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Abstract. We demonstrate that the interplay of noise and plasticity
gives rise to slow stochastic fluctuations in a system of two adaptively
coupled active rotators with excitable local dynamics. Depending on the
adaptation rate, two qualitatively different types of switching behav-
ior are observed. For slower adaptation, one finds alternation between
two modes of noise-induced oscillations, whereby the modes are distin-
guished by the different order of spiking between the units. In case of
faster adaptation, the system switches between the metastable states
derived from coexisting attractors of the corresponding determinis-
tic system, whereby the phases exhibit a bursting-like behavior. The
qualitative features of the switching dynamics are analyzed within the
framework of fast-slow analysis.

1 Introduction

In many complex systems, ranging from biology, physics and chemistry to social sci-
ences and engineering, the interaction patterns are not static, but are rather affected
by the states of constituent units [1–4]. This gives rise to complex feedback mecha-
nisms, where the coupling weights adapt to dynamical processes at the units, which in
turn influences the evolution of units itself. Modeling of such systems is based on the
paradigm of adaptive networks, where self-organization unfolds both at the level of
coupling weights and the collective states of the units, typically involving a separation
of characteristic timescales. The faster and the slower timescales are naturally asso-
ciated to the dynamics of units and couplings, respectively, such that the short-term
evolution of the units occurs on a quasi-static network, whereas the slow changes in
coupling weights depend on the time-averaged dynamics of the units. An important
example of adaptive connectivity is provided by neuronal systems, where the strength
of synaptic couplings is adjusted to the underlying spiking activity via spike-time-
dependent plasticity (STDP), a temporally asymmetric form of Hebbian learning [5],
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promoting causal relationship between the spikes of pre- and postsynaptic neurons
[6–8].

Motivated by the research on neuronal systems, in the present paper we study
a simplified model which incorporates the basic ingredients of neurodynamics, such
as excitability, plasticity and noise. The considered system consists of two adap-
tively coupled active rotators, whose intrinsic dynamics is set to excitable regime
and subjected to noise. The plasticity rule is introduced in such a way that one may
continuously interpolate between the coupling dynamics characteristic to Hebbian
learning and STDP. We demonstrate that the interplay of plasticity and noise may
facilitate two qualitatively different forms of slow stochastic fluctuations, depend-
ing on the adaptation rate. While for slower adaptation the self-organized dynamics
consists of switching between the two modes of noise-induced oscillations, in case of
faster adaptation, the switching dynamics comprises metastable states associated to
attractors of the deterministic system.

In the context of neuroscience, one may compare the considered system to a binary
neuron motif. It is well known that the same structural motif, defined at the level
of anatomy, can support multiple functional motifs [9–12], characterized by different
weight configurations and potentially distinct directions of information flow. In these
terms, our study will show that the co-effect of plasticity and noise may (i) contribute
to the emergence of different functional motifs on top of the given structural one and
(ii) trigger slow alternation between the functional motifs.

So far, the co-effects of noise and the STDP plasticity rule have been analyzed in
systems of two coupled neural oscillators, as well as in networks of oscillators. In case
of two units, multistability between different weight configurations has been found,
surprisingly indicating that noise may stabilize configurations of strong bidirectional
coupling absent in the deterministic system [13]. At variance with this, our study
concerns excitable local dynamics and explicitly addresses the slow stochastic fluctu-
ations between metastable states. For networks of adaptively coupled neural or phase
oscillators, the previous research has mainly focused on the impact of plasticity on the
synchronization behavior. In the absence of noise, several generic forms of macroscopic
dynamics have been identified, including desynchronized or partially synchronized
states with weak couplings, as well as cluster states [14–18]. In presence of noise,
an interesting effect of self-organized noise resistance to desynchronization has been
reported in the case of a network of neural oscillators [19]. In networks of excitable
units, the STDP rule has been shown to give rise to oscillating coupling configurations
that facilitate switching between strongly and weakly synchronized states [20–22].

The paper is organized as follows. The details of the model are introduced in
Section 2. An overview of the underlying deterministic dynamics, characterizing the
impact of plasticity on the stationary states and the onset of emergent oscillations,
is provided in Section 3. Section 4 is dedicated to a fast–slow analysis of the deter-
ministic dynamics, whereas in Section 5 are explained the features of the two generic
types of switching behavior. In Section 6 we provide a summary of our main results.

2 Model
We consider a system of two stochastic active rotators interacting by adaptive cou-
plings, where the dynamics of the phases {ϕ1(t), ϕ2(t)} and the coupling weights
{κ1(t), κ2(t)} is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1) +
√
Dξ1

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2) +
√
Dξ2

κ̇1 = ε(−κ1 + sin(ϕ2 − ϕ1 + β))

κ̇2 = ε(−κ2 + sin(ϕ1 − ϕ2 + β)), (1)



Advances in Nonlinear Dynamics of Complex Networks 1079

where ϕ1, ϕ2 ∈ S1, while κ1 and κ2 are real variables. The rotators are assumed to be
identical, having their local dynamics governed by the excitability parameter I0, which
gives rise to a SNIPER bifurcation at I0 = 1. We focus on the excitable regime, such
that I0 = 0.95 is kept fixed throughout the paper. In this case, the uncoupled system
always converges to a steady state, whereas the collective dynamics emerges due to
interaction and noise. The parameter ε� 1 defines the scale separation between the
fast dynamics of the phases and the slow dynamics of adaptation. White noise of
variance D acts only within the subspace of fast variables, whereby the terms ξ1(t)
and ξ2(t) are independent (ξi(t)ξj(t

′) = δijδ(t− t′) for i, j ∈ {1, 2}). In the context of
neuroscience, I0 can be interpreted as external bias current, whereas the impact of
stochastic terms is analogous to that of synaptic noise. Note that the deterministic
version of (1) is symmetric with respect to the exchange of indices 1↔ 2.

The plasticity rule is controlled by the parameter β, which allows one to interpo-
late between the different adaptation modalities. The analogy between the adaptivity
dynamics in classical neuronal systems and the systems of coupled phase oscillators
has been addressed in [14,23,24], whereas a deeper analysis of the correspondence
between the phase-dependent plasticity rules and the STDP has been provided in
[13]. From these studies, it follows that the scenario found for β = 3π/2, where the
stationary weights increase for smaller phase differences and decrease for larger ones
(“like-and-like” form of behavior), qualitatively resembles the Hebbian learning rule
[23,24]. Nevertheless, in the case β = π, the two coupling weights always change in
opposite directions, which may be interpreted as promoting an STDP-like plasticity
rule. In the present paper, we are interested in the β interval between these two limit
cases, since it admits two coexisting excitable fixed points.

3 Deterministic dynamics of the full system

In this section, we analyze the details of the deterministic dynamics of the full
system (1), considering first the stationary states and the associated excitability
feature, and then focusing on the scenario that gives rise to emergent oscillations.

3.1 Stationary states and excitable dynamics

Fixed points (ϕ∗1, ϕ
∗
2, κ
∗
1, κ
∗
2) of the complete system (1) for D = 0 are given by the

solutions of the following set of equations:

sinϕ∗1 − sin(ϕ∗2 − ϕ∗1 + β) sin(ϕ∗2 − ϕ∗1) = I0,

sinϕ∗2 − sin(ϕ∗1 − ϕ∗2 + β) sin(ϕ∗1 − ϕ∗2) = I0, (2)

with

κ∗1 = sin(ϕ∗2 − ϕ∗1 + β),

κ∗2 = sin(ϕ∗1 − ϕ∗2 + β). (3)

Equation (2) can be solved numerically for any fixed parameter set, or numerical
path-following can be applied in order to study the dependence of the fixed points
on the parameters.

The bifurcation diagram in Figure 1 shows how the number and stability of fixed
points of the full system change with β. In particular, depending on β, there may
be two, four or six fixed points. Due to symmetry, the solutions always appear in
pairs of points sharing the same stability features. Since our study concerns plastic-
ity rules which support excitable fixed points, we have confined the analysis to the
interval β ∈ (3.298, 4.495), where the system has two stable fixed points, which lie off
the synchronization manifold ϕ1 = ϕ2. Apart from that, there are also four unstable
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Fig. 1. (a) Bifurcation diagram for the fixed points of system (1) with D = 0 in the
(β, ϕ1, ϕ2) space. (b) Projection of the bifurcation diagram to (β, ϕ1) plane. The two fixed
points independent on β belong to the synchronization manifold: the red (blue) one is
always longitudinally stable (unstable). The solid lines denote stable fixed points, whereas
the dashed and dotted lines denote saddles of unstable dimension 1 and 2, respectively.

fixed points. The bifurcations associated to the boundaries of the given β interval
are as follows: at β = 3.298 the system undergoes a supercritical symmetry-breaking
pitchfork bifurcation where a symmetry related pair of two stable fixed points off the
synchronization manifold is created, whereas at β = 4.495, this pair meets another
pair of unstable fixed points off the synchronization manifold such that both are
annihilated in symmetry related inverse saddle-node bifurcations. For instance, at
β = 4.1, one finds the symmetry related pair of stable foci given by (ϕ1, ϕ2, κ1, κ2) =
(1.177, 0.175, 0.032,−0.92) and (ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Note
that these weight levels support effective master-slave configurations, where one unit
exerts a much stronger influence on the other unit than vice versa.

The two stable asymmetric fixed points in the interval β ∈ (3.298, 4.495) are
excitable, and may exhibit several different types of response to external pertur-
bations, see the classification in Figure 2. Introducing the perturbations by setting
different initial conditions, we plot in Figure 2 the phase dynamics in the fast sub-
space while keeping the weights (κ1, κ2) fixed. Note that in the case where both units
respond with a single spike, the order of firing is such that the unit with larger initial
phase ϕi(0), i ∈ {1, 2} fires first.

3.2 Onset of oscillations

The onset of emergent oscillations in system (1) with D = 0 depends on the interplay
between the plasticity rule, specified by β, and the speed of adaptation, characterized
by ε. A parameter scan indicating the variation of κ1, Aκ1 = max(κ1(t))−min(κ1(t))
in terms of (β, ε) is shown in Figure 3a. The results are obtained by numerical con-
tinuation beginning from a stable periodic solution, such that the final state reached
for a certain set of (β, ε) values provides the initial conditions for the simulation of
the system at incremented parameter values. By this method, we have determined
the maximal stability region of the periodic solution.

One finds that for a fixed β, there actually exists an interval of timescales sep-
aration ε ∈ (εmin, εmax) admitting oscillations, cf. Figure 3b. The periodic solutions
in this interval coexist with the two symmetry-related stable stationary states. One
observes that the threshold εmin reduces with β, whereas the upper boundary value
εmax grows with increasing β. The detailed bifurcation mechanisms behind the onset
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Fig. 2. Modalities of the response to external perturbation for system (1) with D = 0. The
system parameters are I0 = 0.95, ε = 0.01 and β = 4.212, whereas the initial conditions for
the coupling weights are set to κ1(0) = −0.0077, κ2(0) = −0.846. Depending on the initial
phases (ϕ1(0), ϕ2(0)), one may observe the following regimes: (0) no spikes; (1) the unit
with larger ϕ(0) emits one spike and the other does not; (2) both units emit a single spike,
with the unit with larger ϕ(0) firing first; (3) the unit with larger ϕ(0) emits two spikes and
the other unit emits one; (4) both units spike synchronously.

of oscillations and multistability are beyond the scope of this paper, and essentially
involve an interplay between the fast and slow variables.

Enhancing ε under fixed β gives rise to a supercritical symmetry-breaking
pitchfork bifurcation of limit cycles, indicated by PFL in Figure 3b. Below the
bifurcation, the phases ϕ1(t) and ϕ2(t) maintain a small phase-shift, while the
oscillation profiles κi(t), i ∈ {1, 2} are rather different, see Figures 3d and 3e, respec-
tively. Above the bifurcation, the system gains the anti-phase space-time symmetry
ϕ1(t) = ϕ2(t+ T/2), κ1(t) = κ2(t+ T/2) where T denotes the oscillation period, cf.
the associated waveforms in Figures 3g and 3f.

4 Slow-fast analysis of the deterministic dynamics

The deterministic dynamics in case of slow adaptation, corresponding to a strong
timescale separation between the fast and slow variables, may be analyzed within the
framework of standard fast-slow analysis. In general, one may either consider the
layer problem, defined on the fast timescale, or the reduced problem, which concerns
the slow timescale. Within the layer problem, the aim is to determine the fast flow
dynamics ϕ1(t;κ1, κ2), ϕ2(t;κ1, κ2) by treating the slow variables κ1 and κ2 as param-
eters, whereas the reduced problem consists in determining the dynamics of the slow
flow (κ1(t), κ2(t)) (reduced flow) assuming that the fast flow of the layer problem is
either at a stable equilibrium or at the averaged value of a stable regime.

In this section, we first investigate the fast layer problems. Depending on the
values of the slow variables (κ1, κ2), the fast flow can exhibit several attractors, such
that multiple sheets of the slow flow emerge from the averaged dynamics on the
different attractors of the fast flow.
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Fig. 3. Onset of oscillations in the full system (1) for D = 0. In panel (a) is shown how
the variation Aκ1 of coupling weight κ1 changes in the (β, ε) plane. Panel (b) shows how
the mean coupling weights 〈κ1〉 and 〈κ2〉 of oscillatory states (thick lines) change with ε
under fixed β = 4.212. The thin solid lines indicate the stationary state. In panel (c) are
plotted the analogous dependencies for variation of the oscillation. The dotted lines in (b)
and (c) indicate the ε values corresponding to the time traces in Figure 7, whereas the dashed
lines indicate the boundaries of the ε region supporting the stable periodic solutions. The
symmetry-breaking pitchfork bifurcation of limit cycles is denoted by PFL. In panels (d)–(g)
are shown the waveforms of periodic solutions without and with the anti-phase space-time
symmetry, obtained for ε = 0.03 and ε = 0.09, respectively (see the arrows). The excitability
parameter is fixed to I0 = 0.95.

4.1 Dynamics of the fast flow

Within the layer problem, one studies the dynamics of the fast variables

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2), (4)

where κ1, κ2 ∈ [−1, 1] are considered as additional system parameters. Formally,
system (4) is obtained by setting ε = 0 in (1) for D = 0.

The numerically obtained bifurcation diagram in Figure 4a shows that the fast
flow is monostable for most of the (κ1, κ2) values, possessing either an equilibrium or
a limit cycle attractor. The stability boundary of the periodic solution (red curves)
has been obtained by the method of numerical continuation where, beginning from a
stable periodic solution, the initial conditions for incremented parameter values are
given by the final state reached for the previous set of (β, ε) values. The coexistence
between a stable fixed point, lying on the synchronization manifold, and a limit cycle
is found within a small region near the diagonal, see Figure 4a. Let us first classify
the fixed points of the fast flow and then examine the scenarios that give rise to
oscillations.

It can be shown that the fast flow admits either two or four fixed points, with
the associated regions indicated in Figure 4b. In particular, two fixed points FP1 and
FP2 on the synchronization manifold are independent on κ1 and κ2. They are given
by (ϕ∗1, ϕ

∗
2) = (arcsin I0, arcsin I0) and (ϕ∗1, ϕ

∗
2) = (π − arcsin I0, π − arcsin I0). One

may also find two additional fixed points off the synchronization manifold, referred
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Fig. 4. (a) Attractors of the fast flow (4) in terms of κ1 and κ2, now considered as param-
eters. The fast flow is typically monostable, supporting either a stable fixed point (FP)
or a stable limit cycle (LC), apart from a small region around the main diagonal, where it
exhibits bistable behavior. The green dashed curves indicate approximations of two branches
of SNIPER bifurcations, obtained by the method described in the text. The red lines cor-
respond to the numerically determined stability boundaries of the oscillatory solution. (b)
Classification of the fixed points of the fast flow (4). The fixed points are labeled the same
way as in the main text, with their stability indicated as follows: full circles denote stable
fixed points, semi-full circles represent saddle points and white circles correspond to doubly
unstable fixed points. Within the four light-shaded triangular-shaped regions, the doubly
unstable fixed point is a focus, rather than a node. The notation I–VIII refers to parameter
values corresponding to the phase portraits in Figure 5.

to as FP3 and FP4 in Figure 4b. The bifurcations affecting the number and stability
of the fixed points, beginning from the lower left region of the (κ1, κ2) plane, can
be summarized as follows. Along the main diagonal κ1 = κ2, we find two points of
supercritical pitchfork bifurcations (PF), where from the symmetric fixed points the
saddles FP3 and FP4 appear and disappear. Off the main diagonal, the pitchforks
are unfolded into curves of saddle-node (SN) and transcritical bifurcations (TC), see
Figure 4b.

The (κ1, κ2) region featuring stable oscillations almost completely matches the
lower left domain admitting two unstable fixed points. Within this region, each peri-
odic solution obtained for (κ1, κ2) above the main diagonal κ1 = κ2 has a counterpart
in the domain below the main diagonal, related to it by the exchange symmetry of
units indices. Typically, the periodic solutions emerge via SNIPER bifurcations, com-
prising two branches where either κ1 or κ2 remain almost constant and close to zero.
In both cases, the two fixed points that collide and disappear are FP3 and FP4. Nev-
ertheless, such scenarios cannot be maintained in the small (κ1, κ2) region admitting
coexistence between a fixed point and a limit cycle, because the SNIPER bifurcation
is accompanied by a change in the number of fixed points. Our findings suggest that
near the main diagonal, the limit cycle emerges via a heteroclinic bifurcation, where
an orbit connects two saddles lying off the synchronization manifold (not shown).
Note that the orbit of the limit cycle follows the unstable manifold of the saddle
point FP2 on the synchronization manifold. To the left or the right of the main diag-
onal, instead of a heteroclinic bifurcation, one finds homoclinic bifurcations, whereby
a saddle point, either FP3 or FP4, touches the limit cycle orbit. The schematic phase
portraits indicating the stable and unstable manifolds of the fixed points and the limit
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Fig. 5. Schematic phase portraits corresponding to the characteristic regimes of the fast
flow. The panels I–VIII refer to representative parameter values indicated in Figure 4b.
Also, the stability of fixed points is presented the same way as in Figure 4b. The invariant
synchronization manifold is denoted by the red color, whereas the orbit of a stable/unstable
limit cycle is indicated by the solid/dashed blue lines.

cycle for the characteristic regimes of the fast flow, denoted by I–VIII in Figure 4b,
are illustrated in Figure 5.

The two branches of SNIPER bifurcations may readily be approximated for small
values of κ1 and κ2 by a simple scheme, which amounts to reducing the fast flow to
a normal form of saddle-node bifurcation. Suppose first that κ1 � 1 and I0 − 1� 1.
More specifically, let ξ � 1 be a small parameter such that I0 − 1 = ξ (close to the
threshold) and κ1 = γξ, i.e. γ is a rescaling parameter of κ1, allowing for a zoom in
the neighborhood of zero. Then, the steady states are given by the system

1 + ξ − sinϕ1 + ξγ sin(ϕ2 − ϕ1) = 0,

1 + ξ − sinϕ2 + κ2 sin(ϕ1 − ϕ2) = 0. (5)

The first equation in the zeroth order approximation leads to ϕ1 = π/2. Hence, using
the perturbation approach, we have

ϕ∗1 =
π

2
+
√
ξΨ1 + · · · ; ϕ∗2 = Ψ2 + · · · , (6)

where the
√
ξ scaling follows from the Taylor expansion of the function sinϕ1 at π/2.

Inserting (6) into (5), one obtains the system of equations for Ψ1 and Ψ2

1 +
1

2
Ψ2
1 − γ cosΨ2 = 0,

1− sinΨ2 + κ2 cosΨ2 = 0. (7)

From system (7), it is not difficult to see that the saddle-node bifurcation takes place if
the condition 1− γ cosΨ2 = 0 is satisfied. This leads to the parametric representation
κ1 = ξγ = I0−1

cosΨ2
, κ2 = sinΨ2−1

cosΨ2
, of the saddle-node curve for small κ1 values, where

Ψ2 plays the role of the parameter along the curve. An analogous approach may be
used to capture the second branch of saddle-node bifurcations, cf. the green dashed
lines in Figure 4a.
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4.2 Dynamics of the slow flow

We have numerically obtained the dynamics of the slow flow by applying a two-step
approach. First, for fixed values (κ1, κ2), we determine the time-averaged dynamics
of the fast flow (4), 〈ϕ2 −ϕ1〉t = f(κ1, κ2). Here, the averaging 〈·〉t is performed over
a sufficiently large time interval, having eliminated a transient. Hence, this average
depends on the attractor of the fast flow for the given (κ1, κ2). In particular, if the
fast flow possesses a stable fixed point, then 〈ϕ2 − ϕ1〉t = ϕ∗2 − ϕ∗1, where (ϕ∗1, ϕ

∗
2) is

a solution of

I0 − sinϕ∗1 + κ1 sin (ϕ∗2 − ϕ∗1) = 0

I0 − sinϕ∗2 + κ2 sin (ϕ∗1 − ϕ∗2) = 0. (8)

This procedure just results in determining the slow critical manifold of the system.
In case when the attractor of the fast flow is periodic, 〈ϕ2 − ϕ1〉t presents the time
average over the period. Averaging approximation in case of a periodic attractor of
the fast flow constitutes a standard approach [13,25], rather natural for describing
the influence of oscillations in the fast flow on the dynamics of the slow flow. At the
second stage, the obtained time-averages are substituted into the dynamics of the
weights

κ̇1 = ε[−κ1 + sin(f(κ1, κ2) + β)]

κ̇2 = ε[−κ2 + sin(−f(κ1, κ2) + β)]. (9)

The system (9) is used to determine the vector field of the slow flow by taking into
account only the attractors of the fast flow, such that the vector field associated to
each attractor is plotted within its respective stability region, cf. Figure 6.

In regions of the (κ1, κ2) plane where there are coexisting stable solutions of
the fast flow, the corresponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2) depends on the initial
conditions. In our case, this occurs only in a small region of coexistence between an
equilibrium and a stable limit cycle.

One should single out two important features of the slow flow: (i) it exhibits two
symmetry-related fixed points in the green and blue regions in Figure 6, and (ii) the
slow vector field is pointed in opposite directions close to the boundary between the
fast oscillatory regime (orange region) and the steady states of the fast flow (blue,
green and white regions). The latter in particular implies that interesting effects
occur close to the border of the oscillatory and the steady state regime of the fast
flow. Moreover, adding noise gives rise to fluctuations around this boundary, which
leads to switching between the quasi-stationary and the fast spiking dynamics. Such
effects are studied in more detail within the next section.

5 Switching dynamics

Our main observation in this section is that the interplay of plasticity and noise
induces slow stochastic fluctuations (switching dynamics), mediating two qualita-
tively different scenarios depending on the speed of adaptation. The latter include
(i) switching between two modes of noise-induced oscillations for slower adaptation
(small ε ' 0.01) and (ii) switching between multiple coexisting attractors of the
deterministic dynamics for faster adaptation (intermediate ε ' 0.05).

In case (i), the impact of noise is twofold: on a short timescale, it gives rise to spik-
ing dynamics, whereas on a long time scale, it induces random transitions between
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Fig. 6. Vector field of the slow flow obtained by taking into account only stable attractors
of the fast flow for β = 4.212, I0 = 0.95. The color coding is as follows: orange color denotes
the region associated to the stable limit cycle of the fast flow, white stands for the stable
fixed point of the fast flow FP1, whereas blue and green color correspond to the two stable
fixed points FP3 and FP4. Within the light-shaded regions, FP3 and FP4 are foci rather
than nodes, cf. Figure 4b.

the two oscillatory modes. In case (ii), the switching dynamics comprises metastable
states derived from two fixed points, as well as two limit cycles associated to emergent
oscillations of the corresponding deterministic system. The key difference between the
effects (i) and (ii) is that for slower adaptation, the system switches between the oscil-
latory modes that do not exist as deterministic attractors. Moreover, the two generic
types of switching are characterized by distinct phase dynamics: for slower adapta-
tion, one finds alternation of patterns with different order of spiking between the
units, whereas for faster adaptation, the phases effectively exhibit bursting behav-
ior, involving a succession between episodes of spiking and relative quiescence. An
overview on how the typical dynamics of couplings changes with ε at fixed β is pro-
vided in Figure 7. Note that the difference between the average coupling weights of
the stable periodic solutions of the deterministic system are much smaller than a typ-
ical distance between the coupling levels for the stationary states. The prevalence of
metastable states is affected by ε so that intermediate adaptation favors oscillatory
modes, whereas the fast adaptation apparently promotes the two quasi-stationary
states. In the next two subsections, we provide further insight into the mechanisms
behind the switching dynamics using the results of the fast-slow analysis.

5.1 Switching dynamics under slow adaptation

As already indicated, ε is here taken sufficiently small, such that it cannot facilitate
emergent oscillations in the full system (1). For ε ' 0.01 and under appropriate noise
levels, one observes noise-induced oscillations [26]. The latter arise via a scenario
involving a multiple-timescale stochastic bifurcation, whereby noise acts only within
the fast subsystem of (1). The onset of oscillations under increasing D occurs in two
stages. In the first stage, the phase dynamics gradually exhibits more induced spikes,
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Fig. 7. Switching dynamics under variation of ε. The time traces (κ1(t), κ2(t)) are obtained
for fixed I0 = 0.95, D = 0.006, β = 4.212, whereas ε assumes the following values: (a)
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Fig. 8. Switching dynamics between the two modes of noise-induced oscillations. Time traces
of the weights are shown in panel (a), whereas panel (b) and (c) display the corresponding
time traces of the phases during the intervals between the dashed lines in panel (a). In panel
(d), the (κ1(t), κ2(t)) projections of the orbits associated to each of the two modes (blue
color), as well as the switching episode, shown in white, are superimposed to the vector field
of the slow flow from Figure 6. The shaded area corresponds to the stable limit cycle. The
system parameters are I0 = 0.95, β = 4.212, ε = 0.01, D = 0.009.

such that the stationary distributions of phases eventually acquire a longer tail reflect-
ing the occurrence of spikes (not shown). Nevertheless, the stationary distributions
P (κi) change appreciably only at the second stage, which takes place for sufficiently
large D. Such a change accompanies the emergence of coupling oscillations. Note that
the system (1) actually exhibits two modes of noise-induced oscillations, character-
ized by the different order of firing between the two units, cf. the time traces of phase
dynamics and the associated evolution of couplings in Figure 8a.

It is interesting to examine whether the vector field of the slow flow from
Section 4.2 can be used to explain the slow stochastic fluctuations of the coupling
weights. To this end, we have superimposed the (κ1(t), κ2(t)) orbits of the two noise-
induced modes, as well as a switching episode, to a vector field of the slow flow from
Figure 6. Note that the orbits typically lie close to the boundary outlining the tran-
sition between the two attractors of the fast flow, featuring non-negligible coupling
weights. Moreover, the two modes are confined to small areas of the (κ1, κ2) plane
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Fig. 9. Time traces of the phases (a) and weights (b) associated to noise-induced switching
between the coexisting attractors of the deterministic system. The results are obtained for
I0 = 0.95, β = 4.212, ε = 0.05, D = 0.004. In panel (c) is provided the deterministic dynamics
of weights obtained for the same parameter values. In panel (d), the (κ1(t), κ2(t)) orbit
corresponding to the interval between the dashed lines in (b) is super-imposed on the vector
field of the slow flow cf. Figure 6.

symmetrical with respect to the main diagonal κ1 = κ2, whereas the switching episode
virtually takes place on the diagonal. Apparently, the noise-induced modes occupy
regions where the oscillations in the fast flow emerge via homoclinic bifurcations,
rather than the SNIPER scenario. Nonetheless, the switching episode seems to involve
the domain featuring coexistence of the two stable sheets of the slow vector field.
Within these sheets, which correspond to two attractors of the fast flow (a stable
node and a stable limit cycle), the vector fields are oriented in opposite directions,
thereby contributing to switching.

5.2 Switching dynamics for faster adaptation

In case of faster adaptation associated to intermediate ε, the switching dynamics
involves four metastable states, derived from the attractors of the deterministic
system. The deterministic multistable behavior includes two symmetry-related sta-
tionary states, as well as two symmetry-related limit cycles. Note that while the two
stable steady states exist for arbitrary small ε and are therefore visible in the slow
flow in Figure 6, the oscillatory solutions disappear for small ε and hence cannot
be observed in the slow flow. The two oscillatory regimes are characterized by the
same phase shift, but the reverse order of firing between the two units. Influenced by
noise, the phases effectively engage in bursting behavior, manifesting slow stochas-
tic fluctuations between episodes of intensive spiking activity and periods of relative
quiescence, see Figure 9a. For a fixed noise level, the prevalence of metastable states,
defined by transition probabilities between them, changes with adaptation speed. One
observes that for ε ' 0.05, the oscillatory dynamics is preferred, whereas for ε ' 0.1,
the quasi-stationary states are more ubiquitous.

A comparison of the (κ1, κ2) orbits displaying switching dynamics and the vec-
tor field of the slow flow from Figure 6 again shows that the former is confined
to the criticality region at the boundary between the stationary and oscillatory
regimes in the fast flow, cf. Figure 9. One should remark on how the transitions
between the different metastable states take place. In particular, from Figure 9b, it is
clear that there can be no direct transitions between the two quasi-stationary states,
but they rather have to be mediated by the system passing through the oscillatory
states. Also, the transition from oscillatory to quasi-stationary states typically occurs
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once the couplings approach a master-slave-like configuration, where the coupling in
one direction is much stronger than the other one. This scenario coincides with the
SNIPER bifurcation of the fast flow described in Section 4.1. The scenario of tran-
sition between the two metastable oscillatory states resembles closely the one from
Section 5.2.

6 Summary

In the present study, we have analyzed a system of two adaptively coupled active
rotators with excitable intrinsic dynamics, demonstrating that the interplay of plas-
ticity and noise may give rise to slow stochastic fluctuations. Two qualitatively
different types of self-organized behavior have been identified, depending on the adap-
tation speed. For slower adaptation, the switching dynamics consists of an alternation
between two modes of noise-induced oscillations, associated to a preferred order of
spiking between the two units. In this case, noise plays a twofold role: on one hand, it
perturbs the excitable local dynamics giving rise to oscillations on a short timescale,
whereas on the other hand, it elicits the alternation between the two oscillatory states
on a long timescale. The underlying phase dynamics shows slow switching between
two patterns distinguished by the different order in which the units are spiking. In
case of faster adaptation, the coupling becomes capable of eliciting emergent oscilla-
tions in the deterministic system [27]. The latter then exhibits complex multistable
behavior, involving two stationary and two oscillatory regimes. Under the influence
of noise, the system undergoes switching between these four different metastable
states, whose prevalence at fixed noise level depends on the speed of adaptation. The
deterministic attractors associated to metastable states are related by the Z2 symme-
try. Thus, a mismatch in excitability parameters would lead to symmetry-breaking,
whereby a small mismatch would induce a bias in switching dynamics, whereas a
larger mismatch, corresponding to a scenario with one excitable and one oscillatory
unit, would completely alter the observed dynamics.

Though the underlying phenomena are not found in the singular limit of infinite
scale separation, the fast-slow analysis we have applied still allows one to explain
the qualitative features of both considered types of switching behavior. Studying the
layer problem, and in particular the vector field of the slow flow, has enabled us to
gain insight into the metastable states and the transitions between them. It has been
demonstrated that the coupling dynamics is always in a state of “criticality”, being
confined to the boundary between the stationary and oscillatory regimes of the fast
flow.

Given that excitability, plasticity and noise are inherent ingredients of neuronal
systems, the obtained results can be interpreted in the context of neuroscience. It is
well known that the backbone of neural networks is made up of binary and ternary
neuron motifs, whereby the structural motifs typically support multiple functional
motifs, essentially characterized by the weight configuration and the underlying direc-
tion of the information flow. With this in mind, the scenario of switching under slow
adaptation may be important, because it implies that a binary motif can display slow
alternation between two effectively unidirectional weight configurations, promoting
opposite direction of information flow. For faster adaptation, one finds multistabil-
ity between unidirectional coupling and bidirectional coupling of moderate strength.
Nonetheless, the underlying phase dynamics, if extended to networks, may be con-
sidered as a paradigm for UP-DOWN states, typical for cortical dynamics [28,29].
Thus, it would be of interest to examine the impact of plasticity in networks of
noisy excitable units, where one may expect different types of emergent behavior,
such as cluster, non-synchronized and partially synchronized states, depending on
the frustration of local dynamics and the impact of noise.
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