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Technological advancement has led to an increase in the
number and type of trading venues and a diversification of
goods traded. These changes have re-emphasized the
importance of understanding the effects of market
competition: does proliferation of trading venues and
increased competition lead to dominance of a single market
or coexistence of multiple markets? In this paper, we address
these questions in a stylized model of zero-intelligence
traders who make repeated decisions at which of three
available markets to trade. We analyse the model numerically
and analytically and find that the traders’ decision
parameters—memory length and how strongly decisions are
based on past success—make the key difference between
consolidated and fragmented steady states of the population
of traders. All three markets coexist with equal shares of
traders only when either learning is too weak and traders
choose randomly, or when markets are identical. In the
latter case, the population of traders fragments across the
markets. With different markets, we note that market
dominance is the more typical scenario. Overall we show
that, contrary to previous research emphasizing the role
of traders’ heterogeneity, market coexistence can emerge
simply as a consequence of co-adaptation of an initially
homogeneous population of traders.
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1. Introduction
The possible risks and benefits of market competition have been the subject of a long-standing debate,
which is often expressed as ‘market consolidation versus market fragmentation’ [1,2]. When the
New York Stock Exchange had by far the strongest influence on price formation, the financial trading
system was much closer to a consolidated state (Hasbrouck’s [3]), but more recently technological
progress has created a variety of trading venues and led to ever-increasing market fragmentation.
Particularly interesting in this regard are the so-called dark pools. These trading venues have gained a
certain notoriety from their lack of transparency and the possibility to trade large volumes without
large price impacts, and they frequently offer a greater variety of market mechanisms compared to the
conventional exchanges. Shorter & Miller [4] noted that in only five years (from 2008 to 2013) the US
market share traded in dark pools increased from 4% to 15%, signalling a distinct increase in market
fragmentation. Gomber et al. [1] suggest that the main driver of market fragmentation is the
heterogeneity of traders’ needs, which will be more easily satisfied by a variety of different markets
rather than a single trading venue. In this paper, we show that even when identical markets compete,
economic agents can develop loyalties to specific markets, thus effectively fragmenting trading.
Conversely, we find in the case of competition of markets that are biased towards different classes
within the population of traders, single market dominance is the typical outcome.

To tackle this question of market coexistence versus single market dominance, we build on previous
work [5–8] where we introduced and analysed a system consisting of double auction markets and a large
number of traders choosing between them. What we showed in this setting is that for a range of
parameters describing the markets and agents, the agents split into groups with a strong loyalty
towards one of the markets, often giving an overall market coexistence with an equal share of traders
at both markets. When the agents have a long memory to previous trading outcomes, other steady
states with single market dominance also exist and are in fact stable, whereas the system state with
markets splitting trades roughly equally between them is only metastable [6,8]. While these initial
studies focused on settings with two markets for simplicity, traders do in general have a choice
between multiple markets (e.g. [1]) and this feature was also present in the CAT game [9] that
originally motivated our research into market-trader co-fragmentation. We therefore extend the double
auction market model from two to three markets in this paper, and use the results to formulate
conjectures for the expected behaviour in cases where more than three markets compete.

There is a large body of work that uses the JCAT library [10] to explore competition between
continuous double auction markets [11–13]. In a spirit similar to our work, they use simple learning
algorithms such as Zero-Intelligence [14] or Zero-Intelligence-Plus [15] for both markets and traders,
and analyse the allocation efficiency of double auction markets when they are competing against each
other. Multi-agent-based simulations have mostly been used in this context and allow additional
layers of complexity such as adaptive markets and heterogeneous agents to be added. We pursue instead
a modelling approach that strips out as much detail as possible [6–8] to allow for detailed theoretical
analysis, which can often reveal features that would be missed when relying exclusively on numerical
simulations. In this spirit, while the market mechanisms implemented in the JCAT library are
continuous double auctions, we use in our model a mechanism more similar to a clearing house where
the clearing process takes place at discrete time steps. This makes a largely analytical approach
possible, which reveals the learning process of the agents as the main driver of fragmentation. This
conclusion was shown in [6] to carry over to models with more complex market mechanisms and
more sophisticated agent strategies, based e.g. on [16].

Authors such as Ellison et al. [17] and Shi et al. [18] have focused on studying the competition between
markets and the conditions under which this led to multiple market coexistence or the emergence of a
market monopoly. The authors name two significant effects in the competition of double auctions,
one of them is the positive size effect, i.e. agents prefer trading in a market where there are already
many traders of the opposite type (e.g. sellers like trading at markets where there are many buyers),
as the choice among offers is better. The authors additionally suggest the existence of a negative size
effect in a double auction market, as agents will prefer being in the minority group to trade more
often (e.g. buyers see the benefit of trading at a market where there are not many buyers, e.g. [19]).
Ellison et al. [17] point out that due to this negative size effect, coexistence of many markets is
possible. On the other hand, Shi et al. [18] investigate which of the two effects is stronger and finds
that due to more substantial positive effects, a monopoly will in many situations be the preferred
outcome. When there is strong market differentiation, Shi et al. [18] argue that market coexistence is
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possible, especially for markets that have different pricing policies, e.g. where one market charges a fixed
participation fee while another charges a profit fee. Although in what follows we will consider markets
without fee charging policies, we will find nonetheless there are system parameter ranges that enable
coexistence, where markets are populated by roughly the same numbers of traders; conversely, we also
identify the parameter regimes for which one market is dominant. It is important to note that the
studies cited above have focused on finding either the Nash equilibria or states favoured by the
replicator dynamics. By contrast, we consider dynamics based on agents learning to improve their
market choosing strategy, which we believe is more appropriate in the context of agents engaging in
economic interactions. In this study, we show that fragmentation can arise even in an initially
homogeneous population of traders, only because the traders adapt to their past record of successful
trades.
l/rsos
R.Soc.Open

Sci.8:202233
2. Agent-based model
Here we summarize the basic assumptions and properties of the model introduced in [5,6,8] and extend
it to include multiple markets.

2.1. Traders
We study a population of agents without sophisticated trading strategies, essentially zero-intelligence
traders [14,20,21]. The orders to buy at a certain price (bids) and orders to sell at a certain price (asks)
are assumed to be unrelated to previous trading success or any other information. We assume that
bids, b, and asks, a, are normally distributed (a � N ðma, s

2
aÞ and b � N ðmb, s

2
bÞ), where μb > μa, in line

with [6]. After each round of trading each agent receives a score, reflecting their payoff in the trade.
The scores of agents who do trade are assigned as elsewhere in the literature [14,22]: buyers value
paying less than they offered (b), and so their score is S = b− π, where π is the trading price. Sellers
value trading for more than their ask (a), and so S = π− a is a reasonable model for their payoff.

2.2. Markets
The role of a market is to facilitate trades so we define markets in terms of their price-setting and order-
matching mechanisms. We consider a single-unit discrete time double auction market where all orders
arrive simultaneously and market clearing happens once every period after the orders are collected. We
also assume that a uniform price is set by the market—once all orders have arrived, these are used to
determine average bid 〈b〉 and average ask 〈a〉 and then set a global trading price in between the two

p ¼ hai þ uðhbi � haiÞ, ð2:1Þ
where θ fixes the price closer to the average bid (θ > 0.5) or the average ask (θ < 0.5); the parameter θ thus
represents the bias of the market towards sellers (they earn more when θ > 0.5) or buyers (earn more when
θ < 0.5).1 Once the trading price has been set, all bids below this price, and all asks above it, are marked as
invalid orders that cannot be executed at the current trading price. The remaining orders are executed by
randomly pairing buyers and sellers; the execution price is π. Note that we assume here that each order is
for a single unit of the good traded.

The most efficient resource allocation happens when demand equals supply, i.e. at the equilibrium
trading price. In a set-up like ours where the bids and asks are Gaussian random variables with equal
variances (σa = σb) and when the number of buyers is equal to the number of sellers at a given market,
the equilibrium trading price corresponds to θ = 0.5, i.e. the price is πeq = (〈b〉 + 〈a〉)/2. We start off
below by considering such efficient markets and will also call these fair as θ = 0.5; later we allow for
the possibility that markets are not fair and set the price closer to the average bid or ask (θ≠ 0.5).

2.3. Learning rules
Agents trade repeatedly in our model, and they adapt their preferences for the various choices at their
disposal from one trading period to the next. We assume that each agent decides where to trade
1Note that traders are not informed about these market biases, nor the market mechanism in general; they only obtain information
through the scores they receive.
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(which of many markets) at the beginning of each trading period, only based on his or her past
experience. To formalize this we introduce a set of attractions Am for each player, one for each market
m = 1, 2, 3. The attractions will generally differ from player to player, but we suppress this in the
notation for now. The attractions are updated after every trading period, n, using the following
reinforcement learning rule (similar to Q-learning [23] and the experience-weighted attraction rule
[24,25])

Amðnþ 1Þ ¼ ð1� rÞAmðnÞ þ rSmðnÞ if the agent chose market m in round n
ð1� rÞAmðnÞ otherwise.

�
ð2:2Þ

The quantity Sm(n) is the score gained trading at market m in the nth trading period. The length of the
agents’memory is set by r: effectively an agent takes into account a sliding window of length of order 1/r
for the weighted averaging of past returns.

Once each preference is updated, traders use the multinomial logit function to choose at which market
to trade in the next round

PðM ¼ mÞ ¼ expðbAmÞP
m0 expðbAm0 Þ : ð2:3Þ

This is inspired by the experience-weighted attraction literature [24,25], where β is the intensity of choice
and regulates how strongly the agents bias their preferences towards actions with high attractions. For
β→∞, the agents choose the option with the highest attraction, while for β→ 0 they choose randomly
with equal probabilities among all options.

Agents randomly take the role of buyer or seller in each trading round: they act as buyers with
probability pB, which we call their buying preference. We will study a population of traders consisting
of two classes of agents with fixed buying preferences pB ¼ pð1ÞB and pB ¼ pð2ÞB , respectively. The
attractions of agents from different classes will be denoted by AðcÞ

m with c∈ {1, 2}.
We will frequently study a set-up with symmetric markets (i.e. θ1 = 1− θ2 < 0.5) and a population

consisting of two symmetrically biased classes (i.e. pð1ÞB ¼ 1� pð2ÞB . 0:5). The setting considered as
default in [6] is ðu1, u2, pð1ÞB , pð2ÞB Þ ¼ ð0:3, 0:7, 0:8, 0:2Þ. It is such that the class 1 (buyers) prefer trading at
market 1, that is biased to award buyers with higher returns, while agents of class 2 (sellers) prefer
market 2. It has been shown previously that for low intensity of choice β, the unique fixed point of the
learning dynamics is such that agents develop a higher attraction to the market that is better for them;
nonetheless, they trade largely at random because of the low β. When β is increased, this fixed point
becomes unstable as buyers and sellers would congregate in different markets and so lose many trading
opportunities. Instead the population fragments: agents of both classes self-organize to divide into two
groups within each class. One of these groups is return oriented (e.g. buyers at market 1) and the
corresponding agents earn more per single trade; the other group can be characterized as volume
oriented (e.g. sellers at market 1), earning less per trade but having the opportunity to trade more often.
2.4. Numerical simulations
To motivate the use of this stylized model of agents choosing between multiple markets, we start with
multi-agent simulations of the system. We look at a default population of traders consisting of two
classes—some tend to act more as buyers (pB ¼ 0:8), others more as sellers (pB ¼ 0:2). These traders
choose between three markets that differ in their biases θ. We show an example of three qualitatively
different distributions of the attractions of the agents in figure 1. To facilitate the interpretation of
these distributions, we mark by coloured regions in each panel which market an agent prefers at the
given attraction (differences), i.e. which market s/he chooses with the highest probability.

We now give a brief description of the attractions distributions in each of the panels and explain the
difference between (i) strong fragmentation, which persists in the large memory limit, and (ii) weak
fragmentation, which disappears in the same limit; similar results for two market systems are
discussed in [6,8]. In figure 1a, one sees that the distribution of attractions has three peaks, all of
which have a size of order O(1) and correspond to subpopulations of traders who choose to trade
mainly at a single market. In other words, the trader population (in the class shown in the figure)
splits into three subpopulations that are more attracted to one market over the others, e.g. traders
develop individual loyalties to one of the markets. Such distributions of attractions with more than
one peak with a size of order one are called strongly fragmented [8]. As discussed in previous works,
this does not mean the traders’ preferences are frozen: they do change their preferred market but only
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Figure 1. Distribution of attraction differences of population of traders for market and learning parameters as indicated in each
graph title. In (a), the population is strongly fragmented into three groups of equal size. In (b), the population is weakly
fragmented, the distribution has two peaks: one large peak and one peak that (as we will later see) becomes exponentially
small as the memory length increases. In (c), the population is strongly fragmented, but only across two markets. To obtain
those graphs, we ran simulations with r = 0.01 and N/2 = 10 000 traders in each class until a steady state was reached.
Traders from class 1 have preference to buy pð1ÞB ¼ 0:8 and traders from class 2 have preference to buy pð2ÞB ¼ 0:2. The
(A1− A2, A1− A3) plane is shown subdivided into three zones that indicate which market an agent with the corresponding
attractions chooses most often. The zones are coloured blue, red and green for markets 1, 2 and 3, respectively, as indicated in (a).
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after a long persistence time [6]. We also note that in the state shown, i.e. for the given parameters, three
identical markets coexist and receive an equal share of traders, on average.

The second distribution, shown in panel (b), corresponds to a population divided into two loyalty
groups but with different sizes: one large (order N) subpopulation is attracted to the second market
(the fair market, θ = 0.5), while the second, smaller subpopulation persistently tries to trade at market
3. The size of the smaller peak in the attraction distribution decreases exponentially as r→ 0 [7,8], and
although markets 2 and 3 coexist for any finite r, in the large memory limit, market 2 has a
monopoly. When attraction distributions are multimodal but only one peak has a weight of order 1
(i.e. fragmentation is only present at finite r) we call them weakly fragmented.

The distribution plotted in panel (c) corresponds to a strongly fragmented population, but contrary to
the case depicted in panel (a) the third market has now lost the competition. Additionally, the share of
attracted traders is not the same between the markets (as in panel (a)), but both peaks persist in the
long memory limit.

The above simulation results offer a glimpse into a rich variety of qualitatively different structures of
the attraction distributions (number and size of peaks) and consequently different outcomes of a three-
market competition. To study these in more detail, we focus on the analytical and numerical methods
described previously [7,8] for large populations of traders and in the large memory limit (r→ 0).
3. Analysis
To proceed with the analysis, in line with our earlier studies [6–8], we start from the fact that the system is
Markovian and accordingly the master equation introduced in [6] is an exact and complete description of
the evolution of agents in the limit of an infinite population N and large memory 1/r. We focus here on the
steady states of this dynamical evolution. For a population with fixed buy/sell preferences, this is specified
by a steady-state distribution PðAjpBÞ where A is an M-dimensional vector of attractions and conditioning
on the buying preference and distinguishes the different classes of traders. When we study more than two
markets the distribution is multivariate, though we can introduce attraction differences and look for a
solution in the resulting M− 1 variables. The master equation describing the evolution of the system [6]
across the different trading rounds n is not a standard linear Chapman–Kolmogorov equation as the
transition kernel K depends on the trading probabilities, which in turn depend on PnðAjpBÞ. This self-
consistent nature of the description arises from the reduction from a description in terms of the
attractions of all N agents to one for a single agent; this reduction becomes exact for N→∞. In
principle, a steady state could then be found by tracking the evolution in time from the initial condition
P0ðAjpBÞ ¼ dðAÞ, which corresponds to all agents having zero attraction to all markets. We take a
different route and first transform the time evolution equation to a Fokker–Planck description using the
Kramers–Moyal expansion. This is appropriate for small r, i.e. for agents with long memory.
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Even after the simplification to a Fokker–Planck equation, the dimensionality of the problem makes
finding the steady state a non-trivial task. But we can make progress by considering the limit r→ 0; this
will allow us to evaluate the onset of fragmentation. We do this by analysing the drift mðcÞ

m in the Fokker–
Planck equation, defined in appendix A. To find the single agent steady state, we will search for zeros of
the drift assuming fixed market order parameters, i.e. trading probabilities. We start by assuming that the
two classes have homogeneous preferences for the markets (i.e. PðAðcÞjpðcÞB Þ is a delta distribution). This is
the expected solution in the low β-limit, when the steady state is unfragmented. With this assumption,
the expressions for the market order parameters simplify, and we can solve the simultaneous
equations for the two classes. At any fixed point solution (A (1)�, A (2)�) we evaluate the market order
parameters and check if the single agent dynamics is consistent with the homogeneous population
assumption: when we solve m

ðcÞ
m ðAÞ ¼ 0 we expect only one zero that coincides with (A�). The onset of

fragmentation (weak or strong) is then given by the intensity of choice where the single agent
dynamics first has multiple zeros when evaluated at the homogeneous population market order
parameters, which indicates that for r > 0 the distribution of attractions will have multiple peaks. To
find the weights of the attraction distribution at each peak, corresponding to a fixed point, we use the
Freidlin–Wentzell approach detailed in appendix B. This allows us to differentiate between small
peaks, which decay exponentially with the memory length 1/r, and large peaks, whose weight
remains finite and of order unity when the r→ 0 limit is taken.

In the rest of the paper, we focus our analysis on a scenario with M = 3 markets and we describe each
of the two classes in terms of the two attraction differences ΔA2 =A1−A2 and ΔA3 =A1−A3. We perform
a Kramers–Moyal expansion of the trader’s learning dynamics and obtain two Fokker–Planck equations
(one for each class c∈ {1, 2} of traders) for the distribution of attraction differences P(ΔA (c), t)

@tPðDAðcÞ, tÞ ¼ �
X3
m¼2

@
DAðcÞ

m
[mðcÞ

m ðDAðcÞ, f1, f2, f3ÞPðDAðcÞ, tÞ]

þ r
2

X3
m,m0¼2

@
DAðcÞ

m
@
DAðcÞ

m0
[SðcÞ

mm0 ðDAðcÞ, f1, f2, f3ÞPðDAðcÞ, tÞ]: ð3:1Þ

Here the time variable t = nr is a rescaled number of trading rounds, DAðcÞ ¼ ðDAðcÞ
2 , DAðcÞ

3 Þ and fm is the
market order parameter, i.e. the ratio of buyers to sellers at market m (effectively the demand-to-supply
ratio). The expressions for the drift vectors m

ðcÞ
m ðDAðcÞ, f1, f2, f3Þ and the covariance matrices

S
ðcÞ
mm0 ðDAðcÞ, f1, f2, f3Þ for each class are given in appendix A.
3.1. Three fair markets
We start by looking at what happens when the three markets available are all fair, i.e. θ1 = θ2 = θ3 = 0.5.
This means they set their trading price to be exactly the mean of the average bid and the average ask.
As mentioned previously, the fair market corresponds to a market mechanism delivering the
equilibrium trading price, provided the number of buyers equals number of sellers.

Based on intuition from similar physical systems, one might expect spontaneous symmetry breaking,
where random fluctuations lead the whole population to select only one of the possible symmetric
markets. However, in stochastic multi-agent simulations we observe instead steady states with
fragmented populations within each class; we therefore focus on steady states of the traders’ learning
dynamics without symmetry breaking.

Since the three markets have the same bias θ, in a symmetric solution, they should attract the same
number of agents, irrespective of their class. On the other hand, as we study classes of agents with
symmetric preferences to buy pð1ÞB ¼ 1� pð2ÞB , the difference between the number of buyers and the
number of sellers at a single market is of order

ffiffiffiffi
N

p
, NB ¼ NS þO

ffiffiffiffi
N

p� �
. As a consequence, in the

large size limit, the ratio of the number of buyers to the number of sellers in each market is equal to
1. This simplification is the reason why we choose to start the analysis with the simple case of three
fair markets, which allows one to explore the phenomenon of fragmentation across three double
auction markets without the need for a self-consistent determination of market order parameters [7,8].

We start by looking at the fixed point structure of the single agent dynamics when the intensity of
choice β is small. As expected, the only fixed point of the learning dynamics is A1−A2 =A1−A3 = 0
and corresponds to a trader who chooses to randomize between the three markets (figure 2a). When
the intensity of choice β reaches a critical value βc = 1/0.254, three saddle node bifurcations take place
simultaneously and three pairs of stable and unstable fixed points appear (figure 2b). The reason why
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Figure 2. Flow diagram and fixed points of the learning dynamics of a single trader with pð2ÞB ¼ 0:2, choosing between three fair
markets. (a) Below the weak fragmentation threshold β = 1/0.254, the dynamics only has one fixed point, which is stable (denoted
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those three saddle node bifurcations take place at the same time lies in the markets’ symmetry, i.e. their
identical bias θ = 0.5. In the more general case where the three markets are different, we expect the
appearance of each pair of new fixed points to take place at a different value of β.

When looking at the deterministic dynamics for low intensity of choice (figure 2a), it is obvious
that the system is not fragmented and there is only one stable fixed point. At larger intensities of
choice as in figure 2b–d, knowing the deterministic dynamics is not sufficient to distinguish between
‘stable’ fixed points (the ones where, in our terminology, large peaks will be centred) and ‘metastable’
ones (which for us indicate the positions of the small peaks). To assess the stability of fixed points in
figure 2 and weight sizes of potential peaks, we use the Freidlin–Wentzell approach detailed in
appendix B.

As an example of an attraction distribution that has both small and large peaks we consider the
range 1/0.252≥ β≥ 1/0.254 for the intensity of choice, where the system is weakly fragmented (as in
figure 2b). The central fixed point is stable and a large peak in the attraction distribution is located at
this fixed point, while the three outer fixed points are metastable and correspond to small peaks. As β
is increased to a second critical value of βc0 = 1/0.252, the three outer fixed points become stable and
the system undergoes a strong fragmentation transition. For any values of β above this second
fragmentation threshold, the system will be strongly fragmented as the distribution of preferences of
the traders will have three peaks of equal weight, each of which corresponds to a stable fixed point of
the single agent dynamics (red points in figure 2c,d ). For 1/0.237≤ β≤ 1/0.252, the distribution of
attractions retains an additional peak at the fixed point at (0, 0) but the weight of this peak will
become exponentially small as the memory length increases (figure 2c). This metastable fixed
point and the associated small peak in the attraction distribution then disappear for β≥ βc00 = 1/0.237
(figure 2d ).

We summarize briefly the intuitive meaning of the above results for the attraction distributions in a
system of agents with long memory choosing between three fair markets. When the intensity of choice is
small the agents cannot develop strong attractions to any particular market as low β implies that they
choose a market largely randomly. With increasing β, three small subpopulations of the agents in each
class develop a loyalty to one of the markets, signalled by increased attractions, but the random
choice strategy remains dominant. These loyal subpopulations grow until (beyond βc0) they encompass
most of each agent class.

To help with understanding the variety of different steady states, we introduced an attraction
distribution notation in the shape of triangles, as depicted in panels of figure 2. We focus on the
number and size of the peaks, rather than their exact position, and use the triangle to visualize
attraction to any of the three markets (circle close to the corner) or market indifference (star shape). To
distinguish between large and small peaks we use filled or empty objects (both stars and circles).

In the simple case of three competing markets considered so far, we find that they always coexist,
but in different scenarios ranging from all traders choosing a market randomly to traders splitting
into subpopulations with persistent market loyalties. An obvious question is then whether this
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fragmentation is critically dependent on the fact that all the markets are identical. To answer this, we next
extend our analysis to markets with different biases.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202233
4. Exploration of the parameter space: markets with different biases
Each market bias θ1, θ2, θ3 is between zero and one, i.e. the market parameter space is a unit cube. Of
course the phenomenon of fragmentation is independent under permutation of the market biases as
this effectively just changes the labelling of the markets. We can therefore restrict our analysis to 1/6
of the cube where θ1≤ θ2≤ θ3 and can reconstruct the behaviour in the rest of the parameter space by
symmetry. We will mostly follow this scheme but sometimes allow a different parameter ordering to
get simpler two-dimensional phase diagrams, with a typical bias along the x-axis and the inverse
intensity of choice along the y-axis. We study three different types of scenarios, guided by
explorations in our previous work: (i) one fair market θ2 = 0.5 and two symmetrically biased markets
θ1 = 1− θ3, with θ1 as a free parameter varying between 0 and 1/2, shown in figure 3, (ii) two
symmetrically biased markets θ1 = 0.3, θ2 = 0.7 with θ3 varied as a free parameter, shown in figure 4,
(iii) θ1 = 0.3, θ2 = 0.5 and θ3 again ranging from 0 to 1, shown in figure 6. As will become clear in the
rest of this section, these parameter settings allow for the analysis of the effect of a number of
properties on the occurrence of fragmentation, such as the market symmetry, the ‘distance’ between
market biases and the effect of market fairness.

4.1. Two symmetrically biased markets and one fair market
Following the reasoning we used in the case of three fair markets, we continue to focus on solutions that
do not break the market symmetries. This assumption is supported by stochastic multi-agent simulations
in which we do not observe market symmetry breaking. We use the symmetries to restrict the possible
values of the ‘market aggregates’, i.e. the demand-to-supply ratios. In particular, we can show that these
ratios are inverses of each other for the symmetrically biased markets, and that the ratio is unity at the fair
market as before. To see this, note first that when θ1 = 1− θ3 and θ2 = 0.5, for traders with symmetric
preferences to buy, the role played by market 1 for traders from class 1 is the same as the role played
by market 3 for traders from class 2 and vice versa. As a consequence, the probability of trading at
the first market for a trader from class 1 (resp. 2) is equal to the probability of trading at the third
market for a trader of class 2 (resp. 1). We can write the buyer/seller ratios in market 1 and 3 as

f1 ¼ Pð1ÞðM ¼ 1Þpð1ÞB þ Pð2ÞðM ¼ 1Þpð2ÞB
Pð1ÞðM ¼ 1Þð1� pð1ÞB Þ þ Pð2ÞðM ¼ 1Þð1� pð2ÞB Þ

and f3 ¼ Pð1ÞðM ¼ 3Þpð1ÞB þ Pð2ÞðM ¼ 3Þpð2ÞB
Pð1ÞðM ¼ 3Þð1� pð1ÞB Þ þ Pð2ÞðM ¼ 3Þð1� pð2ÞB Þ

:

9>>>>>=
>>>>>;

ð4:1Þ

When substituting into these expressions the equalities P(1)(M = 1) = P(2)(M = 3), P(2)(M = 1) = P(1)(M = 3)
and remembering that pð1ÞB ¼ 1� pð2ÞB , one sees that f1 = 1/f3. The fact that the ratio of buyers to sellers
at the fair market (market 2) is unity follows by analogous reasoning.

Let us first calculate the value of the intensity of choice at which traders start to fragment weakly. To
do so, for a given value of the free parameter θ1, we start from low values of β and gradually increase the
intensity of choice until it reaches a critical value where the single agent dynamics has two stable fixed
points. Those values of β are shown by the upper solid line in figure 3.

The natural continuation of this analysis is to look—if it exists—for the strong fragmentation
threshold. While thanks to our previous analysis of symmetric markets we know that for θ1 = 0.5
strong fragmentation takes place at β = 1/0.252, our numerical methods show that for reasonably
asymmetric markets, i.e. θ1 < 0.48, strong fragmentation does not take place across the entire range of
values of β that we consider numerically for our phase diagram. For θ1 between 0.48 and 0.5, our
numerics suggest possible strong fragmentation but a definite conclusion cannot be reached given the
numerical precision limits of the required action minimizations.

To distinguish between different types of steady states in the following analysis—the number of
emergent loyalty groups, their market preferences and sizes, we now introduce a triangle notation
that is illustrated in figure 2 and used in the (θ1, 1/β) phase diagram there. Each of the triangle
corners represent preferences for one of the three markets, while full and empty circles represent
large/small peaks; different colours denote the different trader classes. This notation allows us to



M3

preferences for
different markets:

large peak
positions
small peak
positions

A1
 – A2 A1

 – A2 A1
 – A2

A
1 –

 A
3

A
1 –

 A
3

A
1 –

 A
3

M1 M3

q1

–1 11

1

–1

1

1–1

1

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

1/
b

(a)

(a)

(b)

(c)

(b) (c)
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region are shown in figure 2.
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quickly realize whether some markets lost the competition, which markets are dominant, and which
might attract only a single class of traders. Additionally, we use a star to denote an attraction
distribution peak without preferences for a specific market. This is present only for the scenario with
three fair markets, as depicted in the right band of the phase diagram in figure 4. The triangular
representations shown on the right correspond to the flow diagrams with fixed points depicted in
figure 2.

In figure 3, we see that for any value of β and θ1 < 0.5, the majority of the traders will prefer to trade at
the fair market (market number two), so that this market will have a monopoly in the r→ 0 limit. When
agents have finite memory, all three markets coexist when β is greater than the weak fragmentation
threshold, but market 2 still attracts the majority of trades. Interestingly, in the region of the phase
diagram with intermediate β (see inset (b)), all three markets coexist, but markets 1 and 3 are visited
by only a single class, despite the fact that trading opportunities are lower that way.

In summary, the results depicted in figure 3 tell us that, apart from the particular case when the three
markets are all fair, strong fragmentation does not take place when a fair market competes against two
symmetrically biased markets. We therefore move next to an even less symmetric situation.
4.2. Two symmetric markets and one biased market
We continue exploration of the space of market biases by considering two symmetric markets with fixed
market biases θ1 = 0.3 and θ3 = 0.7; this is the market set-up we mostly studied in previous works. Without
the third market, when the two classes of traders adaptively choose between two symmetric markets one
finds both weak and strong fragmentation above βc = 1/0.28 [8]. Here, we add the third market and vary
its bias, which as figure 4 shows leads to a range of different steady-state attraction distributions.

We first note that strong fragmentation appears, and does so across a reasonably broad range of
market biases (grey zone in figure 4). This range excludes the case studied above where market 2 is
fair: strong fragmentation occurs only for u2 � ½0:45, 0:55�, i.e. when the second market is sufficiently
biased. For θ2 < 0.45 (resp. θ2 > 0.55) the traders from the first (resp. second) class strongly fragment
across the two markets that maximize average profit per trade for each class. For example, in the case
of θ2 = 0.4, buyers (traders in class 1, who have pð1ÞB ¼ 0:8) will prefer trading at markets 1 and 2 while
the sellers remain unfragmented.
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We do not explore the phase diagram below the first strong fragmentation threshold as this would
require the numerical solution of self-consistency conditions for multiple aggregates in the presence of
two (or more) strong fragmentation peaks in the traders’ attraction distributions. This is numerically
very challenging and so we leave it for future work. However, it is possible to get an intuition about
the shape of the phase diagram below this threshold by extrapolating the zones of weak
fragmentation in the range of θ2 where the second market is close to fair.

We show in figure 4 graphically the types of steady state attraction distribution within the different
regions of the phase diagram. These predictions are obtained using single agent flow diagrams as shown
in figures 2 and 3. We show an exemplary comparison to stochastic multi-agent simulations in figure 5
and find excellent qualitative agreement. The agent class that mostly buys (class 1, left panel) fragments
into two subpopulations mainly trading at markets 1 and 2, respectively, where they maximize their
profit because θ1, θ2 < 0.5. Agents in the class that mostly sells prefer market 2 as the less biased of the
two markets that are populated by the buyers. We conjecture that it is the asymmetry imposed by
two markets favouring buyers that leads to a consolidation around markets favouring buyers, while
sellers do not develop attractions toward the market that favours them.

Having described the range of values of θ2 for which strong fragmentation takes place, we inspect
more closely the range of parameters for which only weak fragmentation occurs (figure 4). To do so,
we look at how the attraction distributions of both classes of traders evolve at fixed θ2 = 0.47 when β
increases. For values of β small enough in relation to the agents’ attractions, they will essentially
randomize their market choice, with a weak preference towards the market that is closest to fair,
market 2. This preference increases with β so that traders from the two classes effectively coordinate
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at market 2, providing a good trade-off between profit and trading volume. As β grows further,
additional small peaks arise in the attraction distributions while most of the traders remain in the
fairer market. In particular, at β = 1/0.246 a peak corresponding to the strategy ‘trading at the profit
maximizing market’ (market 1, which has θ1 = 0.3) appears for class 1. Then at β = 1/0.228, a peak
corresponding to the strategy ‘trading at the profit maximizing market’ (market 3 with θ3 = 0.7)
appears in the attraction distribution of the agents from the second class. After those two successive
appearances of weak fragmentation between the fairer market and the profit maximizing market for
both class 1 and class 2, further peaks in the attraction distribution—which correspond to the strategy
‘trading at the volume maximizing market’—appear successively for class 2 at β = 1/0.207 and then
for class 1 at β = 1/0.198.

Our phase diagram suggests that fairness of the second market weakens fragmentation. We cannot
exclude, however, that strong fragmentation might occur even for θ2 close to 0.5, for larger β (lower
1/β) than investigated in the phase diagram of figure 4.

Interestingly, addition of the third market leads to trade shifting away from one of the symmetric
markets, throughout the entire strong fragmentation region in figure 4. Only when the added market
is close to fair can the two symmetric markets continue to coexist, though with both receiving only a
small fraction of trades. Market 2 in fact has the largest market share throughout figure 4.

We can summarize the intuition behind the above results as follows. As the intensity of choice
increases, each class of agents will first fragment weakly between a market that is close to fair (market
2) and the market that maximizes profit for them, and then fragment weakly across all three markets.
On the other hand, if the second market is not fair, the class for which this market is more profitable
will fragment strongly between their two profit maximizing markets, while the other class will only
trade at the market that is closest to fair. The results of this subsection suggest that as soon as traders
have at their disposal a reasonably fair market, they are not going to fragment and will prefer to trade
with the fair market; when they have no fair market they will always prefer the profit maximizing
market, and will visit the volume maximizing market (which brings lower profits but typically more
trades) only as a last resort.

4.3. Markets without symmetry
The two examples presented in §§4.1 and 4.2 lead to the conjecture that the presence of a fair or nearly
fair market—which provides a good trade-off between profit in individual trades and trading volume—
can suppress fragmentation. To confirm this conjecture, we consider three markets where the first one is
biased toward buyers (θ1 = 0.3) and the second one is fair (θ2 = 0.5); the bias of the third market is the
parameter we will vary.

As we did in the previous subsections, we will draw a phase diagram of the type of attraction
distribution for the two agent classes, as a function of the intensity of choice β and the bias of the
third market θ3∈ [0, 1]. The result in figure 6 shows that within the range of parameters explored, if
there is fragmentation it is weak, so that the attraction distributions for both trader classes always
become unimodal in the r→ 0 limit. (Extrapolation to lower 1/β than shown in figure 6 suggests that
this situation does not change at even larger intensity of choice.) Only one peak has weight of order
one and, depending on the values of β and θ3, the steady state is either unfragmented or weakly
fragmented, having one or two small peaks that disappear in the r→ 0 limit.

One notes that once the intensity of choice increases above a certain threshold value shown by the full
black line in figure 6, a weak peak corresponding to the strategy ‘trading at market 1’ appears in the
distribution of attractions of the first class of agents, whose attractions are marked by black circles;
recall here that market 1 provides buyers, who are more frequent among agents of the first class, with
higher returns. When β crosses the second fragmentation threshold (red line in figure 6), the same
type of weak peak emerges in the distribution of attractions of the second class of agents (denoted by
a red empty circle as before).

The fact that the two solid lines just described are close to horizontal reflects the fact that since almost
all of the population trades at the fair market, the bias of the third market will not significantly influence
the preference of traders. This is the reason why the intensity of choice at which traders of class 1 (resp.
class 2) will weakly fragment between markets 1 and 2 is almost independent of the bias of the third
market. The same is not true of the thresholds for the appearance of a peak corresponding to the
strategy ‘trade at market 3’, which are indicated by the sloping dashed lines in figure 6.

Consistent with previously discussed results, the existence of fair market suppresses strong
fragmentation and within the space of parameters depicted in figure 6 we note only weak



0.30

0.25

0.20

0.15

0 0.2 0.4 0.6
q

3

0.8 1.0

1/
b

Figure 6. Peak structure of the different attraction distributions when θ1 = 0.3, θ2 = 0.5, pð1ÞB ¼ 1� pð2ÞB ¼ 0:8. The solid/
dashed lines show weak fragmentation transitions where subpopulations emerge that favour markets 1 or 3 (line colours
denote class of agents in which transition occurs).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202233
12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 O

ct
ob

er
 2

02
1 
fragmentation. This means that across the parameter range investigated the fair market attracts most of
the traders. We also note that the third market loses the competition when it is very biased and the
intensity of choice is not large enough (note regions where market 3 either attracts none or only one
class). However, it is interesting to see that for sufficiently large intensity of choice β all three markets
coexist independently of the third market bias.
5. General number of markets M
So far we have discussed various cases of fragmentation in the three-market set-up. We found that above
some critical value of the intensity of choice β, the solution in which the population remains indecisive
towards the markets is never stable and at least one market loyalty group is formed. The obvious
question is now whether we can say something about the number of distinct agent subpopulations in
the general case of M markets.

The theoretical description of the population’s adaptation in the most general case, without market or
agent symmetry requires the self-consistent procedure of calculating order parameters (one per market)
and the steady-state distribution of the agent attractions. This is a non-trivial task in higher dimensions
but the general existence of solutions can be rationalized within a simple counting argument.

In the following, we make the assumption that for all M there is a fragmentation threshold βs above
which the drift in the Fokker–Planck representation of the dynamics has multiple zeros. However, even
when this is the case it is not clear whether all agent classes will develop loyalty groups towards each of
the markets (and the corresponding attraction distribution peaks), whether the peaks will be small or
large; in the latter case fragmentation persists by definition in the r→ 0 limit. To address this question
we consider an agent class that is strongly fragmented across M markets so that in the limit r→ 0 its
attraction distribution consists of M delta peaks with weights of order unity. We can find the peak
positions by locating the zeros of the drift, but without the Fokker–Planck solution, we cannot obtain
the peak weights and the Freidlin–Wentzell approach becomes difficult. We therefore ask how many
non-zero peak weights can exist in general, for C agent classes and M markets. As explained, we
assume the general shape of the steady-state distribution

PðcÞðAÞ ¼
XM
m¼1

vðcÞ
m dðA�AðcÞ

m Þ:

Each of the agent classes is described by peak weights v
ðcÞ
1 , . . ., vðcÞ

M that satisfy the normalization
condition

PM
m¼1 v

ðcÞ
m ¼ 1, thus in the absence of any symmetry we have M− 1 free variables per class.

On the other hand, for each market we define an order parameter fm, thus the system of equations we
need to solve to find a strongly fragmented solution is

Fmðvð1Þ
1 , vð1Þ

2 , . . ., vð1Þ
M , . . . , vðCÞ

M Þ ¼ fm:
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Here Fm denotes the relationship between the peak weights and market order parameters; an example of
this for C = 2 andM = 3 is written explicitly in equation (4.1). Without symmetries, when all the equations
and variables are independent, this system of M equations and C(M− 1) variables has a unique solution
only when the number of equations is equal to the number of variables, i.e. M =C(M− 1). This equation
has an integer solution pair only when both number of market M and classes C is equal to two,
(C, M) = (2, 2). For example, the population studied so far with its C = 2 agent classes requires 2(M−
1) weights for strong fragmentation across M markets, and equating the number of variables 2(M− 1)
and the number of equations M gives M = 2 markets, which is the case studied in [6].

Since we have seen that full fragmentation, with all agent classes developing separate loyalty groups
for all markets, can only happen (without symmetries) in systems with two markets and two agent
classes, we next relax the assumption on the number of loyalty groups. Let us suppose there are M
markets and two agent classes, each of them fragmenting into η(c) subgroups (i.e. having only η(c)

non-zero peak weights), the system of equations for these weights has a unique solution when η(1) +
η(2)− 2 =M. This shows that if one class divides into M loyalty groups, the second class will fragment
only across two markets; other combinations satisfying η(1) + η(2) =M + 2 are also possible. For a
general number of agent classes, the analogous constraint reads

hð1Þ þ hð2Þ þ � � � þ hðCÞ ¼ Mþ C: ð5:1Þ
As an example, if one class develops loyalty groups to all M markets, the other C− 1 classes can have C
such subpopulations in total, equating to one bimodal and C− 2 unimodal steady-state distributions.
More generally, if we associate each loyalty group with its preferred market then (5.1) shows that it is
impossible for the population classes to develop disjoint sets of preferred markets, as that would
require hð1Þ þ hð2Þ þ � � � þ hðCÞ � M. For example, in the case C = 2, there will be at least two markets
for which both classes have loyalty groups; the overlap will be even greater if some markets lose out
and have no associated loyalty group.

Summarizing, the conclusion of our counting argument is that in the r→ 0 limit at most C +M loyalty
groups can coexist. In the three-market scenario with two classes, this is at most five loyalty groups. We
saw an exception in the case of three fair markets, where six loyalty groups can exist; this is because of the
symmetry between the markets, which our general argument excludes. It is remarkable how the simple
counting argument gives a variety of new conjectures for the systems with multiple markets. It provides a
maximal number of loyalty groups; it tells us that all markets can in principle coexist, and that the loyalty
groups of different agent classes must overlap at C markets at least. An interesting consequence is the
emergence of a state where some markets are persistently visited only by a subset of the overall
population of traders.
6. Summary and outlook
In this paper, we have investigated whether market coexistence is possible in systems with more than two
markets when agents with fixed buy/sell preferences adapt dynamically to optimize their choice of
market. This research question is motivated by empirical observations of multiple markets coexisting
and attracting loyal traders both in in silico and real market competitions. Rather than aiming to
reproduce market stylized facts, here we investigate mechanisms that might lead to a previously
neglected phenomenon, namely, that multiple market loyalties, and thus market coexistence, could
emerge without any underlying heterogeneity of agents or markets and only as a consequence of the
co-adaptation of the agents. To this end, we studied the possible steady states of the agent dynamics,
in particular with regard to the occurrence of fragmentation, where a homogeneous class of agents
spontaneously forms subpopulations with long-lived market preferences.

The proposed model contains an implicit assumption of bounded rationality as the agents do not
optimize any utility function or aim to make the rational/optimal choice; instead their behaviour is
based on their past observed outcomes. Depending on the learning parameters the agents are tunable
between trading randomly and a behaviour that repeats the most rewarding past choices. The agents
do not possess knowledge about market mechanisms nor the existence of various different agents nor
their scores, they only make decisions based on their past observations. In this regard, these
assumptions violate rational agent assumptions due to the lack of information and lack of utility-
optimizing behaviour. Nonetheless, in the case of two markets it has been shown [7] that when the
agents’ memory is infinitely long (r→ 0) and they do not update their preferences for options they did
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not try in the last steps, then the expected outcome under rational behaviour (Nash equilibrium) is
retrieved.

Motivated by the wide variety of structures of the attraction distributions that one observes in multi-
agent simulations, we explored different combinations of market biases and their influence on the
phenomenon of fragmentation. First we studied fragmentation across three fair markets, i.e. with θ1 =
θ2 = θ3 = 0.5. This was the only scenario where we found that all three markets coexist across the full
range of the intensity of choice β of the agents. As β increases we nonetheless see a change, from an
indecisive population (where agents visit all three markets randomly) to a strongly fragmented
population where each agent class splits into three equal-sized loyalty groups with a distinct
preference for one market.

We continued by exploring different market configurations to get an intuition for the factors that
drive fragmentation. This enabled us to identify two principal causes of fragmentation: (i) the
similarity between the markets’ biases, (ii) the average volume of trade and average profit earned at a market.
The similarity between two markets is going to enhance fragmentation because traders are more likely
to split across two markets if they effectively cannot tell them apart. This effect is visible in §4.3 where
the strong and weak fragmentation thresholds are the highest (in terms of 1/β) when the second
market and the fair market have the same bias. The ordering of the appearance of the peaks in the
traders’ attraction distributions suggests—as we pointed out in §4.2—that traders will have an initial
preference for markets that provide a good balance between trading volume and profit, then as the
intensity of choice increases they will first spread to the market that maximizes their profit and then
subsequently to the one that maximizes their trading volume.

The concepts of positive and negative size effects introduced previously [17,18] are useful when
thinking about traders who develop loyalty for markets that do not reward them highly. At these
markets, traders benefit from the many trading options available (positive size effects), and the fact
that they are in the minority group (negative size effects). However, contrary to the findings of Ellison
et al. [17] and Shi et al. [18], we note that market coexistence is more prevalent when the markets are
similar—the fragmentation region shrinks with increased market difference.

Apart from the case of three identical markets, we find that once β is large enough for agents to stop
choosing markets at random, the three markets never coexist fully in the large memory limit, i.e. at least
one of them will have a market share that vanishes for r→ 0. At most, we observe that the population
fragments strongly across two markets (see strong fragmentation in figure 4). These markets then each
have a finite share of the trading volume for r→ 0, though with one being subdominant because it is
visited only by (some of the) agents from a single class.

From a general counting argument, we found further that full market coexistence, where all agent
classes develop the ( joint) maximal number of loyalty groups, leads to apparently specialized
markets: some agent classes develop loyalties only to a subset of all markets (as in figure 4) and
conversely some markets are not visited by agents from all classes. This is not a consequence of a
market explicitly targeting some subset of the agent population, but rather of the limited number of
market loyalties the different agent classes can support.

We mostly considered moderate values of β driven by our interest in finding domains of different
steady states, and for those purposes our straightforward implementation of the action minimization
algorithm served us well. However, for large values of β it occasionally fails to find minimal action
path, thus robustness and accuracy improvements are needed if one is interested particularly in this
regime. One possibility might be to use the geometric minimum action method [26].

Although the analytical and numerical methodology we have proposed to study agents who choose
between multiple markets is valid for any number of markets M, it is challenging for two reasons: (i) the
parameter space dimension grows with M thus making numerical exploration of all possible behaviours
difficult, and (ii) analytical approaches also become harder to implement as the analysis is done in the
space of attraction differences of dimension M− 1.

Turning to implications for market competition, our results show that loyalty groups for all three
markets rarely exist for large intensity of choice β in the large memory limit (r→ 0). However, for
finite memory (r > 0), one should expect that the small peaks persist. In two market systems, above
certain values of r (effectively for short memory) only a strongly fragmented steady state exists [6]
instead of two weakly fragmented and metastable strongly fragmented states; it would be interesting
to investigate if similar results also hold for multiple markets.

In this and previous studies, we have investigated how agents adapt based on their exploration of
markets; the adaptation mechanism implicitly assumes that markets do not change. Realistically, one
would expect that a market tries to adapt as well once the number of traders using it decreases. If
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markets only try to maximize this number of traders, one could speculate that by adapting their θ biases
they would converge to all-fair markets (similarly to the Hotelling paradox [27]). If on the other hand
markets were to adapt to optimize the number of successful trades, by e.g. charging fixed or profit-
dependent fees, then it would be intriguing to know what types of steady states would be realized in
the overall system of agents and markets.

Finally, a broad implication of our study is that fragmentation (weak or strong) can emerge
spontaneously within a class of homogeneous traders, in contrast to statements elsewhere [1] arguing
that heterogeneity among traders is the reason for market fragmentation. This we think is a very
interesting result as it demonstrates that structure in the preferences of economic agents might emerge
out of adaptation rather than being present from the start. To this end, we made an assumption of
homogeneity of agents in terms of their learning parameters, which simplified the mathematical
description but could be relaxed and investigated further. Heterogeneity in agents’ memory parameter
r was investigated in [28] where it was shown that a population containing both fast (r = 1) and slow
(r≪ 1) agents still fragments across two markets, with the critical β depending on the fraction of fast
traders. Heterogeneity in β might be mathematically more challenging but could in principle be
tackled following the procedures outlined in [8]. The population can be split into subgroups of traders
with the same β whose steady-state market preference distributions should be found assuming fixed
demand-to-supply market parameters. Finally, it should be checked whether those market aggregated
parameters can be reproduced from the trader preferences obtained, i.e. whether the overall solution
is self-consistent. This would be an interesting next step to investigate, together with heterogeneities in
terms of trading strategies and budget constraints.
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Appendix A. Kramers–Moyal expansion
In this appendix, we give the expression of the drift and covariance matrix that appear in the Kramers–
Moyal expansion in equation (3.1). We only give the results here; the steps of the derivation can be found
in the thesis of Aloric ́ [29]. First, the drifts of the attraction differences are

m
ðcÞ
2 ðDAðcÞ, f1, f2, f3Þ ¼ PðcÞ

1 ðf1ÞPðM ¼ 1Þ � PðcÞ
2 ðf2ÞPðM ¼ 2Þ

� �
� DAðcÞ

2 (A 1Þ

and

m
ðcÞ
3 ðDAðcÞ, f1, f2, f3Þ ¼ PðcÞ

1 ðf1ÞPðM ¼ 1Þ � PðcÞ
3 ðf3ÞPðM ¼ 3Þ

� �
� DAðcÞ

3 : (A 2Þ

Here PðcÞ
m ðfmÞ is the average payoff of a trader from class c at market m and P(M =m) is the probability to

trade at market m, which depends on the vector ΔA(c) of attraction differences. We do not write this
dependence explicitly to lighten the notations. The fm are the market aggregates, i.e. buyer-to-seller
ratios, at the three markets. In order to check the validity of our calculations we compared the
dynamics of the aggregate f1 during a multi-agent simulation with the evolution of the aggregates
under the homogeneous population dynamics as detailed in [7], finding good agreement as shown
in figure 7.

We next look at the covariance matrix of the effective noise acting on the attraction differences

S
ðcÞ
22 S

ðcÞ
23

S
ðcÞ
23 S

ðcÞ
33

 !
, (A 3Þ
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Figure 7. Comparison between the time series of the aggregate (ratio of buyers to sellers) at the first market during a multi-agent
simulation (with r = 0.01 and 104 agents in each class) and its evolution under the homogeneous population dynamics. The
parameters for the plots in this figure are (θ1, θ2, θ3) = (0.2, 0.5, 0.8), β = 1/0.3 and pð1ÞB ¼ 1� pð2ÞB ¼ 0:8.
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which is given by

S
ðcÞ
22 ðDAðcÞ, f1, f2, f3Þ ¼ QðcÞ

1 ðf1Þ � 2DAðcÞ
2 PðcÞ

1 ðf1Þ
� �

PðM ¼ 1Þ

þ QðcÞ
2 ðf2Þ � 2DAðcÞ

2 PðcÞ
2 ðf2Þ

� �
PðM ¼ 2Þ þ DAðcÞ

2

2
,

(A 4Þ
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1 ðf1Þ � 2DAðcÞ
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þ QðcÞ
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and S
ðcÞ
23 ðDAðcÞ, f1, f2, f3Þ ¼ DAðcÞ

2 PðM ¼ 3ÞPðcÞ
3 ðf3Þ � PðM ¼ 1ÞPðcÞ

1 ðf1Þ
� �

þ DAðcÞ
3 PðM ¼ 2ÞPðcÞ

2 ðf2Þ � PðM ¼ 1ÞPðcÞ
1 ðf1Þ

� �
þ PðM ¼ 1ÞQðcÞ

1 ðf1Þ þ DAðcÞ
2 DAðcÞ

3 ,

(A 6Þ

where QðcÞ
m ðfmÞ is the average squared payoff, see [7].
Appendix B. Freidlin–Wentzell theory
We describe in this section the large deviation methods we use to study multimodal attraction
distributions in the steady state of our agents’ learning dynamics. As explained in more detail in [7],
steady-state attraction distributions for small r will be peaked around the stable fixed points of the
single agent dynamics. The shape of these peaks becomes Gaussian for r→ 0, with a covariance
matrix proportional to r that is straightforward to determine. Much more difficult to find are the
weights of the peaks as these involve rare fluctuations of an agent making the transition from one
peak to another. In one dimension, the problem is tractable as an explicit formula for the steady-state
distribution of attractions can be given [6]. In higher dimensions detailed balance [31] would have a
similar simplifying effect, but our single agent dynamics in the two-dimensional attraction space (for
each class of agents) does not have this property.

In our approach, we therefore consider the peak weights in an attraction distribution as a result of the
balance between transitions between the various peaks. We therefore need to find the rates for these
transitions. To do this, note from the Kramers–Moyal expansion that the single agent learning is
described by a Langevin equation with noise variance O(r). For r→ 0, we are therefore looking for
transition rates in a low noise limit. This allows us to use Freidlin–Wentzell theory, which deals with
large deviations of Langevin dynamics in exactly this limit [32].

B.1. Freidlin–Wentzell theory

We use Freidlin–Wentzell theory in the form developed in [33,34], which generalizes the Eyring–Kramers
[35] formula for the rates of noise-activated transitions to non-conservative dynamics. We give a brief
summary of those aspects of Freidlin–Wentzell theory that we use in our numerical application
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and refer to [32] for a mathematically rigorous description and to [33] for a more statistical
physics-oriented summary.

Freidlin–Wentzell theory is concerned with the transition rates between two stable states (here Aw
1

and Aw
2 ; below we drop the Δ from the notation for the attraction differences for brevity) of a non-

conservative stochastic dynamics in the low noise limit. A general Langevin equation can be written
in the form

_AðtÞ ¼ mðAðtÞÞ þ ffiffi
r

p ½SðAðtÞÞ�1=2jðtÞ, (B 1Þ
where jðtÞ is white noise with unit covariance matrix. The drift μ and the covariance matrix S of the noise
in the Langevin equation are given in [7] for our learning dynamics. In the generic version above, we
have omitted the superscript (c) indicating the class of agents we are considering, as well as the
dependence of drift and noise covariance on the market aggregates.

Associated with the Langevin dynamics is an Onsager–Machlup action S½A� for any path A(t)

S½A� ¼
ðt2
t1

1
2

�
_AðtÞ � mðAðtÞÞ

�T
S�1ðAðtÞÞ

�
_AðtÞ � mðAðtÞÞ

�
dt: (B 2Þ

The action determines the probability of observing any path [A(t)] according to

G1!2 � exp �S½A�
r

� 	
, (B 3Þ

where ∼means that the equality is true up to a prefactor (which depends on the time discretization used).
The main Freidlin–Wentzell result we need is that the rate G1!2 for a transition from Aw

1 to Aw
2 ( forward

path) is [32,36]

G1!2 � exp �Sw
1!2

r

� 	
, (B 4Þ

where Sw
1!2 is the minimal action achievable by any path from Aw

1 to Aw
2 in the infinite time interval

(t1, t2) = (−∞, ∞). The rate G2!1 for the reverse transition from Aw
2 to Aw

1 is similarly
G2!1 � expð�Sw

2!1=rÞ.
The attraction distributions we are after will consist of narrow (for small r) peaks at Aw

1 and Aw
2 . The

weights ω1 and ω2 of these two peaks, which represent the probability for an agent to be within each
peak, must then be such that forward and backward transitions balance

v1G1!2 ¼ v2G2!1 (B 5Þ
and

v1

v2
/ exp

Sw
1!2 � Sw

2!1

r

� 	
: (B 6Þ

This expression shows that when the forward and backward minimal actions are not equal, then one of
the two peaks will have an exponentially small weight as r→ 0. In practice, this is true when the action
difference inside the exponential in (B 5) is large compared with r. If it is only of order r or smaller, then
we cannot say anything about the weights as we do not determine the prefactor in (B 5), though we
would expect them to be of order unity.
B.2. Finding the minimal action path numerically

Following the method of Bunin et al. [36], we find the minimal action by discretizing the path [A(t)],
evaluating the action as a function of this discretized path and then minimizing with respect to the
(discretized) path. The path is discretized into 10 equally spaced time steps between t = 0 and t = 10;
we found this choice of parameters to be a reasonable trade-off between the precision of our result
and the complexity of minimizing the discretized action.

There are other methods for finding the minimal value of the action defined in equation (B 2), such as
solving a Hamilton–Jacobi equation [33], but we chose to use the path discretization method because we
found this to be more robust with respect to changes of model parameters. The discretization approach
could also be improved further, using for example the geometric minimum action method [26], but we
found that this was not necessary to achieve the desired precision. We tested this e.g. by benchmarking
against closed-form results that can be obtained for M = 2 [6].
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The numerical path optimization can be simplified by restricting attention to the activation part of the
path. Generally, for a system with two stable fixed points Aw

1 and Aw
2 and one saddle point �A between

them, the optimal path starting from Aw
1 will pass through the saddle point �A and then relax to Aw

2

following the relaxation dynamics _AðtÞ ¼ mðAðtÞÞ, equation (B 2) shows that the relaxation dynamics
does not contribute to the total action as the integrand (the Lagrangian) vanishes identically along this
section of the path. As a consequence, the problem of finding a minimal action path between Aw

1 and
Aw

2 can be reduced to finding the minimal action path between Aw
1 and �A, i.e. from the initial fixed

point to the saddle. This restriction significantly improves the precision of the numerical path
optimization.

With the above method, we can work out the action difference between any two fixed points of the
single agent dynamics, as a function of the market aggregates. The values of these aggregates where the
action difference between two single agent fixed points vanishes identify the points where the steady
state attraction distribution of our learning can have more than one peak. Either side of these values,
a single peak is dominant in the attraction distribution; which peak this is changes discontinuously at
a zero action difference value of the market aggregates.
c.Open
Sci.8
References
:202233
1. Gomber P, Sagade S, Theissen E, Weber MC,
Westheide C. 2017 Competition between equity
markets: a review of the consolidation versus
fragmentation debate. J. Econ. Surv. 31,
792–814. (doi:10.1111/joes.12176)

2. O’Hara M, Ye M. 2011 Is market fragmentation
harming market quality? J. Financ. Econ. 100,
459–474. (doi:10.1016/j.jfineco.2011.02.006)

3. Hasbrouck J. 1995 One security, many markets:
determining the contributions to price discovery.
J. Finance 50, 1175–1199. (doi:10.1111/j.1540-
6261.1995.tb04054.x)

4. Shorter G, Miller RS. 2014 Dark pools in equity
trading: policy concerns and recent
developments. Technical report. See https://
digital.library.unt.edu/ark:/67531/
metadc461960/.

5. Alorić A, Sollich P, McBurney P. 2015
Spontaneous segregation of agents across
double auction markets. In Advances in artificial
economics (eds Frédéric Amblard, Francisco
J. Miguel, Adrien Blanchet, Benoit Gaudou),
vol. 676. Lecture Notes in Economics and
Mathematical Systems, pp. 79–90. Berlin,
Germany: Springer International Publishing.

6. Alorić A, Sollich P, McBurney P, Galla T. 2016
Emergence of cooperative long-term market
loyalty in double auction markets. PLoS ONE 11,
1–26. (doi:10.1371/journal.pone.0154606)

7. Nicole R, Sollich P. 2018 Dynamical selection of
Nash equilibria using reinforcement learning:
emergence of heterogeneous mixed equilibria.
PLoS ONE 13, e0196577. (doi:10.1371/journal.
pone.0196577)

8. Alorić A, Sollich P. 2019 Market fragmentation
and market consolidation: multiple steady states
in systems of adaptive traders choosing where
to trade. Phys. Rev. E 99, 062309. (doi:10.1103/
PhysRevE.99.062309)

9. Cai K, Gerding E, McBurney P, Niu J, Parsons S,
Phelps S. 2009 Overview of CAT: a market
design competition. Technical report,
Department of Computer Science, University of
Liverpool. (http://www.csc.liv.ac.uk/research/
techreports/tr2009/ulcs-09-005.pdf )
10. Niu J, Cai K, Parsons S, Gerding E, McBurney P,
Moyaux T, Phelps S, Shield D. 2008 JCAT: a
platform for the TAC market design competition.
In Proc. of the 7th Int. Joint Conf. on
Autonomous Agents and Multiagent Systems,
pp. 1649–1650. See http://portal.acm.org/
citation.cfm?id=1402747.

11. Cai K, Niu J, Parsons S. 2014 On the effects of
competition between agent-based double
auction markets. Electron. Commer. Res.
Appl. 13, 229–242. (doi:10.1016/j.elerap.2014.
04.002)

12. Niu J, Cai K, Parsons S, Sklar E. 2007 Some
preliminary results on competition between
markets for automated traders. AAAI-07
Workshop on Trading Agent, pp. 19–26. See
http://www.aaai.org/Papers/Workshops/2007/
WS-07-13/WS07-13-003.pdf.

13. Miller T, Niu J. 2012 An assessment of strategies
for choosing between competitive marketplaces.
Electron. Commer. Res. Appl. 11, 14–23. (doi:10.
1016/j.elerap.2011.07.009)

14. Gode DK, Sunder S. 1993 Allocative efficiency of
markets with zero-intelligence traders: market
as a partial substitute for individual rationality.
J. Polit. Econ. 101, 119–137. (doi:10.1086/
261868)

15. Cliff D, Bruten J. 1997 Zero is not enough: on the
lower limit of agent intelligence for continuous
double auction markets. Technical Report HPL-97-
141, Hewlett-Packard Laboratories, Bristol, UK.

16. Tóth B, Scalas E, Huber J, Kirchler M. 2007 The
value of information in a multi-agent market
model – the luck of the uninformed. Eur.
Phys. J. B 55, 115–120. (doi:10.1140/epjb/
e2007-00046-2)

17. Ellison G, Fudenberg D, Möbius M. 2004
Competing auctions. J. Eur. Econ. Assoc. 2,
30–66. (doi:10.1162/154247604323015472)

18. Shi B, Gerding EH, Vytelingum P, Jennings NR.
2013 An equilibrium analysis of market
selection strategies and fee strategies in
competing double auction marketplaces. Auton.
Agents and Multi-Agent Syst. 26, 245–287.
(doi:10.1007/s10458-011-9190-5)
19. Caillaud B, Jullien B. 2003 Chicken & egg:
competition among intermediation service
providers. RAND J. Econ. 34, 309–328. (doi:10.
2307/1593720)

20. Duffy J. 2006 Agent-based models and human
subject experiments. Handb. Comput. Econ. 2,
949–1011. (doi:10.1016/S1574-0021(05)02019-8)

21. Ladley D. 2012 Zero intelligence in economics
and finance. Knowl. Eng. Rev. 27, 273–286.
(doi:10.1017/S0269888912000173)

22. Anufriev M, Arifovic J, Ledyard J, Panchenko V.
2013 Efficiency of continuous double
auctions under individual evolutionary
learning with full or limited information. J. Evol.
Econ. 23, 539–573. (doi:10.1007/s00191-011-
0230-8)

23. Watkins CJCH, Dayan P. 1992 Q-learning. Mach.
Learn. 8, 279–292. (doi:10.1023/A:102267
6722315)

24. Camerer C, Ho TH. 1999 Experience-weighted
attraction learning in normal form games.
Econometrica 67, 827–874. (doi:10.1111/1468-
0262.00054)

25. Ho TH, Camerer C, Chong J-K. 2007 Self-tuning
experience weighted attraction learning in
games. J. Econ. Theory 133, 177–198. (doi:10.
1016/j.jet.2005.12.008)

26. Heymann M, Vanden-Eijnden E. 2008
Pathways of maximum likelihood for rare events
in nonequilibrium systems: application to
nucleation in the presence of shear. Phys.
Rev. Lett. 100, 140601. (doi:10.1103/PhysRevLett.
100.140601)

27. Hotelling H. 1929 Stability in competition. Econ.
J. 39, 41–57. (doi:10.2307/2224214)

28. Nicole R. 2017 Fluctuations and large deviations
in game theoretical models. PhD thesis, King’s
College London, London, UK. (https://kclpure.
kcl.ac.uk/portal/files/94142430/2017_Nicole_
Robin_1345260_ethesis.pdf )

29. Alorić A, Nicole R, Sollich P. 2021 Data from:
Fragmentation in trader preferences among
multiple markets: market coexistence versus
single market dominance. Dryad Digital
Repository. (doi:10.5061/dryad.cz8w9gj2n)

http://dx.doi.org/10.1111/joes.12176
http://dx.doi.org/10.1016/j.jfineco.2011.02.006
http://dx.doi.org/10.1111/j.1540-6261.1995.tb04054.x
http://dx.doi.org/10.1111/j.1540-6261.1995.tb04054.x
https://digital.library.unt.edu/ark:/67531/metadc461960/
https://digital.library.unt.edu/ark:/67531/metadc461960/
https://digital.library.unt.edu/ark:/67531/metadc461960/
https://digital.library.unt.edu/ark:/67531/metadc461960/
http://dx.doi.org/10.1371/journal.pone.0154606
http://dx.doi.org/10.1371/journal.pone.0196577
http://dx.doi.org/10.1371/journal.pone.0196577
http://dx.doi.org/10.1103/PhysRevE.99.062309
http://dx.doi.org/10.1103/PhysRevE.99.062309
http://www.csc.liv.ac.uk/research/techreports/tr2009/ulcs-09-005.pdf
http://www.csc.liv.ac.uk/research/techreports/tr2009/ulcs-09-005.pdf
http://www.csc.liv.ac.uk/research/techreports/tr2009/ulcs-09-005.pdf
http://portal.acm.org/citation.cfm?id=1402747
http://portal.acm.org/citation.cfm?id=1402747
http://portal.acm.org/citation.cfm?id=1402747
http://dx.doi.org/10.1016/j.elerap.2014.04.002
http://dx.doi.org/10.1016/j.elerap.2014.04.002
http://www.aaai.org/Papers/Workshops/2007/WS-07-13/WS07-13-003.pdf
http://www.aaai.org/Papers/Workshops/2007/WS-07-13/WS07-13-003.pdf
http://www.aaai.org/Papers/Workshops/2007/WS-07-13/WS07-13-003.pdf
http://dx.doi.org/10.1016/j.elerap.2011.07.009
http://dx.doi.org/10.1016/j.elerap.2011.07.009
http://dx.doi.org/10.1086/261868
http://dx.doi.org/10.1086/261868
http://dx.doi.org/10.1140/epjb/e2007-00046-2
http://dx.doi.org/10.1140/epjb/e2007-00046-2
http://dx.doi.org/10.1162/154247604323015472
http://dx.doi.org/10.1007/s10458-011-9190-5
http://dx.doi.org/10.2307/1593720
http://dx.doi.org/10.2307/1593720
http://dx.doi.org/10.1016/S1574-0021(05)02019-8
http://dx.doi.org/10.1017/S0269888912000173
http://dx.doi.org/10.1007/s00191-011-0230-8
http://dx.doi.org/10.1007/s00191-011-0230-8
http://dx.doi.org/10.1023/A:1022676722315
http://dx.doi.org/10.1023/A:1022676722315
http://dx.doi.org/10.1111/1468-0262.00054
http://dx.doi.org/10.1111/1468-0262.00054
http://dx.doi.org/10.1016/j.jet.2005.12.008
http://dx.doi.org/10.1016/j.jet.2005.12.008
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.1103/PhysRevLett.100.140601
http://dx.doi.org/10.2307/2224214
https://kclpure.kcl.ac.uk/portal/files/94142430/2017_Nicole_Robin_1345260_ethesis.pdf
https://kclpure.kcl.ac.uk/portal/files/94142430/2017_Nicole_Robin_1345260_ethesis.pdf
https://kclpure.kcl.ac.uk/portal/files/94142430/2017_Nicole_Robin_1345260_ethesis.pdf
https://kclpure.kcl.ac.uk/portal/files/94142430/2017_Nicole_Robin_1345260_ethesis.pdf
http://dx.doi.org/10.5061/dryad.cz8w9gj2n


royalsocietypublis
19

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 O

ct
ob

er
 2

02
1 
30. Alorić A. 2017 Spontaneous segregation of
adaptive agents in auctions. PhD thesis, King’s
College London, London, UK.

31. Risken H. 1984 The Fokker–Planck equation.
Berlin, Germany: Springer.

32. Freidlin M, Wentzell A. 1998 Random
perturbations of dynamical systems. Berlin,
Germany: Springer.
33. Bouchet F, Reygner J. 2016 Generalisation
of the Eyring–Kramers transition rate
formula to irreversible diffusion processes. Annales
de l’Institut Henri Poincaré 17, 3499–3532. (doi:10.
1007/s00023-016-0507-4)

34. Bradde S, Biroli G. 2012 The generalized
Arrhenius law in out of equilibrium systems.
(http://arxiv.org/abs/1204.6027)
35. Kramers HA. 1940 Brownian motion in a field of
force and the diffusion model of chemical
reactions. Physica 7, 284–304. (doi:10.1016/
S0031-8914(40)90098-2)

36. Bunin G, Kafri Y, Podolsky D. 2012 Large deviations
in boundary-driven systems: numerical evaluation
and effective large-scale behavior. Europhys. Lett.
99, 20002. (doi:10.1209/0295-5075/99/20002)
 hing.
org/journal/rsos

R.Soc.Open
Sci.8:202233

http://dx.doi.org/10.1007/s00023-016-0507-4
http://dx.doi.org/10.1007/s00023-016-0507-4
http://arxiv.org/abs/1204.6027
http://arxiv.org/abs/1204.6027
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1209/0295-5075/99/20002

	Fragmentation in trader preferences among multiple markets: market coexistence versus single market dominance
	Introduction
	Agent-based model
	Traders
	Markets
	Learning rules
	Numerical simulations

	Analysis
	Three fair markets

	Exploration of the parameter space: markets with different biases
	Two symmetrically biased markets and one fair market
	Two symmetric markets and one biased market
	Markets without symmetry

	General number of markets M
	Summary and outlook
	Data accessibility
	Competing interests
	Authors' contributions
	Funding
	Acknowledgements
	Appendix A. Kramers–Moyal expansion
	Appendix B. Freidlin–Wentzell theory
	Freidlin–Wentzell theory
	Finding the minimal action path numerically
	References


