However, we can investigate if long-lasting
loyalty to a single market emerges, which can signal market
consolidation.

To make trading possible the two agents effectively need
to coordinate, i.e., to submit orders to the same market. This
can lead to one of the agents earning less than they could have
done at the other market. One question of interest concerns the
conditions under which the agents prefer random decisions
of who will be a winner or loser in this manner, as opposed
to settling in these roles over longer periods of time. Thus
we will focus on the existence of coordination of traders and
investigate for which parameter settings agents develop strong
preferences for the same market. Intriguingly, this two-player
analysis ends up being largely similar to the work by Hanaki
et al. [34], where a two-agent case was likewise studied
as a first step to understanding collective effects. (In [34]
these concerned specialization behavior of agents searching
for parking spots.)

For the N = 2 analysis it is convenient to label the two
players as i = ±1 and similarly for the two markets. We use
the following specific parameter settings.

(i) Of the two players, player i = 1 always buys while
player i = −1 always sells (p1

B = 1 and p−1
B = 0).

(ii) Bids and asks are deterministic, i.e., b ∼ N (μb, 0)
and a ∼ N (μa, 0), with their difference being fixed to
μb − μa = 1.

(iii) The trading price at each market is set as defined in
[26], πm = 〈a〉 + θm(〈b〉 − 〈a〉).

(iv) We assume that the market biases are symmetric,
(θ1, θ−1) = (θ, 1 − θ ), where θ ∈ [0, 0.5].

The simplification over our previous work [26,27] of mak-
ing bids and asks deterministic allows us to focus solely on
the coordination of the market choices and does not change
the behavior of the system qualitatively. The deterministic
order prices then also make the trading prices deterministic:
πm = μa + θm(μb − μa) = μa + θm.

We can summarize the attraction update rule (1) as

Ai
m(n + 1) = (1 − r)Ai

m(n) + rSi
m(n),

with the convention that Si
m(n) = 0 if market m was not

chosen by agent i in round n. This generalized score is fully
determined by the market choice of the opposite player

Si
m(n) = δmi (n),mδm−i (n),m�i

m, (4)

where m(−)i(n) denotes the market of choice of the (co-)player
(−)i during trade n and

�i
m =

{
μb − πm = 1 − θm, i = 1
πm − μa = θm, i = −1 (5)

encodes the relevant nonzero score values that depend on the
type of market and agent. The logit assignment (2) by which
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agents choose a market m simplifies for N = 2 to

Pi
m(n) = 1

1 + exp[−βm�i(n)]
= σβ (m�i(n)),

where σβ (z) = [1 + exp(−βz)]−1 is the logistic sigmoid. The
choice probabilities do not depend on the attractions to the
two markets individually but only on their difference �i =
Ai

1 − Ai
−1. The latter is updated as

�i(n + 1) = Ai
1(n + 1) − Ai

−1(n + 1)

= rSi
1(n) + (1 − r)Ai

1(n)

− [
rSi

−1(n) + (1 − r)Ai
−1(n)

]
.

The stochastic variable �i(n + 1) thus depends on the choices
the agents make in trading round n, mi(n) and m−i(n), which
are drawn from distributions that depend on �i(n) and �−i(n).
This situation simplifies in the long memory limit r → 0,
where the attraction differences change sufficiently slowly to
average out stochastic fluctuations. One can then effectively
replace δmi (n),1 by its expected value σβ (�i(n)) (and similarly
for −i and other market choices) in the score (4). This gives

�i(n + 1) = r
[
σβ (�i(n))σβ (�−i(n))�i

1

− σβ (−�i(n))σβ (−�−i(n))�i
−1

]
+ (1 − r)�i(n),

which can be further simplified into

�i(n + 1) − �i(n)

r

= −�i(n) + [
σβ (�i(n))σβ (�−i(n))�i

1

− σβ (−�i(n))σβ (−�−i(n))�i
−1

]
.

The finite difference on the left-hand side becomes a deriva-
tive in the limit of small r if we switch to the rescaled time
t = nr, for which a unit time interval corresponds to 1/r
trading periods:

∂t�
i(t ) = −�i(t ) + [

σβ (�i(t ))σβ (�−i(t ))�i
1

− σβ (−�i(t ))σβ (−�−i(t ))�i
−1

]
.

A convenient change in variables that simplifies this pair of
differential equations is �1(t ) = ξ (t ) + ρ(t ) and �−1(t ) =
ξ (t ) − ρ(t ), which after some algebra and exploiting the
market symmetry gives

∂tξ (t ) = −ξ (t ) + 1

2

sinh[βξ (t )]

cosh[βξ (t )] + cosh[βρ(t )]
,

∂tρ(t ) = −ρ(t ) + 1 − 2θ

2

cosh[βξ (t )]

cosh[βξ (t )] + cosh[βρ(t )]
. (6)

Note that ξ = (�1 + �−1)/2 describes the average of the
attraction differences of the two agents, while ρ = (�1 −
�−1)/2 captures the deviation between them.

To understand the dynamics, we first consider its fixed
points, which need to satisfy

ξ ∗ = 1

2

sinh(βξ ∗)

cosh(βξ ∗) + cosh(βρ∗)
,

ρ∗ = 1 − 2θ

2

cosh(βξ ∗)

cosh(βξ ∗) + cosh(βρ∗)
. (7)

FIG. 1. Two-trader dynamics: flow diagrams (6) for (a) the in-
tensity of choice β = 2, with a unique fixed point where agents
decide largely randomly, and (b) β = 6, with two new fixed points
indicating where coordinated states appear. For the market bias used,
θ = 0.3, the critical intensity of choice where coordinated states
emerge is βc = 4.16.

The first of these equations is always satisfied if ξ ∗ = 0,
and in that case the equation for ρ∗ has a unique solution
whose sign depends on the sign of 1 − 2θ . When market 1
is favorable towards buyers (θ < 0.5), ρ∗ will be positive. As
�±1 = ±ρ∗, this can be interpreted as a state where buyers
and sellers learn which market is good for them and thus
have preferences for opposite markets. (Here �1 is positive,
meaning that player 1, the buyer, prefers market 1, which is
good for buyers.) As we will see shortly, this solution is only
stable for low intensities of choice where the agents’ market
choice dynamics remains largely random. The intuition for
the appearance of an instability with increasing β is that,
if agents were to follow through fully on their attractions
towards opposite markets, they would never get to trade.

The stability of the solution (ξ ∗ = 0, ρ∗) can be studied
by linearizing the dynamical equations (6), resulting in the
stability criterion

β

2

1

1 + cosh(βρ∗)
� 1.

Expressed in the original variables �i, the solution with
�1∗ + �−1∗ = 0 is stable as long as

β

2

1

1 + cosh[β(�1∗ − �−1∗)/2]
� 1. (8)

This stability condition is exactly the same as in Ref. [34]
because the learning dynamics we follow is essentially the
same and differs only in the details of the deterministic
returns.

We illustrate in Fig. 1 that for low intensities of choice,
where the stability criterion (8) is satisfied, the fixed point
discussed so far is the only one. At higher β the criterion
is violated and two new stable fixed points appear. Here the
agents’ attraction differences are of the same sign, i.e., they
prefer going to the same market. This happens even though
market 1 favors buyers while market −1 favors sellers.

At first sight it may seem puzzling that for high intensity
of choice, one of the agents decides to settle for less in
persistently choosing the market where the agent will be
awarded lower scores. However, this pattern of behavior in
fact maximizes the number of trades that take place. In the
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FIG. 2. Two traders: the (θ, β ) phase diagram and returns.
(a) Coordination and indecisiveness regions for different intensity of
choice and market biases (β and θ ). (b) Returns for different β in a
system with two fair markets θ = 0.5. (c) Returns for different β for
market bias θ = 0.3. At the critical βc = 4.16, the average return of
the two agents in the coordinated state is higher than it would be in
the continuation of the low-β fixed point (yellow dashed line), but
one of the agents needs to settle for less.

low-β regime, all four pairings of market choices are equally
probable, (m1, m−1) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)},
but only the first and the last enable trading. On the other
hand, in the high-β regime, when both agents persistently
choose the same market, they always get to trade, although
one of the traders always receives a lower return. For the
market parameters used in Fig. 1, (θ1, θ−1) = (0.3, 0.7), the
agent who settles for a lower score then receives a score of
0.3, while the other one obtains 0.7. This has to be compared
to the average payoff at low β, which by averaging over the
four market choice pairings is seen to be 1

4 (θ1 + θ−1) = 1
4 .

Hence both agents clearly earn more in the coordinated
regime than by choosing randomly.

We can find the domain of parameters θ and β where the
agents will coordinate [Fig. 2(a)] by starting from the regime
of agents choosing largely randomly and tracking where the
stability condition (8) is first violated as β is increased. As
in the case of large populations [27], we observe that βc

increases with increased market difference or bias. The sym-
metry breaking between markets that coordination requires is
therefore not driven by the difference between the markets. In
fact, the coordination threshold is lowest for a system with two
identical markets (θ = 0.5). One can rationalize this by saying
that the agents are happiest to coordinate at one of the markets
in this limit as neither needs to settle for less. We show average
returns for this setup—a pair of traders choosing between
two unbiased markets—as a function of β in Fig. 2(b). One
observes the expected average score of 1/4 for low β; as β

is increased, the agents effectively realize that coordination at
a single market enables more trades and consequently higher
average returns.

In Fig. 2(c) we show analogous results for the case of two
biased markets (θ = 0.3). We plot the individual agents’ pay-
offs and their average in the state where they coordinate at one
market and compare this to the payoff in the largely random
low-β state. As a reference we also plot the continuation of
the latter to larger β, where it is unstable. It is notable that
returns decrease with β on this branch: The more the agents
act on their preference for opposite markets, the less often
they manage to meet at the same market. This results in more
and more trading rounds where both receive a return of zero,
dragging down average returns.

By contrast, in the coordinated state the average return
increases with β, i.e., as the agents make more and more
definite choices. Interestingly, Fig. 2(c) shows that this in-
crease in the average return is accompanied by a growing
difference between the returns of the individual agents. These
payoff differences can occur in our model because agents
are unaware of the opposite player’s return, making decisions
only on the basis of their own scores. Borrowing terminology
from the large system limit [27], we will refer to the agent
with the higher return as return driven and the other as volume
driven. It is notable in Fig. 2(c) that there is a range of β

where the volume-driven agent receives an average return
that is lower than not only that of the return-oriented agent,
but also the hypothetical return both agents would achieve in
the (unstable) uncoordinated state; this regime grows as the
markets become more biased.

Intuitively, the return-driven player develops a strong pref-
erence for the market where the player can earn more. The
other agent will occasionally try the other market, but typi-
cally not get to trade there. As this results in a zero return,
the player is better off persisting with the coordinated choice,
which offers a low but at least nonzero return.

The two-agent systems studied so far can be mapped to
two-player games: the symmetric pure coordination game
when the markets are unbiased and the battle of the sexes
when markets are symmetrically biased. For these games
it is known that the two coordinated states correspond to
pure Nash equilibria (see, e.g., [35]). In the symmetric pure
coordination game, both of these are envy-free (i.e., both
agents earn the same), but not so in the battle of the sexes; this
is consistent with the differences we saw between unbiased
and biased markets, and the Nash equilibria correspond to
the β → ∞ limit of the coordinated states. There are also
mixed Nash equilibria. These correspond to the continuation
to β → ∞ of our uncoordinated state for the symmetric pure
coordination game, but not otherwise. A full correspondence
to Nash equilibria could be obtained by modifying the learn-
ing rule so that the attractions to markets that were not chosen
are kept unchanged. This can be interpreted as fictitious play
and is discussed in more detail in [36].

The results described above can be generalized to a pair
of traders who do not have strict buyer and seller roles but
instead decide to buy with some probability. We assume
symmetric preferences for buying, p1

B = 1 − p−1
B = pB. For

a trade to occur, agents now need to be at the same market and
need to submit opposite (buy and sell) orders. As the buying
preferences pi

B are fixed, this only changes �i
m from (5) to

�i
m = pi

B
(
1 − p−i

B
)
(1 − θm) + (

1 − pi
B
)
p−i
B θm. (9)
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FIG. 3. Two traders: coordination threshold as a function of θ

and pB . Note that the threshold is finite for all system parameters and
increases the more similar the agents become, i.e., as pB decreases
towards 0.5.

To see this, note that agent i receives a buyer payoff 1 − θm

when the agent assumes the role of a buyer (with prob pi
B)

while the opposite player acts as seller; agent i also receives a
seller payoff in the opposite configuration. Repeating the cal-
culation above, one then finds that the fixed point conditions
(7) both acquire a factor of p2

B + (1 − pB )2 on the right-hand
side, while the stability condition (8) is multiplied by the
same factor. Figure 3 shows contours of the resulting critical
βc for coordination. We note that the coordination threshold
increases as pB approaches 1/2: Agents without strong buy
and sell preferences need higher intensities of choice to benefit
from the coordinated state. This makes sense because agents
with pB closer to 1/2 derive a lower benefit from coordinating
at a market: As they need to assume buyer and seller roles,
trades at the same market happen only with some probability,
specifically p2

B + (1 − pB )2 in our setting, which approaches
1/2 for pB → 1/2.

B. Four traders: Onset of fragmentation

The two-player system studied above already exhibited an
interesting collective phenomenon: coordination at a market
to enable more trades, sometimes even to the detriment of
an individual agent. Turning to fragmentation, where other-
wise homogeneous agents nonetheless learn to adopt different
policies, the minimal system size where we can expect a
similar effect is N = 4. We first study two identical buyers
and two identical sellers, choosing agents with deterministic
buy and sell behavior (pi

B = 0 or 1) for simplicity. A system
with four agents is small enough so that we can still easily
write down deterministic equations for the evolution of market
attractions, but large enough for the first signals of fragmented
states to appear as agents can split across the markets in
pairs. We consider again symmetrically biased markets, θ1 =
1 − θ−1 = θ . As before, the market choice behavior of each
agent is determined by their market attraction difference �g,i.

Here the index g denotes the agent group (buyers or sellers),
while i labels agents within each group. For small r the
attraction differences again obey deterministic time evolution
equations that can be derived by following the reasoning in the
preceding section. The only difference lies in the calculation
of the return Sg,i

m (n) at a chosen market, which now depends
on the choices made by all other players:

Sg,i
m (n) = δmg,i (n),m

{
�

g
m

2
δmg,−i (n),m(δm−g,1(n),m + δm−g,−1(n),m)

+�g
m(1 − δmg,−i (n),m)(δm−g,1(n),m + δm−g,−1(n),m

− δm−g,1(n),mδm−g,−1(n),m)

}
,

In this expression, �
g
m denotes the deterministic part of the

return, which only depends on the chosen market m and the
agent type g, by analogy with the two-player case in Eq. (9).
The Kronecker δ symbols ensure that other agents are present
at the same market m. The first term describes the situation
where both agents of the same type go to a single market m;
the return is then zero if no agents of the opposite type are
at the same market, �

g
m if there are two, and �

g
m/2 if there is

only one (as our chosen agent then only has probability 1/2 of
being allowed to trade). On the other hand, when the second
player of the same type is not at the same market, the player
receives the full return if there is at least one trader of the
opposite group present. This is described by the second term.
The deterministic equations for r → 0 then take the form

∂t�
g,i(t ) = −�g,i(t ) +

1∑
m=−1

mSg,i
m (t ),

where Sg,i
m (t ) has the meaning of returns averaged over a long

time window so that the Kronecker δ’s in Sg,i
m (n) are replaced

with their expected values, exactly as in the derivation for two
players. We solve these equations numerically and find that
for low and intermediate intensity of choice β the behavior is
analogous to that for N = 2, showing a transition from a sin-
gle uncoordinated fixed point to two coordinated fixed points
as β increases; throughout this range the agents within each
group have identical market attractions. The novel feature of
the N = 4 system is that, when β is increased yet further, four
new stable states appear. We call these fragmented as each
group of agents now “fragments” into two individuals with
distinct, and essentially opposite, market preferences. Both
markets are then populated by a pair of traders, one from each
group. The fragmented fixed points appear in pairs (stable and
unstable fixed point) and for high enough value of β unstable
fragmented fixed points become partially fragmented, e.g.,
only one group splits across the markets, while the other group
specialize for one market. As these fixed points are not stable
we do not show this transition line in Fig. 4.

In Fig. 4 we show the two critical β lines (the coordination
and the fragmentation threshold) as a function of the market
bias θ , for the above scenario of four players with strict buy
and sell roles. The coordination line is very close to the one
for two players, which is included for comparison. Both the
coordination and fragmentation lines follow the same trend,
with the threshold in β increasing as θ departs from 0.5.
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FIG. 4. Four agents (two buyers and two sellers): phase diagram and returns. (a) Phase diagram showing steady states as a function of
intensity of choice β and market bias θ . Coordinated steady states exist to the right of the dark violet, solid line and fragmented steady states to
the right of the pink solid line with markers. (b) Returns against intensity of choice β for all agents and separately for return- and volume-driven
agents; market biases are (θ1, θ−1) = (0.3, 0.7). Dashed lines show coordinated states and solid lines fragmented states. The yellow dashed
line shows the average return in the uncoordinated steady state, continued into the instability region at high β.

Figure 4(b) shows return lines for different intensities of
choice β: Dashed lines correspond to coordinated states, while
solid lines are averages in the fragmented state. Note that the
difference in returns in the coordinate state is between groups
of agents, with all agents in a group either return driven or vol-
ume driven. In the fragmented states there is one return-driven
and one volume-driven agent in each group, on the other
hand. We note that in the large-β limit the returns achieved in
coordinated and fragmented states become identical. This is
because with either pattern of market choices, if these choices
are made deterministically, then all agents are guaranteed to
be able to trade. For finite β, returns in the coordinated state
are generally higher than for fragmentation.

Note that the four fragmented states arise because in each
agent group there are two ways to assign the two agents
to the two markets. For N agents, one therefore expects
{(N/2)!/[(N/4)!]2}2 such states. This number grows very
rapidly with N , while the number of coordinated states re-
mains at 2.

Finally, as in the analysis of the two-agent system, we
can generalize the results by allowing agents to assume the
role of buyer with some group-dependent probability p(g)

B . We
again take these probabilities as symmetric between groups,
p1
B = 1 − p−1

B = pB. The deterministic part �
g
m of the agents’

returns is then modified in a manner directly analogous to
Eq. (9), and one can determine the effect on the existence
of the various steady states. Figure 5 shows the results for
the symmetric markets (θ1, θ−1) = (0.3, 0.7) and symmetric
groups. As in the system with only two agents, when the
traders’ preferences for buying are similar (pB ≈ 1/2) they
have a weaker incentive to coordinate, resulting in a higher
coordination threshold for β (for the sake of clearer visualiza-
tion we use 1/β on the y axis). The same behavior is seen also
for the fragmentation threshold.

We indicate in Fig. 5 also the regime where a further type of
fixed point exists: partially fragmented states. In these states
there is a single agent whose market preference is the opposite

of that of the other three players, so only one agent group
is fragmented. These states evolve for high enough β out of
unstable fragmented states, which themselves appear in pairs
with the stable fragmented states at the onset of fragmentation.
As we will see below, partially fragmented states exist in
the large population limit too, though in a limited region of
parameter space. In the small system here they are unstable.
Intuitively this is likely to be due to the smaller number of
trades: In the large-β limit of a partially fragmented fixed
point, there will be at most one trade per trading period (only
two out of the three agents going to one market will be able to
trade), while both fragmented and coordinated states lead to
two trades.

FIG. 5. Four traders: phase diagram when buy and sell roles
are probabilistic. Coordination takes place below the dark violet
(solid) line and fragmentation below the pink line (solid line with
circles). These regions shrink when the difference in the buy and
sell preferences of the agents decreases (pB → 0.5), similarly to the
trend in the two-player system (dashed line). Below the orange line
partially fragmented fixed points exist, where one of the four agents
has a preference for the opposite market.
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IV. LARGE POPULATION LIMIT

Population with a fixed buying preference

In studying systems with a small number of agents we
have already encountered a rich phenomenology: coordination
of agents at a single market, pairwise fragmentation across
two markets, and even some mixed states where one group
fragments while the other specializes in trading at a single
market. We now complement and generalize these results by
investigating the possible types of steady state in the large
population limit. We start with a simple setting, a population
in which all agents have identical preferences for buying
pi
B = pB∀i. The assumption of population homogeneity is a

strong one, but these traders still undergo fragmentation for
a broad range of parameters, while the system is simpler
to analyze. Thus it is a useful prelude to the analysis of a
population consisting of two or more groups with distinct
buying preferences.

To describe the steady states of such an initially homoge-
neous agent population we follow the distribution of attrac-
tion differences (�i = Ai

1 − Ai
2) across the population [27].

The state of each market m enters via the probability with
which buy (B) and sell (S) orders are executed successfully
[27,37]:

TBm = min

(
1,

QSm

QBmDm

)
,

TSm = min

(
1,

QBmDm

QSm

)
. (10)

Here the factors QB,Sm are the probabilities for submitted buy
or sell orders to be valid, i.e., on the right side of the trading
price (the explicit expressions are given in Appendix A). Note
that, whereas for small systems we simplified to deterministic
order prices, we return here to the full model where bids b
and asks a are stochastic and the trading price is calculated
as in Eq. (3). [As explained in Sec. II, we choose Gaus-
sian distributions for bids and asks, a ∼ N (μa, σ

2
a ) and b ∼

N (μb, σ
2
b ); for numerical evaluations we set μb − μa = 1 and

σa = σb = 1.] The Dm are demand-to-supply ratios, defined
as the number of buyers over the number of sellers at market
m. For small r, the attraction difference distribution evolves
according to a Fokker-Planck equation

∂t P(�|pB, Tγ ) = −∂�[M1(�|pB, Tγ )P(�|pB, Tγ )]

+ r

2
∂2
�[M2(�|pB, Tγ )P(�|pB, Tγ )], (11)

where the drift M1 and diffusion M2 both depend on the
buying preference of the agents and on the four trading
probabilities Tγ . [We use γ = (τ, m) as the generic label for a
combination of order type τ = B,S and market choice m.]
The drift term is (see Appendix A for details and for the
explicit expression of the return distribution from which 〈Sγ 〉
is calculated)

M1(�|pB, Tγ ) =
1∑

m=−1

∑
τ∈{B,S}

mpτ Tτm〈Sτm〉σβ (m�) − �,

(12)

where the sum runs over markets m and order types τ and we
use the convention pS = 1 − pB. The strength of the diffusion

FIG. 6. Critical intensities of choice as a function of market bi-
ases for (a) an indecisive population (pB = 0.5) and (b) a population
of decisive buyers (pB = 0.8).

term is

M2(�|pB, Tγ ) = �2 +
1∑

m=−1

∑
τ∈{B,S}

[
pτ Tτm

(〈
S2

τm

〉
− 2m�〈Sτm〉)]σβ (m�). (13)

The steady state of the Fokker-Planck equation is (see, e.g.,
[38])

P(�|pB, Tγ ) ∝ 1

M2(�|pB, Tγ )
exp

(
− f (�)

r

)
, (14)

where

f (�) = −2
∫ �

0
d�′ M1(�′|pB, Dm)

M2(�′|pB, Dm)
(15)

plays a role analogous to a free energy in thermodynamics.
When f (�) has a single minimum, P(�) will approach a
narrow peak at this location for r → 0 and we have an un-
fragmented state. Otherwise, as many peaks as there are local
minima in f (�) will appear, corresponding to a fragmented
state: Each peak represents a subgroup of agents following a
distinct market choice strategy.

Note that in the Fokker-Planck description, the market
order parameters Dm that determine the trading probabilities
Tγ have to be calculated self-consistently from P(�) [27,37].
The same self-consistency condition then also needs to hold
at a steady state. Initially we will treat the order parameters as
fixed exogenously however. Such a situation could arise if, for
example, our agents are just a very small fraction of the overall
trading cohort, with the latter fixing the demand-to-supply
ratio.

Fragmentation for r → 0

In Fig. 6 we show how the threshold value of the in-
tensity of choice depends on the market biases (θ1, θ−1)
for different agent populations, one indecisive (pB = 0.5)
and one made up of decisive buyers (pB = 0.8); for this
calculation we set the order parameters to their endoge-
nous value following the self-consistent procedure outlined
in (19). We see that for every pair of market biases there
is a finite threshold βc above which fragmentation sets
in. When agents are indecisive with regard to buying and
selling, the region where fragmentation occurs is greatest
when markets are identical or symmetrically biased. For
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FIG. 7. Steady-state attraction difference distributions of deci-
sive buyers (pB = 0.8). We compare steady states at β = 20 for
(a) two unbiased markets (θ1, θ−1) = (0.5, 0.5) and (b) two sym-
metrically biased markets (θ1, θ−1) = (0.3, 0.7), for r = 0.1 (dashed
dark violet line) and 0.05 (solid pink line). The distributions are
strongly and weakly fragmented, respectively: on the right, the
relative height of the lower peak decreases as r is reduced.

decisive buyers (pB = 0.8), on the other hand, the fragmen-
tation threshold is lowest when the markets are identical.
Intermediate values of pB provide a smooth interpolation
between these two situations.

To understand more closely the properties of the frag-
mented states, we show in Fig. 7 the steady-state distributions
of traders with pB = 0.8 when faced with the choice between
two unbiased or two symmetrically biased markets. To un-
derstand the trend with r, we show the distributions for two
different values of r in each case. As expected from (14), the
peak width decreases as approximately

√
r with decreasing

r, but in Fig. 7(b) we see that the relative peak heights also
depend on r. In fact, if the peaks are located at attraction
differences �1 and �2, then the peak height ratio can be
written as

P(�1|pB, Tγ )

P(�2|pB, Tγ )
= M2(�2|pB, Tγ )

M2(�1|pB, Tγ )
exp

(
− f (�2) − f (�1)

r

)
.

(16)

This ratio can stay finite for r → 0 only when

f (�1) = f (�2), (17)

and we call this situation strong fragmentation as it survives
even in the r → 0 limit. This is the situation in Fig. 7(a).
If the free energies at the two peaks are unequal, on the
other hand, one continues to have two peaks in P(�) for any
nonzero r but the height of one peak decreases (exponentially
in 1/r) as r goes to zero. We call this behavior, which is
illustrated in Fig. 7(b), weak fragmentation because the lower
peak may become unobservably small for low r; in the strict
limit r → 0, the distribution P(�) becomes unimodal again.
The strong-weak distinction as defined applies literally only to
this r → 0 limit; at nonzero r it becomes a crossover between
fragmented states where the emergent subgroups have roughly
even (strong) or very different (weak) sizes. At the weakly
fragmented state most of the trades happen at a single market
(increasingly so as r decreases); we relate this state to market
consolidation, and thus the question of fragmentation versus

consolidation becomes a question of strong versus weak frag-
mentation in our setup.

Now that we have a method for finding steady states and
classifying them, we return to the space of market order
parameters and investigate where fragmentation occurs. In
Fig. 8 we show where weakly (colored regions) and strongly
(solid lines inside these regions) fragmented states appear,
at a fixed intensity of choice β = 8.5. We compare again
indecisive (pB = 0.5) and decisive buyers (pB = 0.8), for
three different market setups. We first note that the weak frag-
mentation region encompasses a very wide range of market
conditions (order parameters Dm) for indecisive buyers, but
shrinks significantly when the agents have stronger prefer-
ences for buying. Looking at the dependence on market setup,
an obvious feature is that for two unbiased markets [shown
in Fig. 8(c)], equal demand-to-supply ratios (D1 = D−1 line)
produce strong fragmentation for both types of agents. This
makes sense as the markets are then identical both in their
setup θ1 = θ−1 and in the prevailing market conditions, mak-
ing it easy for groups of agents with opposite market pref-
erences to coexist. For the indecisive agents who will act as
buyers or sellers with equal probability, the same situation
arises when the markets have exactly opposite demand-to-
supply ratios (D1 = 1/D−1) and therefore still offer them
identical average returns.

With increasing market biases [Figs. 8(a) and 8(b)] the
picture obtained for two unbiased markets changes largely
smoothly, though note that for decisive buyers (top row) the
two crossing lines of strong fragmentation detach into two
separate lines [Fig. 8(b), top], with one eventually disappear-
ing out of range.

Market order parameters. So far we have looked at frag-
mentation behavior driven by exogenously set market condi-
tions (demand-to-supply ratios). We now return to our model
as originally set out, where only the adaptive agents we
describe trade at the two markets. This leads to the follow-
ing question: Will a population endogenously create market
conditions needed for its fragmentation?

For the case of traders with homogeneous buying prefer-
ences pB this question can be answered relatively straightfor-
wardly. If the steady-state distribution of attraction differences
is P(�|pB, Tγ ), then the fractions of the whole population
buying and selling at market m are

NBm = pB

∫
d� P(�|pB, Tγ )σβ (m�),

NSm = (1 − pB )
∫

d� P(�|pB, Tγ )σβ (m�). (18)

The demand-to-supply ratio then does not in fact depend on
the market preference distribution

Dm = NBm

NSm
= pB

1 − pB
(19)

and is fully determined by pB. In the space of market order
parameters in Fig. 8, this endogenous set of market conditions
is marked with a black dot. We see that, at high enough β,
the population of indecisive buyers fragments strongly when
the markets are unbiased or symmetrically biased, and one
can check that these results hold independently of the specific
market biases used in the figure. Decisive buyers, on the
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FIG. 8. Single population: steady-state types in the space of market order parameters (D1, D−1) for β = 8.5. Shown on top is the population
of decisive buyers (pB = 0.8) and on bottom the indecisive population (pB = 0.5) for (a) symmetrically biased markets (θ1, θ−1) = (0.3, 0.7),
(b) one unbiased and one biased market (θ1, θ−1) = (0.5, 0.7), and (c) two unbiased markets (θ1, θ−1) = (0.5, 0.5). Colored regions indicate
where weakly fragmented states exist (for r → 0). Solid lines inside these regions indicate strongly fragmented states.

other hand, fragment strongly only if the markets are equal
(the figure shows only θ = 0.5, but the statement is true for
general θ ). Otherwise weak fragmentation occurs, although
[see Fig. 8(c), top] when the markets are very different at a β

above that used in Fig. 8.
With these insights, it is worth revisiting Fig. 6. It shows

the existence of the fragmentation threshold βc for all market
biases, and we recall that this threshold is defined as the point
where P(�) first acquires two peaks. From what we have
seen above, we now understand that for most combinations
of market biases, the steady state one finds above βc is a
weakly fragmented one. The exceptions are the dark lines
in Fig. 6, which indicate equal (θ1 = θ−1) or symmetrically
biased (θ1 = 1 − θ−1) markets.

V. TWO-GROUP POPULATION

So far in our analysis of the large size limit of a homo-
geneous population of traders with buying preference pB, we
have shown how for any given pair of market order parameters
(D1, D−1) we can determine the population steady state. We
identified three possible types of steady states: unfragmented
(U), weakly fragmented (W), and strongly fragmented (S).
We now generalize the investigation to populations of agents
consisting of groups with different buying preferences. We
demonstrate the approach for the case of two groups of the
same size, but the principles are general and can be extended
to larger numbers of groups or different group sizes. We de-
note a steady state of a population consisting of two groups by

a pair of letters (X,X′). Here X, X′ ∈ {U, W, S} indicates the
type of steady state for each group, producing nine different
types of population steady states.

We can now find, in the space of market order parameters
(D1, D−1), the domains of different state types as we did in
Fig. 8. We can use the figure directly to read off the steady
states at β = 8.5 of a population of two groups with buying
preferences (p(1)

B , p(2)
B ) = (0.8, 0.5). For example, when the

market order parameters are (D1, D−1) = (5, 5) (the top right
corner of all the diagrams), the steady state of the two-group
population is (U,W) when the markets are symmetrically
biased or biased and unbiased (Fig. 8 left and center) and (S,S)
when both markets are unbiased (right diagrams). This simple
analysis can be extended to any number of groups because,
for market order parameters that are fixed exogenously, the
groups are independent.

Our primary interest, however, lies in the case of endoge-
nous market conditions where the agents we model capture
the entire trading population and thus define their own market
order parameters. In this case, we need to find the steady
states self-consistently. We have previously described a pro-
cedure for doing this, for nonzero r [27]: Starting from some
initial market order parameters (D1, D−1), one calculates the
steady states and updates (D1, D−1) iteratively, converging
eventually to a self-consistent set of order parameters. Here
we aim to get a complete picture of all possible steady states,
independently of initial conditions. To do this, we start from
the update equation for the market order parameters from
the iterative approach. These are simply the definitions of
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FIG. 9. Steady states of traders with decisive buy and sell preferences: order parameter diagrams. For a two-group system with (p(1)
B , p(2)

B ) =
(0.8, 0.2), each diagram shows the order parameter self-consistency lines (dashed black) and for each group the weak fragmentation region and
the strong fragmentation line; r = 0.001 throughout. (a) Single (U,U) solution with β = 1/0.31, (b) three (U,U) solutions with β = 1/0.29,
(c) one (S,S) and two (U,U) solutions with β = 1/0.265, (d) (U,W), (S,S), and (W,U) solutions with β = 1/0.245, and (e) (W,W), (S,S),
and (W,W) solutions with β = 1/0.2. We use the following abbreviations for the steady state of each group: U, unfragmented; W, weakly
fragmented; and S, strongly fragmented.

the market order parameters (18) and (19) extended to two groups:

D′
m = N (1)

Bm + N (2)
Bm

N (1)
Sm + N (2)

Sm

= p(1)
B

∫
d�σβ (m�)P

(
�|p(1)

B , Tγ

) + p(2)
B

∫
d�σβ (m�)P

(
�|p(2)

B , Tγ

)(
1 − p(1)

B
) ∫

d�σβ (m�)P
(
�|p(1)

B , Tγ

) + (
1 − p(2)

B
) ∫

d�σβ (m�)P
(
�|p(2)

B , Tγ

) . (20)

We can now define, in the market order parameter space,
the two loci where D′

1 = D1 and D′
−1 = D−1, respectively,

meaning that one of the order parameters is already self-
consistent. The intersection of these loci (two lines, for our
case of two markets) then gives us all the self-consistent sets
of market order parameters. To distinguish weak and strong
fragmentation, the limit r → 0 ought to be taken. To avoid
numerical issues we use here instead a small nonzero r to
determine the attraction difference distributions P(�|p(g)

B , Tγ )
from which the D′

m are calculated. In most of what follows
we focus on symmetric market setups (θ1 = 1 − θ−1) and
symmetric agent buying preferences (p(1)

B = 1 − p(2)
B = pB).

To avoid having too many parameters to vary, we will fix
the market biases to the default values (θ1, θ−1) = (0.3, 0.7)
unless stated otherwise.

A. Transitions in populations of decisive and indecisive traders

As shown in previous sections, the intensity of choice β

is a crucial parameter determining whether the steady state
in a system is fragmented or consolidated. Here we build
upon this analysis by investigating how the nature of steady
states changes as β is increased. We start this section with

examples of steady states of a population with decisive traders
(p(1)

B , p(2)
B ) = (0.8, 0.2) as well as one with largely indecisive

traders (p(1)
B , p(2)

B ) = (0.55, 0.45). We then generalize these
results to a full phase diagram for the r → 0 limit, giving the
number and type of steady states as a function of the intensity
of choice β and the buying preference pB.

1. Decisive traders

In Fig. 9 we show, for a series of different β, the market
order parameter space (D1, D−1) with the weak fragmentation
region and the strong fragmentation line marked for both
groups of a population with (p(1)

B , p(2)
B ) = (0.8, 0.2). The or-

der parameter self-consistency lines are also shown.
In Fig. 9(a) we show the low-β regime (β = 1/0.31), just

before the onset of fragmentation. Note that for this β, the
steady states of both groups are unfragmented across the
entire range of market order parameters shown. The unique
intersection of the D′

m = Dm loci identifies a single steady
state of type (U,U). Figure 9(b) shows a just slightly increased
β = 1/0.29 where most market order parameters settings still
give unfragmented states but there are now three intersections
of the self-consistency loci, giving as many (U,U) steady
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states. In the steady state that is a continuation of the low-β
solution the agents show only mild preferences among the
markets, with buyers slightly preferring the market that gives
higher returns for buyers and similarly for sellers. The other
two unfragmented solutions correspond to coordination at one
of the two markets so that overall the situation is similar to the
one we saw for N = 2 and N = 4.

Increasing β further [Fig. 9(c)], one crosses the threshold
(βc ≈ 1/0.28 here) where one of the unfragmented solutions
first fragments; the continuation of the low-β state is now
in the strongly fragmented domain of both groups, while
the other two steady states remain unfragmented. Note that
since the weak fragmentation regions surround the strong
fragmentation lines for both agent groups, there must in
fact be a narrow range of slightly-lower-β values where the
fragmentation is weak: The low-β solution must change from
(U,U) through (W,W) to (S,S) as β increases.

In Figs. 9(d) and 9(e) one observes that with increasing β

the fragmentation regions keep growing. This results in the
two unfragmented (U,U) solutions changing first into (U,W)
and finally (W,W).

We note that inferences about stability from diagrams
like Fig. 9 are in general unwarranted; for example, the
initial pitchfork bifurcation from one to three (U,U) states in
Figs. 9(a) and 9(b) does not necessarily imply that the middle
solution is unstable. It would be unstable under repeated
updating from Dm to D′

m. However, Eq. (20) shows that this
is not the real dynamics but would correspond to a scenario
where the dynamics of the order parameters is slowed down
artificially so that agents always have time to equilibrate their
attraction difference distributions P(�|p(g)

B , Tγ ) to the current
order parameter values.

We highlight one further feature of Fig. 9: For small r
as used in the figure, the order parameter self-consistency
lines tend to follow segments of the strong segregation lines
before emerging on either side into a weak segregation region.
This can be understood by noting that the self-consistency
line for D1, for example, is the zero contour of the function
D′

1(D1, D−1) − D1 in the order parameter plane. This function
varies steeply as a strong segregation line is crossed, devel-
oping discontinuities that look like cliff edges for r → 0. A
contour line that hits such a cliff must follow the line of the
cliff before returning to the smooth parts of the landscape,
which is the effect we see in Fig. 9.

The cliff edges themselves arise because on a segregation
line, the free energy function f (�) in Eq. (16) has two minima
of equal height. A small change of O(r) in D1 or D−1 will
cause similar small changes in the height of these minima, but
from Eq. (16) this is enough to cause the weight ratio between
the two peaks in P(�) to shift by a factor of order unity.
Changes larger than this will transfer all weight from one
peak to the other and correspondingly modify D′

1 by a finite
amount. For r → 0 the required order parameter changes
become infinitesimal, leading to the cliff edge structure of
D′

1 − D1 and analogously D′
−1 − D−1.

2. Indecisive traders

We now compare the results above with those for a
population consisting of two agent groups with only weak

preferences for buying and selling, (p(1)
B , p(2)

B ) = (0.55, 0.45).
The motivation for this comes from the fact that agents with
only mild buy and sell preferences should develop weaker
preferences for markets that offer higher returns for buyers or
sellers. They will also not be penalized much if only a single
group populates a market, as such an arrangement will still
sustain a large number of trades.

In Fig. 10 we observe several differences compared to the
situation in Fig. 9 for decisive traders, most notably with
regard to the number of solutions. Specifically, as can just be
discerned from Fig. 10, on crossing the fragmentation thresh-
old four new states appear. These states are also different in
nature: They are partially fragmented in the sense that one
group of agents is strongly fragmented and thus retains a
bimodal distribution of attraction differences for r → 0 while
the other is either weakly fragmented or unfragmented. We
have seen a similar state in the systems with four agents,
although there it was unstable because it reduced the number
of possible trades. In the large population limit, having one
fragmented and one unfragmented group of agents still leaves
many possibilities for trading, especially for indecisive agents
where roughly half of each group of agents will probabilisti-
cally assume the role of buyer or seller in each trading round.
On the general grounds discussed above, the appearance of
the partially fragmented (U,S) states is expected to proceed
via (U,W) states, though again the β range where the latter
appear is numerically small.

When the intensity of choice β is increased beyond that in
Fig. 10(a), the low-β solution transitions from (U,U) to (W,W)
[Fig. 10(b)] and eventually (S,S) [Fig. 10(d)], i.e., both agent
groups fragment first weakly and then strongly. Comparing
the partially fragmented solutions in Figs. 10(b) and 10(c), we
see that they change from (U,S) to (W,S); finally two of them
merge with the uncoordinated (W,W) state into an (S,S) state.
The other two partially fragmented states eventually transition
into (W,W) states; as in the case of decisive traders, these
represent coordination of the agents at a single market.

B. The (β, pB ) phase diagram

We have observed both market consolidation and fragmen-
tation when a population is faced with a choice of two sym-
metric markets, depending on the different choice of system
parameters (pB, β ). We next vary these parameters system-
atically to construct a detailed phase diagram and study the
regions where one finds the various states that we described
above. The size of these regions then also gives an indication
of how typical the different scenarios are. We continue to
focus on symmetric markets with (θ1, θ−1) = (0.3, 0.7) but
note that calculations for other (symmetric) market settings
give qualitatively similar results. In Fig. 11 we show the phase
diagram in the space of intensity of choice β and group pref-
erence for buying pB ≡ p(1)

B . This diagram is the large popu-
lation analog of the diagram for four agents (N = 4) shown
in Fig. 5. There we had identified regions with states that
are unfragmented and indecisive (low β), unfragmented and
coordinated, fragmented, and partially fragmented. Broadly,
these types of states persist in the large population limit, but
they have additional structure that makes for a richer phase
diagram.

062309-12



MARKET FRAGMENTATION AND MARKET … PHYSICAL REVIEW E 99, 062309 (2019)

FIG. 10. Steady states of largely indecisive traders: order parameter diagrams. We show the behavior of largely indecisive traders
(p(1)

B , p(2)
B ) = (0.55, 0.45) for different intensities of choice β in the large memory limit, evaluated numerically for r = 0.00001: (a) β =

1/0.31, one unfragmented solution (U,U); (b) β = 1/0.285, one weakly fragmented (W,W) and four partially fragmented (U,S) states;
(c) β = 1/0.27 one weakly (W,W) and four partially fragmented (W,S) states; (d) β = 1/0.1, one strongly fragmented (S,S) and two partially
fragmented (W,S) states; and (e) β = 1/0.05, one strongly fragmented (S,S) and two weakly fragmented states (W,W).

To help visualize the structure of the phase diagram, we
show an additional version as an inset that has been distorted
to preserve the topology but make even small regions in
the phase diagram visible. Also, to avoid having too many
separate regions we do not distinguish in the diagram between
unfragmented and weakly fragmented states, which both have
distributions of market preferences that become unimodal for
r → 0. We label such states collectively V to separate them
from strongly fragmented states with their bimodal market
preference distributions. Two vertical dashed lines mark the
two scenarios of decisive and indecisive traders studied above
(see Figs. 9 and 10).

We now look in more detail at the structure of Fig. 11.
Crossing any line in the phase diagram changes either the
number of population solutions or the nature of the steady
state for one or both agent groups. We note that, due to the
symmetry of the system we consider, many of the changes for
the two groups happen simultaneously. In the inset, regions of
the parameter space are laid out according to the number of
solutions: five solutions on the left and three on the right, with
a single solution in the small-β region at the top.

The dark violet line in Fig. 11 is the line where the
multiplicity of states changes from 1 to 3 or 5. Looking at
the order parameter, self-consistency lines shows that this
transition takes place via a pitchfork bifurcation in the former
case and two symmetric saddle-node bifurcations in the latter.
The dark violet line is an analog of the line shown in the same
color in the phase diagram (Fig. 5) of the system with N = 4
players. The region of multiple solutions has grown for large

N , but the inverse critical intensity of choice 1/βc is still an
increasing function of pB.

As in Fig. 5, the pink line with circles in Fig. 11 marks the
appearance of a steady state where both groups are strongly
fragmented. We observe that the critical intensity of choice
where this happens diverges (1/β → 0) as pB → 0.5, i.e.,
the region of strong fragmentation shrinks as the difference
between the groups’ buying preferences diminishes. Further
lines in the phase diagram show where the solution multiplic-
ity changes directly from 3 to 5 (yellow line) and where partial
fragmentation occurs (green and orange line) as individual
solutions transition from (V,V) to (V,S). Note that in the
large population limit such partially fragmented states appear
only for populations with moderate preferences for buying, in
contrast to the system with N = 4 agents (Fig. 5) where they
exist for all pB.

We mark one further line (dashed pink) in the main graph
of Fig. 11, showing the transition within the small-β (V,V)
solution from the unfragmented (U,U) to the weakly frag-
mented (W,W) state. With this we make an explicit con-
nection to results reported previously (Fig. 7 in [27]) where
we investigated the appearance of (weak) fragmentation with
increasing intensity of choice. We note that for the system
of our first case study pB = 0.8 the thresholds for weak and
strong fragmentation almost overlap; the region of the weakly
fragmented indecisive state is very narrow for this choice of
parameters and in general for pB above approximately 0.7,
while it becomes larger for indecisive traders. The pink circle
on the y axis marks the end of the weak fragmentation line.
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FIG. 11. Types of steady states for two symmetric agent groups, shown in (β, pB ) space. Crossing each of the lines changes either the
number or the type of steady states. The inset shows the distorted but topologically equivalent diagram to show the phase diagram regions
more clearly. The dark violet and yellow lines show the change in solution multiplicity, the pink solid line with circles shows the strong
fragmentation, the pink dashed line shows the weak fragmentation of the uncoordinated low-β solution, the orange and green lines show the
partial fragmentation. Here V denotes a unimodal distribution of agents’ market preferences in the r → 0 limit, i.e., an unfragmented (U) or
weakly fragmented (W) steady state, and S denotes a strongly fragmented steady state.

It turns out that this is the strong fragmentation threshold of
the homogeneous population with even preference for buying
and selling (pB = 0.5), with the change from weak to strong
fragmentation caused by the additional symmetry between the
two groups for this value of pB.

Interestingly, there are two distinct regions in the phase di-
agram of Fig. 11 where we observe three (V,V) and two (V,S)
states, i.e., three unfragmented and two partially fragmented
solutions. It turns out that in the region at lower β (higher 1/β)
the partially fragmented solutions are coordinated, insofar
as both groups of agents have an overall preference for the
same market. For high β one has the opposite situation, and
it is those uncoordinated (V,S) solutions together with an
unfragmented (V,V) solution that then merge into a single
(S,S) state as pB is increased.

We note briefly that the various lines shown in Fig. 11 were
detected by solution tracking, e.g., by carefully varying pB
and β and tracking the number and type of solutions; further
details can be found in Appendix B. The tracking approach
is chosen as it is numerically faster and more reliable than
the finite-r procedure we used in previous figures, avoiding,
e.g., the numerical noise visible in the two loci in Fig. 10.
It is important to remember that the results only provide
information about the existence of steady states, not their
stability; the latter can be probed only using actual dynamics
as discussed below. Figure 11 also relates to fixed market
biases so trends with changes in these biases cannot be seen;
we have checked, however, that the overall structure of the
phase diagram remains intact as long as market biases are
symmetric. Quantitative trends were explored in our previous
work [27], where we saw that the fragmentation region shrinks
as markets become increasingly different.

In summary, the diagram in Fig. 11 shows that for systems
with two symmetric markets and two groups of traders with
symmetric buying preferences both fragmented and coordi-
nated (or consolidated) steady states exist across a substantial
range of values for the intensity of choice β. Single-market
dominance happens when the steady state is either unfrag-
mented or weakly or partially fragmented but coordinated:
The majority of trades then happens at a single market. On
the other hand, markets can coexist, receiving a roughly even
share of trades, when the steady state is strongly fragmented
or weakly or partially fragmented but uncoordinated. In the
former case both markets are visited by both groups, while in
the latter case an effective market and group loyalty appears.
In the following sections we analyze these different steady
states further, with regard to the average population returns
they produce and their stability in simulated systems with
finite N and r.

C. Average population returns

The phase diagram in Fig. 11 reveals a plethora of possible
steady states in the system of two markets and a large popula-
tion of traders, depending on the traders’ learning parameter
β and their propensity to act as buyers pB. We now investigate
whether these steady states induce differences in average
population returns as we saw in small systems, e.g., Figs. 2
and 4. We look at the average population return per trading
round, where we count also zero returns that arise from an
order being invalid or no trading partner being available.

In Fig. 12 we show average population returns for the two
scenarios of decisive [(p(1)

B , p(2)
B ) = (0.8, 0.2), Fig. 12(a)] and

indecisive [(p(1)
B , p(2)

B ) = (0.55, 0.45), Fig. 12(b)] traders. The
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FIG. 12. Average population returns for different steady states in the r → 0 limit. The yellow line shows the low-β steady state representing
uncoordinated population (dashed in the regime where it is no longer a bona fide steady state). The dashed dark violet line marks the
value of β where the multiplicity of solutions changes (see Fig. 11); at the dashed pink line strongly fragmented steady states first appear.
(a) Decisive population (p(1)

B , p(2)
B ) = (0.8, 0.2). The dark violet line shows the average population return for a coordinated unfragmented or

weakly fragmented steady state and the pink line similarly for a strongly fragmented state. (b) Indecisive population (p(1)
B , p(2)

B ) = (0.55, 0.45).
The dark violet line gives the average population returns for partially fragmented steady states (coordinated on top, uncoordinated on bottom)
and the pink line similarly for a strongly fragmented state.

β dependences reflect the transitions between solution types
we saw earlier (in Figs. 9 and 10 and the phase diagram
in Fig. 11). The overall trends resemble those for finite N .
First, we note that the return of the uncoordinated low-β
solution (marked in yellow in Fig. 12) is the lowest among
the alternatives once multiple solutions exist. Second, the
coordinated states (dark violet) lead to the highest average
return. Interestingly, this is not influenced by the type of
fragmentation, i.e., it is true for both weakly fragmented
and partially fragmented states as long as a majority of the
population develops a preference for a single market. By
comparison, the strongly fragmented state (pink) always leads
to a lower average population return.

The differences in the returns achieved by populations of
decisive and indecisive traders, respectively, are driven mainly
by the fact that indecisive groups can sustain more trades with-
out requiring the presence of other groups at a market. This
is particularly visible in the higher population average return
for low β; in this range the decisive population suffers from
the group-specific market preferences that tend to separate
traders towards different markets and consequently result in
a lower number of trades. Additionally, the continuation of
the low-β solution is a viable steady state for a broader range
of intensities of choice for the indecisive population. The
dashed yellow line marks the region of β for which this fixed
point is no longer a genuine steady state, as the free energy
has multiple minima when evaluated at the order parameters
calculated for this fixed point. Along this line the indecisive

population return again does not drop as far as it does in the
case of a more decisive population.

In Fig. 12(b) we note the occurrence of the saddle node
bifurcation in the transition of the indecisive population, with
four new (V,S) solutions (which come in two pairs giving
identical returns) emerging at once. The top branch corre-
sponds to the average population returns at the coordinated
partially fragmented states; for greater values of β (outside
the range shown) these states smoothly transition into weakly
fragmented, coordinated, states. The bottom branch relates to
uncoordinated partially fragmented states that merge into the
strongly fragmented (S,S) state for greater β.

Interestingly, the average population return in the high-β
limit of the coordinated state also corresponds to the average
population return when all traders choose randomly (i.e.,
β = 0). This is true because in both limits the average number
of agents trading at each market is equal. Intriguingly, this
means that when learning is introduced, for low intensities
of choice, an agent who makes decisions based on their
previous history may be worse off than an agent who plays at
random. This effect disappears again only in the large-β limit
of the weakly fragmented state, though note that in the latter
case one group earns more than the other. Returning to the
strongly fragmented state, despite indications that for a given
β this is best among the states that do not distinguish between
groups in the long run (see Fig. 6 of [27]), in terms of average
population return this state is outperformed by random traders
(β = 0).
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FIG. 13. Memory length dependence of phase boundaries. The
pink line (solid with circles and dotted) shows the fragmentation
threshold, where at least one steady state is fragmented (weakly or
strongly). The dark violet line (dark solid and dashed) shows the
boundary of the region where multiple steady states exist. Solid lines
represent indecisive traders (p(1)

B , p(2)
B ) = (0.55, 0.45) and dashed

lines decisive traders (p(1)
B , p(2)

B ) = (0.8, 0.2). Multiple steady states
exist for small enough r, i.e., long enough memory 1/r. The market
parameters are (θ1, θ−1) = (0.3, 0.7).

D. Dynamics

We now ask what effect the existence of multiple steady
states, as predicted by theory for infinite populations, has
on the dynamics. We simulate the dynamics numerically,
necessarily for finite N and with learning rate r > 0, i.e., for
finite memory length 1/r. In previous work we have already
shown that the theory predicts the steady-state properties of
finite populations quite well (see, e.g., Fig. 4 in [27]). The
role of r is more important as this can shift phase boundaries
[27]. (Conceptually, the precise distinction for r → 0 between
weakly and strongly fragmented states is also lost for r > 0
and becomes a crossover.)

In Fig. 13 we illustrate the r dependence of two key phase
boundaries for the two populations we have mainly considered
so far (decisive pB = 0.8 and indecisive pB = 0.55). We
note that the region of multiple steady states shrinks with
increasing r for both populations while the fragmentation line
is only weakly r dependent. The lines are related to the lines of
the same color in the (β, pB ) phase diagram in Fig. 11 and the
dashed gray lines marked in Fig. 11 correspond to the r → 0
limit of the (r, β ) phase diagram in Fig. 13.

Overall, Fig. 13 tells us that we need to use reasonably
small r, certainly below 0.05 for pB = 0.8, to see multiple
steady states in numerical simulations. As smaller r slow the
dynamics, we choose in practice values of r that are as large as
possible while staying well within the multiple states regime.

In Fig. 14 we show numerical data for the actual dynamics
of a system of decisive traders (p(1)

B , p(2)
B ) = (0.8, 0.2) at our

standard market parameters (θ1, θ2) = (0.3, 0.7), taken from
a single run for a population with N = 2000 traders (see [37]
for simulation details) using the learning rate and inverse de-
cision strength (r, 1/β ) = (0.05, 0.16). For these parameters
the phase diagram of Fig. 13 predicts the existence of three
steady states, two weakly fragmented states (with the majority
of both groups coordinated at the same market, m = −1 or
m = 1) and a strongly fragmented state (this state was studied
in [27]; see Fig. 3 there; it is the unique steady state for the
larger r = 0.1 used in [27]). As a global summary statistic of
the shape of the attraction distributions of the two groups of
agents we use the Binder cumulant [39]

B = 1 − 〈�4〉P(�)

3〈�2〉2
P(�)

and plot this over time (see further discussion in [27,37]).
Away from the strongly fragmented state the attraction

FIG. 14. Metastability of the strongly fragmented state and transition to the weakly fragmented state: dynamical evolution of a system
with N = 2000 agents using (r, 1/β ) = (0.05, 0.16), with preferences for buying (p(1)

B , p(2)
B ) = (0.8, 0.2), and market parameters (θ1, θ2 ) =

(0.3, 0.7). (a) Evolution of Binder cumulants of the two attraction distributions of the two agent groups [buyers (green) and sellers (orange)].
Dashed lines are theoretical predictions for the strongly fragmented steady state (dark violet denotes equal for both groups) and weakly
fragmented state (green and orange for the two groups). (b) Attraction distributions predicted from theory for the weakly fragmented steady
state (solid line) compared to simulation data at t = 500 (histogram).
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FIG. 15. Lifetime of strongly fragmented state for different system sizes N . (a) Binder cumulant time series (averaged over the two agent
groups for compactness) along with the N → ∞ theoretical prediction for the strongly fragmented state (dashed line), showing an increase of
lifetime with N . 1/β = 0.15 while the other parameters are as in Fig. 14. (b) Autocorrelation function of single agent attraction differences
C(t ) = 〈[�i(τ ) − �(τ )][�i(τ + t ) − �(τ + t )]〉. The single agent autocorrelation time is essentially N independent.

distributions of the two groups are not related by a symmetry,
so we plot their Binder cumulants separately.

Figure 14 shows that the system quickly reaches the
strongly fragmented state, with the Binder cumulants being
close to the theoretically predicted value; the slight deviation
can be attributed to the finite population size. The dynamics
then branches off from the theoretical prediction at t ≈ 50,
showing that the strongly fragmented state is, for finite N ,
only metastable. The departure is led by one of the agent
groups and reaches one of the theoretically expected weakly
fragmented states at t ≈ 500, as shown in Fig. 14 by the
agreement of both the relevant Binder cumulants [Fig. 14(a)]
and the full attraction distributions [Fig. 14(b)].

We proceed in Fig. 15(a) to analyze the lifetime of the
strongly fragmented steady state in more detail. The figure
displays Binder cumulant time series for different population
sizes at the learning parameters (r, 1/β ) = (0.05, 0.15) and
shows that the lifetime increases with system size (we have
not analyzed the N dependence in detail; in the range shown
it is approximately linear). We can compare this with the
time correlations of the attraction difference � for individual
agents: Fig. 15(b) graphs this correlation function, measured
from the point in time when the strongly fragmented state is
first reached. One sees clearly that the single agent correlation
time is essentially independent of N , while the lifetime of the
strongly fragmented state grows significantly with system size
N . The conclusion is that strong fragmentation is a long-lived
state of the population for large N , within which single agents
effectively “equilibrate” by losing all memory of their initial
preferences.

In Fig. 16 we move to the r dependence of the lifetime
of the strongly fragmented state, showing Binder cumulants
for a small system N = 200 for different r values at fixed
1/β = 0.15. For all values of r, rapid initial convergence to
the strongly fragmented state is observed. Within this state
the Binder cumulants depend weakly on r (as has been noted

previously [27]), reflecting the r dependence of the attraction
distributions. The lifetime of the strongly fragmented state,
set by the decay of the Binder cumulant to lower values,
increases with r. This is consistent with the results of Fig. 13,
which showed that above some β-dependent threshold value
for r the strongly fragmented state is the only steady state
and thus must be stable, corresponding to an infinite life-
time. For the value β = 1/0.15 in Fig. 16, theory predicts
this threshold to be r ≈ 0.055. Numerically, we see that the
strongly fragmented state has a finite lifetime up to r = 0.07,
presumably due to finite population effects for the relatively
small N = 200 used in the simulations presented in the figure.

We find qualitatively the same features as above also in
numerical simulations of the dynamics of a system of indeci-
sive traders, with populations first reaching a long-lived (for
large N) strongly fragmented state and eventually decaying

FIG. 16. Binder cumulant time series for different learning rates
r at the fixed intensity of choice 1/β = 0.15. All parameters are
as in Fig. 14, except for the smaller population size N = 200 and
r as shown. The lifetime of the strongly fragmented state lifetime
increases with r, eventually becoming infinite when this state is the
only steady-state solution.
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into a partially fragmented state. This is the behavior when
such multiple steady states are predicted by our theory, i.e.,
for small r; for larger r (above rc ≈ 0.02; see Fig. 13) strong
fragmentation is the only steady state. Quantitatively, we find
that where strong fragmentation is metastable its lifetimes are
significantly longer than for the decisive traders, exceeding
our maximal simulation times of 106 trading rounds (t =
20 000) for the largest r < rc.

We comment finally on the role of initial conditions. In
the dynamical simulations shown so far we used for these
P(�|pB ) = δ(�), corresponding to the reasonable assump-
tion that the agents have no initial preference for either market.
We also explored Gaussian initial distributions for the attrac-
tion differences, P(�|pB ) = N (μ, σ 2). Where there is only
a single steady state we then find, as expected, that this state
is reached irrespective of the chosen initial condition. On the
other hand, where the theory predicts multiple steady states,
the initial conditions do matter. We observe that the metastable
strongly fragmented state continues to be reached whenever
the mean initial attraction difference |μ| is small enough,
irrespective of the standard deviation σ . As |μ| is increased
we see that the dynamics “misses” the metastable strongly
fragmented state and rapidly moves to a final weakly or
partially fragmented state. This is consistent with the intuition
that these states break the symmetry between markets, and
hence are favored when the population already starts off with
an overall initial preference for one of the markets.

VI. DISCUSSION AND CONCLUSIONS

In this paper, our aim was to investigate the existence
of coordinated and fragmented steady states in a system of
agents choosing adaptively between two markets. We focused
primarily on the long memory limit, where the transition to
fragmentation is sharp. We first studied two traders who learn
how to coordinate at a market and maximize their average
return even though one of them will necessarily earn less.
Moving to a four-player system, we observed fragmentation
in addition to coordination. Interestingly, we found that co-
ordinated and fragmented states lead to the same average
population return for high intensity of choice β, in spite of the
presence of two different types of agents (buyers and sellers).
In the coordinated state one of the agent types will always earn
less, while in the fragmented state both types have the same
average, but one agent from each group is less satisfied. Thus,
at the fragmented state, average returns do not discriminate
between types of agents.

We then introduced a general method for determining
the type and number of steady states in the limit of large
populations with long memory. This can be done in our setup
with only a single order parameter per market. After a prelim-
inary analysis for exogenously determined order parameters,
we saw that in the general case a self-consistency criterion
determines the order parameters in the steady state. Analyzing
a quantity analogous to a free energy then allows one to say
whether a population (or one of its groups) is fragmented and
whether this fragmentation is strong or weak.

Already for small system sizes we noticed that the agents’
preference for buying pB is an important system parameter.
Not only does it influence the critical intensity of choice β on

pB for the onset of fragmentation, but for N � 4 it also qual-
itatively affects the nature of the steady states. This remains
true also for the N → ∞ limit, where we find a rich variety of
steady states in the (β, pB ) diagram, in spite of the simplified
nature of our models for markets and traders. These include
market coexistence, where both markets attract both types of
traders (S,S) and where market–trader specialization occurred
(W,W) (uncoordinated weakly fragmented state for moder-
ately indecisive traders); single market dominance (W,W)
(coordinated weakly fragmented states); market indifference
(U,U) (e.g., for low β); and general vs specialized markets
[e.g., (U,S), where a single market attracts both groups of
agents while the other can be viewed as specializing towards
only one group]. Interestingly, all these different steady states
arise without imposing any heterogeneity onto the agents (in
contrast to assumptions elsewhere [23]) and fragmentation
is the preferred state even when the markets have identical
properties (contrary to views expressed in [2,18]).

To interpret our results for the prevalence of fragmentation
more broadly we can draw on the work of Cheung and Fried-
man [40], who used evidence from behavioral game theory
to suggest that values of β are consistent across games but
increase in more informative environments. The authors also
argued that a parameter closely analogous to r increases with
the trustworthiness of information in the system. Bearing in
mind the results shown in Fig. 13, where for large r and large
β the only steady state is the fragmented one, this suggests
that more informative environments, or ones where informa-
tion is more trustworthy because of, e.g., stability over long
timescales, might naturally lead to fragmented states. The
prevalence of the strongly fragmented state is clear also from
Fig. 11, which shows that this state exists for all populations
with groups symmetrically biased towards buying and selling,
respectively.

One of the nontrivial predictions of our theory is the
existence of partially fragmented states, where one group of
agents (e.g., those who have a preference for buying) frag-
ments while the other (where agents prefer to sell) does not.
We saw that the region in the phase diagram where such states
appear increases with N for indecisive traders and shrinks for
decisive traders (compare Fig. 5 for N = 4 and Fig. 11 for
N → ∞).

We studied also the average population returns achieved
by agents in the various steady states. For large populations
we saw that the coordinated weakly fragmented steady state
leads to the highest population average returns, even though
one agent group earns less in that state. We also noticed that
such steady states, which essentially represent coordination
at a single market when r → 0, lead to the same average
payoff for large β as for random agents (β = 0). This is
because coordination at a single market, just like random
market choice, leads to the same number of buyers and sellers
at a single market and thus the same number of successful
trades and average returns. Interestingly, this shows that weak
learning (finite β) leads to lower returns, e.g. not choosing
the strictly best trading venue (in terms of returns) can be
worse for an agent than random guessing. This behavior is
rather similar to the J-curve effect studied in [41,42] where,
in the context of trading agents with different information
levels, moderately informed agents earn less from higher
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informed agents but also from uninformed, randomly trading,
agents.

Finally we investigated, by means of numerical simula-
tions, how the theoretically predicted steady states appear
in the dynamics of finite agent populations. If the agents
start as “blank canvasses” (without initial market preference),
we found that the adaptation process always leads to the
strongly fragmented state first. This state is metastable, with a
lifetime that grows large with population size, and the system
eventually settles into one of the weakly fragmented states.
This remains true even if there is scatter in the agents’ initial
preferences, while a systematic initial bias towards one of
the markets can cause the dynamics to miss the metastable
strongly fragmented state. To put this result into more intuitive
terms, two markets that enter into competition to attract on
average indifferent traders will always exhibit a period of
coexistence in a strongly fragmented state (and if r > rc this
coexistence will last indefinitely), whereas if the population
is not indifferent initially then a market monopoly will arise
much more quickly.
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APPENDIX A: DETAILS OF THE FOKKER-PLANCK
DESCRIPTION

In this Appendix we provide some of the explicit ex-
pressions appearing in the Fokker-Planck description of our
market choice model. As per definitions of bid and ask dis-
tributions and score assignments, defined in the discussion
of trading strategies of Sec. II, the return distributions for an
agent choosing a market m and an order type B or S are

P(S|m,B) = QBmTBm
1

QBmσb

√
2π

exp

(
− [S − (μb − πm)]2

2σ 2
b

)
θ (S) + δ(S)(1 − QBmTBm),

P(S|m,S ) = QSmTSm︸ ︷︷ ︸
agent trades

1

QSmσa

√
2π

exp

(
− [S − (πm − μa)]2

2σ 2
a

)
θ (S)︸ ︷︷ ︸

non-negative return

+δ(S) (1 − QSmTSm)︸ ︷︷ ︸
agent does not trade

.
(A1)

(Note that in statements of these distributions in previous
publications [27], μa and μb were omitted due a typographical
error.) When agents have fixed buying preferences pB, their
return distribution is then dependent only on the chosen
market m:

P(S|m) = pBP(S|m,B) + (1 − pB )P(S|m,S ).

The probabilities that an order is valid Qγ are given by

QBm = 1

σb

√
2π

∫ ∞

πm

db exp

(
− (b − μb)2

2σ 2
b

)
,

QSm = 1

σa

√
2π

∫ πm

−∞
da exp

(
− (a − μa)2

2σ 2
a

)
and can be expressed in terms of error functions [37].

The transition kernel between two states � and �′ of an
agent with buying preference pB is

K (�′|�, pB ) =
∫

dS
1∑

m=−1

[pBP(S|m,B)

+ (1 − pB )P(S|m,S )]P(m|�)

× δ(�′ − mrS − (1 − r)�). (A2)

The resulting drift and diffusion terms for small r are dis-
cussed in detail in [37]; here (Fig. 17) we provide plots cor-
responding to Eqs. (12) and (13), evaluated at three different
sets of market order parameters for illustration. We consider
the value β = 1/0.265 for the intensity of choice, in order to
match Fig. 9(c). The three sets of market order parameters all

lie on a horizontal line (D−1 = −1), while D1 is changed so
that the order parameters lie in the unfragmented, the weakly
fragmented, or the strongly fragmented region, respectively.
Plots in Fig. 17(a) illustrate market conditions leading to
an unfragmented distribution; there is a unique solution of
M1(�|pB, Tγ ) = 0, corresponding to the unique free energy
minimum [calculated from Eq. (15) and shown in the bottom
row of the figure]. Both are marked by a circle. Figure 17(b)
illustrates the weakly fragmented case, where there are three
zeros of the drift term (two stable fixed points and one unsta-
ble one), corresponding to two minima of the free energy; as
the minima are at different heights, the resulting (steady-state)
distribution of � will become concentrated around the lowest
minimum for r → 0, as discussed in the main text. Finally,
the case shown in Fig. 17(c) has two equal minima of the free
energy and thus represents a strongly fragmented scenario.
Note that the diffusion term M2(�) is in all three cases of
order unity and does not affect the number of free energy
minima; it only makes a quantitative contribution to the free
energy and hence to P(�|pB, Tγ ).

APPENDIX B: ALGORITHMIC REMARKS

The method of finding all steady-state solutions by iden-
tifying loci of self-consistent market order parameters is
the best way to exhaust market order parameter space and
thus to find all the solutions for the finite r. By identifying
the domains where these solutions lie, we can also fully
characterize the solution at nonzero r, obtaining information
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FIG. 17. Drift M1(�) (top), diffusion M2(�) (middle), and free energy f (�) (bottom) functions for a subgroup with preference for buying
pB = 0.8. Function plots illustrate three qualitatively different conditions for the following pairs of market order parameters: (a) (D1, D−1) =
(1, 1), unfragmented region; (b) (D1, D−1) = (1.1, 1), weakly fragmented region; and (c) (D1, D−1) = (1.15, 1), strongly fragmented region.
Market biases are set to the standard values (θ1, θ−1) = (0.7, 0.3). All functions are evaluated at the intensity of choice β = 1/0.265.

about the limit r → 0 by extrapolation. However, this method
is numerically demanding as for every point in order pa-
rameter space we need to find a steady-state distribution
(its normalization usually takes most of the processing
time) and recalculate the corresponding order parameters.
Checking what corrections arise for r → 0 takes additional
time. We describe numerically less demanding alternatives
below.

Population with homogeneous market preferences. We have
seen that, depending on system parameters, the attraction
distribution for a group of agents can be unimodal in the
r → 0 limit (U and W states). These states represent a pop-
ulation where the market preferences within the group are
homogeneous. This realization offers a straightforward way
to find all the states of this type for any system parameter. The
demand-to-supply order parameters simplify to

Dm = p(1)
B

∫
d�σβ (m�)P(�|p(1)

B ) + p(2)
B

∫
d�σβ (m�)P(�|p(2)

B )

(1 − p(1)
B )

∫
d�σβ (m�)P(�|p(1)

B ) + (1 − p(2)
B )

∫
d�σβ (m�)P(�|p(2)

B )
= p(1)

B σβ (m�(1) ) + p(2)
B σβ (m�(2) )

(1 − p(1)
B )σβ (m�(1) ) + (1 − p(2)

B )σβ (m�(2) )
,

(B1)
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where in the right hand side we have used 〈σβ (�)〉 =
σβ (〈�〉), a relation that is exact in the r → 0 limit where the
steady-state distribution is a δ distribution centered at �(g).
To identify these peak positions we find the zeros of the first
jump moment M1 as defined in Eq. (12), taking into account
the dependence of Dm on the attraction difference �(g) in
each group. This means that when searching for a steady state
in which both groups of traders have homogeneous market
preferences, we need to solve the peak position equations for
the two groups simultaneously:

M (1)
1

(
�(1)

∣∣p(1)
B , Dm(�(1),�(2) )

) = 0,

M (2)
1

(
�(2)

∣∣p(2)
B , Dm(�(1),�(2) )

) = 0. (B2)

Every solution (�(1)∗,�(2)∗) found in this way needs to be
checked for consistency with the initial assumption of homo-
geneous market preferences, i.e., the market order parameters
corresponding to every solution pair need to belong to the
unfragmented or weakly fragmented solution domain. This is
done by calculating the corresponding order parameters Dm

from Eq. (B1) and finding the free energy corresponding to
these order parameters. If the global free energy minimum
is centered at �(g)∗ the solution is consistent with our initial
assumption and we have found a (homogeneous) population
steady state. Depending on the signs of �∗, we classify such
steady states further as either coordinated for �(1)∗�(2)∗ > 0
or uncoordinated for �(1)∗�(2)∗ < 0. For any finite intensity
of choice β, a single agent can of course choose another
market even if the state is categorized as coordinated at market
1, but the categorization is exact for the β → ∞ limit.

In the second case study (pB = 0.55), the continuation of
the low-β fixed point is a solution we can consistently find by
this method for a wide range of intensities of choice, much
wider than when the groups have more pronounced buy and
sell preferences. Crossing the dark violet line in the phase
diagram (Fig. 11), the new fixed points that arise all turn out to
be inconsistent with the homogeneous population assumption
until very high intensities of choice. This is why we need
to employ different techniques to find the other solutions
presented in Fig. 10. Only when the intensity of choice is
increased further do partially fragmented states cease to exist,
and solutions consistent with the homogeneous population
assumption return.

Strongly cofragmented state (S,S). To find if these states
exist we apply a procedure based on a Maxwell construction
argument outlined in Sec. IV A and in [37] for a population
consisting of a single group. For each group we define a
locus in the space of order parameters (D1, D2) for which the
strong fragmentation condition (8) is satisfied. If there is an
intersection (D∗

1, D∗
2 ) between the two loci there are market

demand-to-supply ratios in which both groups favor a strongly
fragmented state. We finally need to confirm that the two order
parameters can be created if only the two fragmented groups
trade on the markets. If we assume the strongly fragmented
distributions are of the form

P
(
�

∣∣p(g)
B

) = ω(g)δ
(
� − �

(g)
1

) + (1 − ω(g) )δ
(
� − �

(g)
2

)
,

then the corresponding order parameters are

Dm = NBm

NSm
,

Dm = p(1)
B

[
ω(1)σβ

(
m�

(1)
1

) + (1 − ω(1) )σβ

(
m�

(1)
2

)] + p(2)
B

[
ω(2)σβ

(
m�

(2)
1

) + (1 − ω(2) )σβ

(
m�

(2)
2

)](
1 − p(1)

B
)[

ω(1)σβ

(
m�

(1)
1

) + (1 − ω(1) )σβ

(
m�

(1)
2

)] + (
1 − p(2)

B
)[

ω(2)σβ

(
m�

(2)
1

) + (1 − ω(2) )σβ

(
m�

(2)
2

)] . (B3)

If there are weights ω(g) ∈ [0, 1] corresponding to the
intersection point (D∗

1, D∗
2 ), then the strongly fragmented

state exists. These states leave both markets equally active
and as we showed in the discussion in Sec. V they entail
benefits for the population as a whole, not favoring any of the
symmetric groups.

Partially fragmented states. Finally, we outline a procedure
to find a population steady state that is a combination of
a bimodal (S) state in one group and a unimodal (U or
W) state in the other, for r → 0. A starting point for this
search can be obtained by solving the homogeneous popu-
lation equations (B2). When one of the groups is consistent
with the homogeneous population assumption while the other
is not, we can investigate whether the strongly fragmented
solution for this other population exists. To find these states,
we assume that the group that is inconsistent with a given

homogeneous population solution is in the fragmented state.
Thus possible order parameters for this state are on the locus
defined by the Maxwell construction. For every pair (D1, D2)
from the fragmented state locus we investigate the free energy
of the second group (whether it is unfragmented or weakly
fragmented). We find the peak position and represent the
attraction distribution as a unimodal distribution centered at
the (global) free energy minimum. We only need to examine
whether by peak weight redistribution of the strongly frag-
mented group we can retrieve the initial order parameters
(D1, D2). When this is possible, the partially fragmented
state exists. In the example shown in Fig. 10, due to mild
buy and sell preferences, when one of the groups is frag-
mented there are two unfragmented options for the second
group, corresponding to specialization to either of the two
markets.
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