

M. Dulea et al. (eds.), High-Perf. Comp. Infrastr. for South East Europe's
Research Communities, Modeling and Optimization in Science and Technologies 2,

163

DOI: 10.1007/978-3-319-01520-0_20, © Springer International Publishing Switzerland 2014

An Analysis of FFTW and FFTE Performance

Miloš Nikolić, Aleksandar Jović, Josip Jakić, Vladimir Slavnić, and Antun Balaž

Scientific Computing Laboratory, Institute of Physics Belgrade,

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

{milos.nikolic,aleksandar.jovic,josip.jakic,
vladimir.slavnic,antun.balaz}@ipb.ac.rs

Abstract. One of the most frequently used algorithms in engineering and scien-

tific applications is Fast Fourier Transform (FFT). Its open source implementa-

tion (Fastest Fourier Transform of the West, FFTW) is widely used, mainly due

to its excellent performance, comparable to the vendor-supplied libraries. On

the other hand, even if not yet in a fully production state, FFTE (Fastest Fourier

Transform of the East) keeps up with FFTW, and outperforms it for very large

transform sizes. Here we present results of the performance and scalability tests

of FFTW and FFTE libraries. Comparison is done using different compilers and

parallelization approaches on CURIE and JUGENE supercomputers.

Keywords: FFT, MPI, OpenMP, Hybrid parallelism.

1 Introduction

The Discrete Fourier Transform (DFT) plays an important role in many scientific and

technical applications, including time series and waveform analysis, solutions to li-

near partial differential equations, convolution, digital signal processing, and image

filtering. The DFT is a linear transformation that maps n regularly sampled points

from a cycle of a periodic signal, like a sine wave, onto an equal number of points

representing the frequency spectrum of the signal. In 1965, Cooley and Tukey [1]

devised an algorithm to compute the DFT of an n-point series in n*log(n) operations.

Their new algorithm was a significant improvement over previously known methods

for computing the DFT, which required n2
 operations. The revolutionary algorithm by

Cooley and Tukey and its variations are referred to as the Fast Fourier Transform

(FFT). Due to its wide application in scientific and engineering fields, there has been

a lot of interest in implementing FFT on parallel computers.

The scalability of 3-dimensional Fast Fourier Transforms (3D FFTs) is limited by

the all-to-all nature of the communications involved. It presents a challenge scaling up

those codes that rely heavily on FFT methods to exploit existing and future Petascale

supercomputing systems.

The goal of this paper is to assess the performance and scalability of various

implementations of FFT. Specific FFT benchmark codes were developed and used to

compare performance of different 3D FFT library routines and explore their scalabili-

ty in the strong sense on CURIE [2] and JUGENE [3] supercomputers, provided by

PRACE [3] association.

164 M. Nikolić et al.

In section 2, we introduce various FFT methods used in this study. In section 3

we give a description of benchmarking procedures for FFT libraries using in-house

developed FFT test codes. Section 4 presents benchmarks results and, finally, in

section 5, we summarize our conclusions, discuss related work, and make some

recommendations.

2 FFT Libraries and Methods

The main performance bottleneck of parallel 3D FFTs is the communication. Once

3D data is distributed over MPI processes, all-to-all communications are unavoidable.

Applications that rely on FFTs adopt different data decomposition strategies: 1D de-

compositions give each process a complete 2D slab, 2D decompositions give each

process a complete 1D pencil, while 3D decompositions give each process a block

that does not span the global domain in any dimension. Slab decompositions tend to

perform well on small process counts; pencil decompositions scale better, but also

eventually run out of steam. Efforts to optimize the performance of 3D parallel FFT

libraries have tended to focus on slab and pencil decompositions.

2.1 FFTW

The “Fastest Fourier Transform in the West” has been developed at Massachusetts

Institute of Technology by Matteo Frigo and Steven G. Johnson [5]. It is open source

and free library written in C, but also has Fortran bindings. It supports transforms of

arbitrary sizes. The performance of FFTW is competitive with, and sometimes ex-

ceeds, vendor-supplied libraries, and has the advantage that the library and its perfor-

mance are both highly portable. FFTW achieves portable performance by measuring

the speed of many alternative codelets on the target architecture, and making an in-

formed choice at run-time.

Results in this study were obtained using release 3.3.1 of FFTW, the first version

to support parallel MPI 3D FFTs. Only slab decompositions are currently supported,

so that the 3D grids are decomposed in only one dimension (here we use the z

coordinate).

2.2 FFTE

FFTE [6] has been developed by Daisuke Takahashi of Tsukuba, Japan. The name

FFTE, which is an acronym for “Fastest Fourier Transform in the East”, is more of a

tribute to FFTW than a signal of any serious attempt to offer a production-ready li-

brary to rival FFTW (even though FFTE has been observed to slightly outperform

FFTW on very large FFTs). FFTE supports radix 2, 3, and 5 Discrete Fourier Trans-

forms (DFTs), including optimised routines for radix 8, and has parallel flavours, both

pure MPI and hybrid (MPI/OpenMP). FFTE comes with little documentation, and it is

necessary to examine the source code in order to use it. The MPI-parallel version only

works correctly when the number of MPI processes is a power of 2. In other cases but

 An Analysis of FFTW and FFTE Performance 165

the results will be invalid but the program would run nevertheless, so you should be

carefull. In FFTE, 3D parallel FFTs must be decomposed over MPI processes so that

the leading coordinate (x) of the 3D arrays (x, y, z) is kept local to each MPI process.

In this study, we used version 5.0 of FFTE. We employed both PZFFT3D, a paral-

lel 3D DFT method which requires that the data is decomposed over MPI processes in

the z-coordinate (i.e. it supports only a slab decomposition), and PZFFT3DV, which

allows data decomposed in both the y and z coordinate (i.e. it supports a pencil de-

composition). Both PZFFT3D and PZFFT3DV will utilize any additional OpenMP

threads, if available at run-time.

FFTE uses MPI_ALLTOALL to implement the MPI communication phases in

both PZFFT3D and PZFFT3DV.

3 Benchmarking of FFT Libraries Using Developed In-House
Codes

For the purpose of performance and scalability testing of various FFT libraries, in-

house benchmark codes were developed on a local PARADOX cluster at the Institute

of Physics Belgrade (IPB) using C, Fortran77 and Fortran90 programming languages

and the latest versions of FFTW (3.3.1) and FFTE (5.0) libraries, at the time. Since

the FFTE package is distributed with Fortran source files only, a suitable FFT library

was created. A comparison of FFTW and FFTE libraries was performed on CURIE

and JUGENE for different types and dimensions of FFT calls (MPI and hybrid with

MPI/OpenMP) and we have chosen to use 3D hybrid benchmark codes among them

as the most relevant. Obtained measurement results on these codes are presented.

CURIE is located in the computing center of CEA (TGCC) at Bruyères-le-Chatel

in France. We used BULLX Fat nodes which have four eight-core Intel Nehalem-EX

X7560 processors with 128 GB of memory. JUGENE is located in The Jülich Su-

percomputing Centre in Germany. It is based on IBM BlueGene/P architecture with

four PowerPC 450 32-bit cores and 2 GB of memory in each compute node.

On CURIE, hybrid tests were performed with the number of threads per MPI

process varying from 4 to 32 and for the total number of cores ranging from 32 to

1024. On JUGENE, hybrid tests were performed using 1-4 threads per MPI process

using 16 to 512 total cores. FFT testing was performed on complex array of varying

sizes (up to 230). Input datasets were chosen to be comparable with the ones used in

FFTW and FFTE developers test examples, both in size and operational complexity.

In order to allow detailed performance analysis of the execution time of our imple-

mentation, the forward FFT was looped (in-place) 120 times on CURIE and 1000

times on JUGENE.

4 FFT Benchmark Codes Results and Interpretation

Using the in-house developed FFT benchmark code, we have compared the execution

times of the considered libraries for 3D Fourier transform computation of the 3D

mesh with dimensions 1024
3
 on CURIE and 256

3
 on JUGENE (due to the memory

limitations of the JUGENE nodes, a smaller grid was used in this case).

166 M. Nikolić et al.

4.1 CURIE Results

As presented in Fig. 1 the FFTW 3.3.1 library demonstrates better scalability than

FFTE, but FFTE performs faster (achieves lower execution times) than FFTW when

pure MPI implementations are compared on CURIE.

Fig. 1. Comparison of FFTE and FFTW pure MPI performance for 10243 dataset on CURIE:

(left) speedup plot (32 cores execution times used as a baseline); (right) execution times plot

Fig. 2. Comparison of FFTE hybrid performance for different MPI/threads combinations using

10243 dataset on CURIE: (left) speedup plot (32 cores execution times used as a baseline);

(right) execution times plot

Figure 2 shows that the best scaling is achieved when running with 16 threads per

MPI process and that the fastest hybrid combination is the one with 4 threads per MPI

process. From this figure we can also see that the FFTE library implemented with

pure MPI scales worse than the hybrid implementation for all tested combinations of

 An Analysis of FFTW and FFTE Performance 167

processes and threads. However, Fig. 2. (right) shows absolute execution times, and

we see that tests performed with pure MPI are faster than hybrid tests with both 32

and 16 threads per MPI process, and are comparable to hybrid runs with 4 and 8

threads per MPI process. As it can be observed, execution times for threaded runs

increase as the number of threads per MPI process increases. This can be due to over-

heads related to the thread initialization and management, but also due to different

ways memory allocation is performed in NUMA environment with a process-oriented

configuration (MPI) and a thread-oriented configuration (OpenMP).

Fig. 3. Comparison of FFTW hybrid performance for different MPI/threads combinations using

10243 dataset on CURIE: (left) speedup plot (32 cores execution times used as a baseline);

(right) execution times plot

Figure 3 shows hybrid tests for the FFTW library with 4, 8, 16 and 32 threads per

MPI processes. The tests performed on CURIE show that the best scaling is achieved

when running with 16 threads, as in the case of the FFTE library. Also, the fastest

hybrid combination is the one with 4 threads, the same as in the case of FFTE library.

Pure MPI results are shown for comparison and it can be seen that pure MPI results

are comparable with the fastest hybrid implementation. We have observed unusual

performance for the case of a single MPI process and 32 threads, where performance

is significantly better. This is probably due to the internal implementation of the hybr-

id version of the library, and this case needs further investigation using appropriate

tools.

Figure 4 shows that FFTE library performs faster than FFTW for all hybrid combi-

nations, which were tested on 512 and 1024 cores on the CURIE machine.

Apart from the case with the total of 32 cores, both the MPI and hybrid versions

show very similar performance, with hybrid versions performing slightly faster as the

number of cores grows (clearly visible in the case of the FFTE library). Because of

that, we recommend using a hybrid implementation when the total number of cores is

sufficiently large.

168 M. Nikolić et al.

Fig. 4. Comparison of FFTE and FFTW hybrid performance on CURIE: (left) 512 total cores;

(right) 1024 total cores

4.2 JUGENE Results

Figure 5 shows that again FFTW 3.3.1 library scales better than FFTE, but the FFTE

library is faster than FFTW in absolute execution times when implemented with pure

MPI on JUGENE.

Fig. 5. Comparison of FFTE and FFTW pure MPI performance for the 2563 dataset on

JUGENE: (left) speedup plot (8 cores execution times used as a baseline); (right) execution

times plot

Figure 6 presents hybrid tests for the FFTE library with pure MPI, as well as for

two and four threads per MPI process. The tests performed on JUGENE show that

better scaling is achieved when four threads are used. However, again in Fig. 6 (right)

we see that the pure MPI implementation is the fastest.

 An Analysis of FFTW and FFTE Performance 169

Fig. 6. Comparison of FFTE hybrid performance for different MPI/threads combinations using

2563 dataset on JUGENE: (left) speedup plot (16 cores execution times used as a baseline);

(right) execution times plot

Fig. 7. Comparison of FFTW hybrid performance for different MPI/threads combinations using

2563 dataset on JUGENE: (left) speedup plot (32 cores execution times used as a baseline);

(right) execution times plot

Fig. 7 shows the hybrid tests for FFTW 3.3.1 library with pure MPI, as well as for

two and four threads per MPI process. Tests performed on JUGENE show that better

scaling is achieved when running with four threads than with two threads per MPI

process. It is interesting to notice that in both cases this library shows excellent scal-

ing on the JUGENE system. Fig. 7 (right) shows that the FFTW library is faster for

tests with two threads per MPI process than tests with four threads in all cases, but

that the pure MPI implementation outperforms all others.

170 M. Nikolić et al.

Fig. 8. Comparison of FFTE and FFTW hybrid performance on JUGENE: (left) 256 cores;

(right) 512 cores

5 Conclusions and Recommendations

The scalability of parallel 3D FFTs remains inherently limited, owing to the all-to-all

communications involved. Likewise, the variety of data decompositions supported by

the available libraries is also limited. . Given the current state of affairs, it is difficult

for application developers to rely on third party libraries to achieve portable and scal-

able FFT performance. While these limitations of numerical library routines remain to

be the case, we will continue to see FFT-dependent applications using custom parallel

FFTs with bespoke communications, and little re-use of library code, often restricted

to serial or threaded FFTs within a single MPI process.

It is clear that exploiting benefits of shared memory within a node can help im-

prove the scalability and for this reason using a hybrid implementation, when the total

number of cores is sufficiently large, is recommended.

Acknowledgements. The work is achieved using the PRACE Research Infrastructure

resources [BULL Bullx (CURIE), France; Blue Gene/P (JUGENE), Germany] and

PARADOX Cluster at the Scientific Computing Laboratory of the Institute of Physics

Belgrade, supported in part by the Serbian Ministry of Education, Science and Tech-

nological Development under projects No. ON171017 and III43007, and by the Euro-

pean Commission under FP7 projects HP-SEE, PRACE-2IP, PRACE-3IP and EGI-

InSPIRE.

References

1. Cooley–Tukey FFT algorithm,

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm

2. CURIE Supercomputer,

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

3. JUGENE Supercomputer, http://www.fz-juelich.de/jsc/jugene

4. PRACE Home Page, http://www.prace-ri.eu/

5. FFTW Home Page, http://www.fftw.org/

6. FFTE: A Fast Fourier Transform Package, http://www.ffte.jp/

