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Abstract. One of the most frequently used algorithms in engineering and scien-

tific applications is Fast Fourier Transform (FFT). Its open source implementa-

tion (Fastest Fourier Transform of the West, FFTW) is widely used, mainly due 

to its excellent performance, comparable to the vendor-supplied libraries. On 

the other hand, even if not yet in a fully production state, FFTE (Fastest Fourier 

Transform of the East) keeps up with FFTW, and outperforms it for very large 

transform sizes. Here we present results of the performance and scalability tests 

of FFTW and FFTE libraries. Comparison is done using different compilers and 

parallelization approaches on CURIE and JUGENE supercomputers. 
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1 Introduction 

The Discrete Fourier Transform (DFT) plays an important role in many scientific and 

technical applications, including time series and waveform analysis, solutions to li-

near partial differential equations, convolution, digital signal processing, and image 

filtering. The DFT is a linear transformation that maps n regularly sampled points 

from a cycle of a periodic signal, like a sine wave, onto an equal number of points 

representing the frequency spectrum of the signal. In 1965, Cooley and Tukey [1] 

devised an algorithm to compute the DFT of an n-point series in n*log(n) operations. 

Their new algorithm was a significant improvement over previously known methods 

for computing the DFT, which required n2
 operations. The revolutionary algorithm by 

Cooley and Tukey and its variations are referred to as the Fast Fourier Transform 

(FFT). Due to its wide application in scientific and engineering fields, there has been 

a lot of interest in implementing FFT on parallel computers. 

The scalability of 3-dimensional Fast Fourier Transforms (3D FFTs) is limited by 

the all-to-all nature of the communications involved. It presents a challenge scaling up 

those codes that rely heavily on FFT methods to exploit existing and future Petascale 

supercomputing systems. 

The goal of this paper is to assess the performance and scalability of various  

implementations of FFT. Specific FFT benchmark codes were developed and used to 

compare performance of different 3D FFT library routines and explore their scalabili-

ty in the strong sense on CURIE [2] and JUGENE [3] supercomputers, provided by 

PRACE [3] association. 
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In section 2, we introduce various FFT methods used in this study. In section 3  

we give a description of benchmarking procedures for FFT libraries using in-house 

developed FFT test codes. Section 4 presents benchmarks results and, finally, in  

section 5, we summarize our conclusions, discuss related work, and make some  

recommendations. 

2 FFT Libraries and Methods  

The main performance bottleneck of parallel 3D FFTs is the communication. Once 

3D data is distributed over MPI processes, all-to-all communications are unavoidable. 

Applications that rely on FFTs adopt different data decomposition strategies: 1D de-

compositions give each process a complete 2D slab, 2D decompositions give each 

process a complete 1D pencil, while 3D decompositions give each process a block 

that does not span the global domain in any dimension. Slab decompositions tend to 

perform well on small process counts; pencil decompositions scale better, but also 

eventually run out of steam. Efforts to optimize the performance of 3D parallel FFT 

libraries have tended to focus on slab and pencil decompositions.  

2.1 FFTW  

The “Fastest Fourier Transform in the West” has been developed at Massachusetts 

Institute of Technology by Matteo Frigo and Steven G. Johnson [5]. It is open source 

and free library written in C, but also has Fortran bindings. It supports transforms of 

arbitrary sizes. The performance of FFTW is competitive with, and sometimes ex-

ceeds, vendor-supplied libraries, and has the advantage that the library and its perfor-

mance are both highly portable. FFTW achieves portable performance by measuring 

the speed of many alternative codelets on the target architecture, and making an in-

formed choice at run-time.  

Results in this study were obtained using release 3.3.1 of FFTW, the first version 

to support parallel MPI 3D FFTs. Only slab decompositions are currently supported, 

so that the 3D grids are decomposed in only one dimension (here we use the z  

coordinate).  

2.2 FFTE  

FFTE [6] has been developed by Daisuke Takahashi of Tsukuba, Japan. The name 

FFTE, which is an acronym for “Fastest Fourier Transform in the East”, is more of a 

tribute to FFTW than a signal of any serious attempt to offer a production-ready li-

brary to rival FFTW (even though FFTE has been observed to slightly outperform 

FFTW on very large FFTs). FFTE supports radix 2, 3, and 5 Discrete Fourier Trans-

forms (DFTs), including optimised routines for radix 8, and has parallel flavours, both 

pure MPI and hybrid (MPI/OpenMP). FFTE comes with little documentation, and it is 

necessary to examine the source code in order to use it. The MPI-parallel version only 

works correctly when the number of MPI processes is a power of 2. In other cases but 
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the results will be invalid but the program would run nevertheless, so you should be 

carefull. In FFTE, 3D parallel FFTs must be decomposed over MPI processes so that 

the leading coordinate (x) of the 3D arrays (x, y, z) is kept local to each MPI process.  

In this study, we used version 5.0 of FFTE. We employed both PZFFT3D, a paral-

lel 3D DFT method which requires that the data is decomposed over MPI processes in 

the z-coordinate (i.e. it supports only a slab decomposition), and PZFFT3DV, which 

allows data decomposed in both the y and z coordinate (i.e. it supports a pencil de-

composition). Both PZFFT3D and PZFFT3DV will utilize any additional OpenMP 

threads, if available at run-time.  

FFTE uses MPI_ALLTOALL to implement the MPI communication phases in 

both PZFFT3D and PZFFT3DV.  

3 Benchmarking of FFT Libraries Using Developed In-House 
Codes  

For the purpose of performance and scalability testing of various FFT libraries, in-

house benchmark codes were developed on a local PARADOX cluster at the Institute 

of Physics Belgrade (IPB) using C, Fortran77 and Fortran90 programming languages 

and the latest versions of FFTW (3.3.1) and FFTE (5.0) libraries, at the time. Since 

the FFTE package is distributed with Fortran source files only, a suitable FFT library 

was created. A comparison of FFTW and FFTE libraries was performed on CURIE 

and JUGENE for different types and dimensions of FFT calls (MPI and hybrid with 

MPI/OpenMP) and we have chosen to use 3D hybrid benchmark codes among them 

as the most relevant. Obtained measurement results on these codes are presented. 

CURIE is located in the computing center of CEA (TGCC) at Bruyères-le-Chatel 

in France. We used BULLX Fat nodes which have four eight-core Intel Nehalem-EX 

X7560  processors with 128 GB of memory. JUGENE is located in The Jülich Su-

percomputing Centre in Germany. It is based on IBM BlueGene/P architecture with 

four PowerPC 450 32-bit cores and 2 GB of memory in each compute node.  

On CURIE, hybrid tests were performed with the number of threads per MPI 

process varying from 4 to 32 and for the total number of cores ranging from 32 to 

1024. On JUGENE, hybrid tests were performed using 1-4 threads per MPI process 

using 16 to 512 total cores. FFT testing was performed on complex array of varying 

sizes (up to 230). Input datasets were chosen to be comparable with the ones used in 

FFTW and FFTE developers test examples, both in size and operational complexity. 

In order to allow detailed performance analysis of the execution time of our imple-

mentation, the forward FFT was looped (in-place) 120 times on CURIE and 1000 

times on JUGENE.  

4 FFT Benchmark Codes Results and Interpretation  

Using the in-house developed FFT benchmark code, we have compared the execution 

times of the considered libraries for 3D Fourier transform computation of the 3D 

mesh with dimensions 1024
3
 on CURIE and 256

3
 on JUGENE (due to the memory 

limitations of the JUGENE nodes, a smaller grid was used in this case).  
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4.1 CURIE Results  

As presented in Fig. 1 the FFTW 3.3.1 library demonstrates better scalability than 

FFTE, but FFTE performs faster (achieves lower execution times) than FFTW when 

pure MPI implementations are compared on CURIE. 

 

Fig. 1. Comparison of FFTE and FFTW pure MPI performance for 10243 dataset on CURIE: 

(left) speedup plot (32 cores execution times used as a baseline); (right) execution times plot 

 

Fig. 2. Comparison of FFTE hybrid performance for different MPI/threads combinations using 

10243 dataset on CURIE: (left) speedup plot (32 cores execution times used as a baseline); 

(right) execution times plot 

Figure 2 shows that the best scaling is achieved when running with 16 threads per 

MPI process and that the fastest hybrid combination is the one with 4 threads per MPI 

process. From this figure we can also see that the FFTE library implemented with 

pure MPI scales worse than the hybrid implementation for all tested combinations of 
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processes and threads. However, Fig. 2. (right) shows absolute execution times, and 

we see that tests performed with pure MPI are faster than hybrid tests with both 32 

and 16 threads per MPI process, and are comparable to hybrid runs with 4 and 8 

threads per MPI process. As it can be observed, execution times for threaded runs 

increase as the number of threads per MPI process increases. This can be due to over-

heads related to the thread initialization and management, but also due to different 

ways memory allocation is performed in NUMA environment with a process-oriented 

configuration (MPI) and a thread-oriented configuration (OpenMP). 

 

Fig. 3. Comparison of FFTW hybrid performance for different MPI/threads combinations using 

10243 dataset on CURIE: (left) speedup plot (32 cores execution times used as a baseline); 

(right) execution times plot 

Figure 3 shows hybrid tests for the FFTW library with 4, 8, 16 and 32 threads per 

MPI processes. The tests performed on CURIE show that the best scaling is achieved 

when running with 16 threads, as in the case of the FFTE library. Also, the fastest 

hybrid combination is the one with 4 threads, the same as in the case of FFTE library. 

Pure MPI results are shown for comparison and it can be seen that pure MPI results 

are comparable with the fastest hybrid implementation. We have observed unusual 

performance for the case of a single MPI process and 32 threads, where performance 

is significantly better. This is probably due to the internal implementation of the hybr-

id version of the library, and this case needs further investigation using appropriate 

tools.  

Figure 4 shows that FFTE library performs faster than FFTW for all hybrid combi-

nations, which were tested on 512 and 1024 cores on the CURIE machine. 

Apart from the case with the total of 32 cores, both the MPI and hybrid versions 

show very similar performance, with hybrid versions performing slightly faster as the 

number of cores grows (clearly visible in the case of the FFTE library). Because of 

that, we recommend using a hybrid implementation when the total number of cores is 

sufficiently large.  



168 M. Nikolić et al. 

 

 

Fig. 4. Comparison of FFTE and FFTW hybrid performance on CURIE: (left) 512 total cores; 

(right) 1024 total cores 

4.2 JUGENE Results  

Figure 5 shows that again FFTW 3.3.1 library scales better than FFTE, but the FFTE 

library is faster than FFTW in absolute execution times when implemented with pure 

MPI on JUGENE.  

 

Fig. 5. Comparison of FFTE and FFTW pure MPI performance for the 2563 dataset on 

JUGENE: (left) speedup plot (8 cores execution times used as a baseline); (right) execution 

times plot 

Figure 6 presents hybrid tests for the FFTE library with pure MPI, as well as for 

two and four threads per MPI process. The tests performed on JUGENE show that 

better scaling is achieved when four threads are used. However, again in Fig. 6 (right) 

we see that the pure MPI implementation is the fastest.  
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Fig. 6. Comparison of FFTE hybrid performance for different MPI/threads combinations using 

2563 dataset on JUGENE: (left) speedup plot (16 cores execution times used as a baseline); 

(right) execution times plot 

 

Fig. 7. Comparison of FFTW hybrid performance for different MPI/threads combinations using 

2563 dataset on JUGENE: (left) speedup plot (32 cores execution times used as a baseline); 

(right) execution times plot 

Fig. 7 shows the hybrid tests for FFTW 3.3.1 library with pure MPI, as well as for 

two and four threads per MPI process. Tests performed on JUGENE show that better 

scaling is achieved when running with four threads than with two threads per MPI 

process. It is interesting to notice that in both cases this library shows excellent scal-

ing on the JUGENE system. Fig. 7 (right) shows that the FFTW library is faster for 

tests with two threads per MPI process than tests with four threads in all cases, but 

that the pure MPI implementation outperforms all others. 
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Fig. 8. Comparison of FFTE and FFTW hybrid performance on JUGENE: (left) 256 cores; 

(right) 512 cores 

5 Conclusions and Recommendations  

The scalability of parallel 3D FFTs remains inherently limited, owing to the all-to-all 

communications involved. Likewise, the variety of data decompositions supported by 

the available libraries is also limited. . Given the current state of affairs, it is difficult 

for application developers to rely on third party libraries to achieve portable and scal-

able FFT performance. While these limitations of numerical library routines remain to 

be the case, we will continue to see FFT-dependent applications using custom parallel 

FFTs with bespoke communications, and little re-use of library code, often restricted 

to serial or threaded FFTs within a single MPI process. 

It is clear that exploiting benefits of shared memory within a node can help im-

prove the scalability and for this reason using a hybrid implementation, when the total 

number of cores is sufficiently large, is recommended. 
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