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Motivated by recent observations of ergodicity breaking due to Hilbert space fragmentation in 1D Fermi-
Hubbard chains with a tilted potential [Scherg et al., arXiv:2010.12965], we show that the same system
also hosts quantum many-body scars in a regime U ≈ Δ ≫ J at electronic filling factor ν ¼ 1. We
numerically demonstrate that the scarring phenomenology in this model is similar to other known
realizations such as Rydberg atom chains, including persistent dynamical revivals and ergodicity-breaking
many-body eigenstates. At the same time, we show that the mechanism of scarring in the Fermi-Hubbard
model is different from other examples in the literature: the scars originate from a subgraph, representing a
free spin-1 paramagnet, which is weakly connected to the rest of the Hamiltonian’s adjacency graph. Our
work demonstrates that correlated fermions in tilted optical lattices provide a platform for understanding
the interplay of many-body scarring and other forms of ergodicity breaking, such as localization and Hilbert
space fragmentation.
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Introduction.—Recently, there has been much interest in
understanding how closed many-body quantum systems
evolve in time when taken out of their equilibrium state.
While many such systems rapidly return to their equilib-
rium state, in accordance with fundamental principles of
quantum statistical mechanics [1], much of recent work has
focused on systems that fail to do so as a consequence of
ergodicity breaking [2,3], either due to the special math-
ematical structure known as integrability or very strong
disorder which leads to (many-body) localization. Both of
these paradigms of behavior are actively investigated in
experiments on cold atoms, trapped ions, and supercon-
ducting qubits [4–7].
The inability of nonergodic systems to act as heat

reservoirs for their smaller parts has been traditionally
known to affect the entire spectrum of the system. Recently,
however, there has been a flurry of interest in weak
ergodicity breaking phenomena [8]. The latter refers to
the emergence of a dynamically decoupled subspace within
the many-body Hilbert space, in general without any
underlying symmetry, spanned by ergodicity-breaking
eigenstates. This behavior was first theoretically estab-
lished in the Affleck-Kennedy-Lieb-Tasaki (AKLT) model
[9,10], followed by the discovery of similar phenomenol-
ogy in other nonintegrable lattice models [11–18], models
of correlated fermions and bosons [19–25], frustrated
magnets [26,27], topological phases of matter [28,29],
and periodically driven systems [30–34]. In these exam-
ples, the ergodicity-breaking eigenstates are either explic-
itly embedded into a many-body spectrum via the
mechanism due to Shiraishi and Mori [35], or they form
a representation of an algebra [36–38].

A well-known example of weak ergodicity breaking in
single-particle systems is the phenomenon of quantum
scars in chaotic stadium billiards [39]. In this case, the
particle’s eigenfunctions exhibit anomalous concentration
in the vicinity of an unstable periodic orbit in the classical
limit ℏ → 0 [40–42], leading to observable consequences
in many physical systems [43–46]. In recent experiments
on interacting Rydberg atom arrays [47], weak ergodicity
breaking was observed via persistent revivals following the
global quench of the system, prompting the name “quan-
tum many-body scarring” [48–50] by analogy with stadium
billiards [51,52]. Recently, quantum many-body scarring
has been shown to occur in higher dimensions [53–55] and
in the presence of certain kinds of perturbations [56–58]
including disorder [59].
On the other hand, it has also been shown that ergodicity

breaking can occur due to a fracturing of the Hilbert space
into dynamically disconnected components [60–63]. This
typically occurs by the interplay of local interactions with a
higher-moment symmetry such as charge dipole conserva-
tion, which nontrivially intertwines spatial and internal
symmetries. Recent work [64] has demonstrated that
Hilbert space fragmentation can be experimentally realized
via a magnetic field gradient applied to the Fermi-Hubbard
(FH) model in a 1D optical lattice. Apart from offering a
new platform to investigate the link between fragmentation
and the so-called Stark many-body localization [65–67], an
immediate question presents itself: can the tilted FH model
realize quantum many-body scars?
In this Letter, we show that quantum many-body scars

arise in the limit U ≈ Δ ≫ J in the tilted FH model, and
that they can be detected using the quench from a specific
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initial state at a different filling factor from the one
considered in Ref. [64]. We derive an effective model
for this setup, which can be mapped to a spinful generali-
zation of the fractional quantum Hall effect on a thin torus
[23], allowing for a practical experimental realization.
While the phenomenology of quantum many-body scars
is shown to be largely similar to their realization in Rydberg
atom systems [47], including in particular an extensive set
of eigenstates which violate the eigenstate thermalization
hypothesis (ETH) [68,69], the origin of scars is different in
the two systems and can be intuitively understood from a
graph-theoretic viewpoint.
Large-tilt limit of the FH model.—The 1D FH model is

given by the Hamiltonian

Ĥ ¼
X

j;σ¼↑;↓

− Jĉ†j;σ ĉjþ1;σ þ H:c:þ Δjn̂j;σ þ U
X

j

n̂j;↑n̂j;↓;

ð1Þ
where ĉ†j;σ denotes the usual electron creation operator on
site jwith spin projection σ, n̂j;σ ≡ ĉ†j;σ ĉj;σ , J and U are the
hopping and on-site interaction terms, respectively. Tilt of
the optical lattice is parametrized by Δ, which we take to be
spin independent [64]. Note that tilting has the structure of
a dipole term, ∼jn̂j. Below we impose open boundary
conditions on the model in Eq. (1), and restrict to the
electron filling factor ν ¼ 1, i.e., with N=2 fermions with
spin ↑ and N=2 fermions with spin ↓ on a chain of N sites
(assumed to be even). We also set J ¼ 1 for simplicity. We
label the Fock states using ↑ to denote a fermion with spin
up and ↓ with spin down, while 0 stands for an empty site
and ↕ denotes a doublon.
We focus on the regime Δ ≈U ≫ J. In this case the sum

of the dipole moment and the number of doublons is
effectively conserved. The dominant contribution to the
Hamiltonian (using a Schrieffer-Wolff transformation at
first order [70]) is then given by

Ĥeff ¼ −J
X

j;σ

ĉ†j;σ ĉjþ1;σn̂j;σ̄ð1 − n̂jþ1;σ̄Þ þ H:c:

þ ðU − ΔÞ
X

j

n̂j;↑n̂j;↓: ð2Þ

In this effective Hamiltonian, hopping to the left (which
decreases the total dipole moment by 1) is only allowed if it
increases the number of doublons by the same amount (σ̄
denotes opposite spin from σ).
The action of the Hamiltonian Eq. (2) within the ν ¼ 1

sector fragments the Hilbert space beyond the simple
conservation of U þ Δ. In this work we focus on the
largest connected component, which is the one containing
the state with alternating ↑ and ↓ fermions. In addition to
the symmetries of the full model in Eq. (1), i.e., SU(2) spin
symmetry and spin reversal [71], the Hamiltonian Eq. (2)
projected to the largest sector has an additional symmetry

related to spatial inversion and particle-hole exchange [72].
After resolving these symmetries, we find the level sta-
tistics parameter hri [73] to be close to 0.53 for all
symmetry sectors with large numbers of states (≳103)
[72]. From these values which coincide with the Wigner-
Dyson statistics [74], we expect the model in Eq. (2) to be
chaotic. We next outline an intuitive approach for identify-
ing many-body scars in this model.
Embedded hypergrid subgraph.—A practical diagnostic

of quantum many-body scars is the existence of weakly
correlated states which undergo robust revivals under quench
dynamics, while the majority of other initial states thermalize
fast and do not display revivals. In the Rydberg-blockaded
chains [47], the reviving Néel state of atoms is the densest
configuration compatible with the blockade constraint, and it
is an extremal vertex of the Hamiltonian adjacency graph
[48]. In this graph each vertex corresponds to a basis state,
and two vertices are connected by an edge if the Hamiltonian
matrix element between their respective basis states is
nonzero. We next show, by examining the adjacency graph
of the model in Eq. (2), that we can identify a subgraph,
weakly coupled to the rest of the Hilbert space, which
contains the reviving initial states and leaves a strong imprint
on the scarred eigenstates. This leads to a transparent
manifestation of scarring in the original Fock basis, in
contrast with Rydberg atoms. In the latter case, the subspace
which is weakly coupled to the rest of the Hilbert space has a
much more complicated structure, leading to the wave
function spreading across the entire adjacency graph [56]
before refocusing onto the Néel state.
In Fig. 1 we plot the adjacency graph of the Hamiltonian

in Eq. (2) for a small system. For the effective model in
Eq. (2), it is possible to gauge away the fermionic minus
signs [72], resulting in an unweighted, undirected graph.
As the Hamiltonian Eq. (2) (for U ¼ Δ) has no diagonal
elements and the spectrum is symmetric around zero, all
product states are effectively in the infinite temperature
ensemble and are expected to thermalize quickly. As we
confirm numerically below, there are two important
exceptions.

FIG. 1. Adjacency graph of the effective model in Eq. (2) for
N ¼ 6. Red vertices denote the states belonging to the hypergrid,
with the black vertices corresponding to j −þi, j þ −i states
defined in the text. Green vertices are the isolated states j↓2↑i,
j↑2↓i which live on the tails of the graph. For this graph, the
hypergrid contains 27 vertices out of 63.
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First, as highlighted in red color in Fig. 1, there is a
regular subgraph which has the form of the hypergrid—a
Cartesian product of line graphs (in our case, of length 3),
i.e., the hypergrid is isomorphic to an adjacency graph of a
free spin-1 paramagnet. This mapping can be understood
by looking at the state j↓↑↓↑↓↑…i. Each cell of two sites
can take the values − ≔ ↓↑, 2 ≔ ↕0 orþ ≔ ↑↓, leading to
a three level system. Note that the configuration 0↕ is
omitted, as doublons can only be formed by hopping to the
left. On the other hand, hopping between two neighboring
cells will break this mapping and take the system out of the
hypergrid subgraph. Inside the hypergrid, we identify two
states for which the cell alternates between − and þ. These
are the state j −þi ≔ j−þ −þ…i ¼ j↓↑↑↓↓↑↑↓…i
and its spin-inverted partner, j þ −i ¼ jþ −þ −…i ≔
j↑↓↓↑↑↓↓↑…i. The states j −þi and j þ −i for N ¼ 6
are shown in black color in Fig. 1. These two states are the
only corners of the hypergrid (state with only þ and −
cells) with no edges going out of it. As we show below,
either of these states shows persistent oscillations in quench
dynamics, undergoing robust state transfer to their spin-
inverted counterpart. While other corners of the hypergrid
also show revivals, they are much smaller in amplitude and
decay faster due to the leakage out of this substructure. The
second example of a reviving state is j↓2↑i ≔
j↓↓…↓↕0↑↑…↑i (and its spin-reversed partner j↑2↓i),
which is situated on a tail-like structure of length 3
(independent of system size) with minimal connectivity
to the rest of the Hilbert space (green points in Fig 1).
Similar tail-like structures occur in constrained spin
models [75].
Many-body scarred dynamics and eigenstates.—Having

identified candidate states for revivals, we now scrutinize
their quench dynamics using large-scale exact diagonaliza-
tion simulations of the effective model in Eq. (2). Making
use of various symmetries present in the model, we have
been able to exactly simulate dynamics for up to N ¼ 22
electrons. For convenience, the simulations were performed
in the spin representation of the model [72].
Figure 2(a) shows the time dependence of the entangle-

ment entropy SentðtÞ when the system is quenched from
various initial product states, such as j −þi, j↓2↑i and a
few randomly chosen product states. Sent is defined as the
von Neumann entropy of the reduced density matrix for one
half of the chain. In all cases, entropy grows linearly in
time, consistent with thermalization of the system.
However, the coefficient of linear growth is visibly different
for j −þi and j↓2↑i states, and it is smaller than that of
random states, indicating nonergodic dynamics. The long-
time value of the entropy is also different for the j −þi
state [72], hinting that the wave function is still not
completely spread into the whole Hilbert space. The
hallmark of many-body scars is the oscillations
superposed on top of the linear growth, as seen in the
scarred dynamics in Rydberg atom chains [48]. Rapid

growth of entropy at short times is a consequence of the
bipartition being located in the middle of a two-site
effective cell.
Entropy oscillations mirror those of the wave function

return probability, jhψ0je−iĤtjψ0ij2, in Fig. 2(b). For the
isolated state j↓2↑i, only a single revival is clearly visible
as the return probability decays rapidly once the wave
function leaks out of the tail of the graph. Because of the
low connectivity of the tail, the first revival is still visible on
the scale of Fig. 2(b). The revival time can be accurately
estimated by assuming the tail is completely disconnected,
leading to the period π=

ffiffiffi
2

p
. In contrast, the state j −þi

displays several revivals with the sizable weight of the wave
function ∼40% returning to its initial value. The fidelity
density, 1=N ln jhψ0je−iĤtjψ0ij2, shown in the inset, con-
verges as 1=N to a value of −0.058. In contrast, the inverse
Hilbert space dimension, D−1, expected for a random state
leads to a fidelity density of −0.855—an order of magni-
tude higher. The scarred dynamics in this case can be
visualized as the state bouncing within the hypergrid
between j −þi and its partner j þ −i, illustrated by the
dotted line in Fig. 2(b). From the hypergrid analysis, we
expect the revival period to be

ffiffiffi
2

p
π, coming from the 2π

(a)

(b)

(c)

FIG. 2. Dynamics in the effective model Eq. (2) for N ¼ 18 for
j −þi, j↓2↑i and randomly chosen initial states. (a) Entangle-
ment entropy Sent for an equal bipartition of the system. Entropy
grows linearly in time for all states, consistent with thermalizing
dynamics, but it shows oscillations due to many-body scarring.
jϕi ∉ HG and jϕi ∈ HG denote the average over 10 random
product states outside or within the hypergrid, respectively, and
the shading represents standard deviation. (b) Fidelity dynamics
for the same initial states as in (a). Inset shows the finite-size
scaling of the fidelity density 1=N ln jhψ0je−iĤtjψ0ij2 at the first
revival for j −þi state, demonstrating a value much higher than
1=N lnð1=DÞ (with D the dimension of the Hilbert space),
expected for a random state. Blue dotted line shows the amplitude
of state transfer between j −þi and j þ −i states. (c) Probability
to remain within the hypergrid over time is much higher for
j −þi than other states.
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period of free precession and the spin-1 matrix elementsffiffiffi
2

p
. This prediction closely matches the revival period

observed in Fig. 2(b).
The importance of the hypergrid for scarred dynamics is

illustrated in Fig. 2(c) which plots the probability to remain
in the hypergrid, PHGðtÞ ¼ hψ0jeiĤtP̂HGe−iĤtjψ0i, where
P̂HG is the projector onto the subspace spanned by product
states belonging to the hypergrid. For the initial state
j −þi, we observe that the wave function remains con-
centrated inside the hypergrid, even at late times. This is in
stark contrast with the PXP model which describes a chain
of Rydberg atoms in the blockade regime [56], where the
wave function spreads across the entire graph by the time it
undergoes the first revival. Furthermore, even at the first
revival peak the fidelity is lower than PHG. This shows that
the wave function does not exactly return to itself but gets
more spread even within the hypergrid. Finally, for this
initial state after a long time PHG converges to a non-zero
value which is higher than expected from the relative size of
the hypergrid in the Hilbert space [72], hinting that the
subgraph could have additional structure that prevents
states from leaking out. The fact that this long-time value
is much lower for random states in the hypergrid than for
j −þi confirms that this is not simply due to low
connectivity between the hypergrid and the rest of the
Hilbert space, but that the special eigenstates indeed play an
important role.
Properties of eigenstates of the model Eq. (2) are

summarized in Fig. 3. The projection of eigenstates onto
the j −þi state, shown in panel (a), displays prominent
tower structures reminiscent of other scarred models [13,48].
The existence of towers implies that eigenstates tend to

concentrate around certain energies in the spectrum, causing
an ETH violation. The separation between the towers is
approximately ΔE ≈

ffiffiffi
2

p
, as expected from the embedded

hypergrid. Note that the eigenstates have been classified
according to the conserved total value of spin S; in contrast,
the j −þi state is not an eigenstate of S2. One can show that
for this state, hS2i ¼ N=2, thus j −þi is predominantly
supported by S ¼ 1 and S ¼ 2 eigenstates at the given
system size. The S ¼ 1 eigenstates are indicated by red
points in Fig. 3.
Similar violation of the ETH can be seen in the large spread

in entanglement entropy of eigenstates in Fig. 3(b), showing
that eigenstates of similar energy have very different amounts
of entanglement. Part of this spreading, however, can be
attributed to the eigenstates belonging to different spin sectors
S, giving rise to multiple bands that do not fully overlap at the
system size shown in Fig. 3(b) [72]. The distribution of
entropy in the S ¼ 1 sector [red points in Fig. 3(b)] is
relatively narrow apart from two “outliers” shown at energy
E ≈� ffiffiffi

2
p

, which sit at the top of the tower for their sector in
Fig. 3(a). The states at the top of each tower are indicated by
squares, but unlike the PXP model [56] these states are not
well separated from other states in the same tower.
Experimental implications.—The effective model stud-

ied above is exact for U ¼ Δ → ∞. For experimental
realizations, it is important to ascertain that the same
physics persists for accessible values of U, Δ and that it
can be detected using local measurements. We demonstrate
this in Fig. 4 for the full model in Eq. (1) focusing on the
regime U;Δ < 10. Panel (a) shows the dynamics of
imbalance on the even and odd sublattices,
I ¼ ðNo − NeÞ=ðNo þ NeÞ, where Ne=o is the total num-
ber of fermions on the even or odd sites. The imbalance is
bounded between −1 and 1. We see robust oscillations in I
with the frequency matching half the wave function revival
frequency in Fig. 2(b). The amplitude of the imbalance
revival remains close to the infinite-limit value for
U ¼ Δ≳ 6. As further evidence that the hypergrid is the
cause of nonergodicity, we devised a local perturbation

FIG. 3. Eigenstate properties of the effective model Eq. (2).
(a) Overlap of eigenstates with the j −þi state as a function of
their energy E. (b) Entanglement entropy Sent of the eigenstates.
Data is for system sizeN ¼ 16. Red dots correspond to eigenstates
with total spin S ¼ 1, while the blue ones mark all other spin
values. The squares indicate the eigenstates sitting at the top of
each tower of states. These towers have an energy separation of
approximately

ffiffiffi
2

p
, as expected for the spin-1 hypergrid.

(a) (b)

FIG. 4. (a) Occupation imbalance in the full model [in Eq. (1)]
withN ¼ 12 for various values ofU ¼ Δ for the initial state j −þi,
and for U ¼ Δ ¼ 6 for the initial states jϕ0i ¼ j↑↓↑↓ � � �↑↓i
(within the hypergrid) and jϕ1i ¼ j↓↕0↑↕0↕0↓↕0↑i (outside of
it). (b) U − Δ phase diagram showing the scarring regime near the
diagonal (dashed line). The colour scale represents the value of the
first peak of the imbalance for N ¼ 12.
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which effectively disconnects the hypergrid, leading to the
improvement of revivals in the full model [72].
Conclusions and discussion.—We have proposed an

experimental realization of quantum many-body scars in
the regime U ¼ Δ of the tilted FH model. We have
identified product states j −þi, j þ −i at filling factor
ν ¼ 1 which give rise to scarred dynamics and reveal
towers of ergodicity-breaking many-body eigenstates,
allowing us to investigate the interplay of many-body
scarring with other facets of weak ergodicity breaking
such as localization and Hilbert space fragmentation. In
addition to the filling factor ν ¼ 1, we have also studied the
filling ν ¼ 1=2 used in Ref. [64]. In the latter case, taking
the large-tilt limit Δ ≫ U, J and using a Schrieffer-Wolff
transformation up to third order, we found analogous
signatures of scars [72], provided we neglect the diagonal
terms in the effective Hamiltonian. Under these assump-
tions, the resulting model can be viewed as a spinful
generalization of the fractional quantum Hall effect on a
thin torus [23]. By contrast, the approach presented here for
ν ¼ 1 is considerably simpler as it allows us to conven-
iently eliminate the undesirable diagonal terms.
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