Chaos

ARTICLE scitation.org/journal/cha

Two paradigmatic scenarios for inverse stochastic

resonance

Cite as: Chaos 30, 033123 (2020); doi: 10.1063/1.5139628
Submitted: 22 November 2019 - Accepted: 4 March 2020 -

Published Online: 16 March 2020

® th ®

View Online Export Citation CrossMark

Iva Baci¢ and Igor Franovi¢®

AFFILIATIONS

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia

@ Author to whom correspondence should be addressed: franovic@ipb.ac.rs

ABSTRACT

Inverse stochastic resonance comprises a nonlinear response of an oscillatory system to noise where the frequency of noise-perturbed oscilla-
tions becomes minimal at an intermediate noise level. We demonstrate two generic scenarios for inverse stochastic resonance by considering
a paradigmatic model of two adaptively coupled stochastic active rotators whose local dynamics is close to a bifurcation threshold. In the
first scenario, shown for the two rotators in the excitable regime, inverse stochastic resonance emerges due to a biased switching between the
oscillatory and the quasi-stationary metastable states derived from the attractors of the noiseless system. In the second scenario, illustrated
for the rotators in the oscillatory regime, inverse stochastic resonance arises due to a trapping effect associated with a noise-enhanced stabil-
ity of an unstable fixed point. The details of the mechanisms behind the resonant effect are explained in terms of slow-fast analysis of the

corresponding noiseless systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139628

The effects of noise may generically be classified into two groups:
on the one hand, the noise may enhance or suppress certain fea-
tures of deterministic dynamics by acting on the system states
in an inhomogeneous fashion, while on the other hand, it may
give rise to novel forms of behavior, associated with crossing
of thresholds and separatrices or to a stability of determinis-
tically unstable states. The constructive role of noise has been
evinced in a wide range of real-world applications, from neural
networks and chemical reactions to lasers and electronic circuits.
The classical examples of stochastic facilitation concern the res-
onant phenomena, including stochastic resonance, where noise
of appropriate intensity may induce oscillations in bistable sys-
tems that are preferentially locked to a weak periodic forcing,
and coherence resonance, where an intermediate level of noise
may trigger coherent oscillations in excitable systems. Recently, a
novel form of nonlinear response to noise, called inverse stochas-
ticresonance (ISR), has been discovered while studying individual
neural oscillators and models of neuronal populations. It has
come to light that noise may reduce the intrinsic spiking fre-
quency of neuronal oscillators, transforming the tonic firing into
a bursting-like activity or even quenching the oscillations. Within
the present study, we demonstrate two paradigmatic mechanisms
of inverse stochastic resonance, one based on biased switching

between the metastable states, and the other associated with a
noise-enhanced stability of an unstable fixed point. We show that
the effect is robust, in a sense that it may emerge in coupled
excitable and coupled oscillatory systems, and both in cases of
Type I and Type II oscillators.

I. INTRODUCTION

Noise in excitable or multistable systems may fundamentally
change their deterministic dynamics, giving rise to qualitatively
novel forms of behavior, associated with crossing of thresholds
and separatrices, or stabilization of certain unstable structures."”
The emergent dynamics may involve noise-induced oscillations
and stochastic bursting,’ switching between metastable states,*’
or noise-enhanced stability of metastable and unstable states,”'* to
name but a few. In neuronal systems, the phenomena reflecting the
constructive role of noise are collected under the notion of stochas-
tic facilitation,'*~'* which mainly comprises the resonant effects. The
most prominent examples concern coherence resonance, *~*’ where
the regularity of noise-induced oscillations becomes maximal at a
preferred noise level, and stochastic resonance,'”’' where the sen-
sitivity of a system to a subthreshold periodic stimulation becomes
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maximal at an intermediate noise level. Recent studies on the impact
of noise in neuronal oscillators have revealed that the noise may
also give rise to an inhibitory effect, which consists in reducing
the intrinsic spiking frequency such that it becomes minimal at
an intermediate noise intensity.'>””~"" This effect has been called
inverse stochastic resonance (ISR), but in contrast to stochastic res-
onance, it concerns autonomous rather than periodically driven
systems. Apart from reports in models of neurons and neuronal
populations, ISR has recently been evinced for cerebellar Purkinje
cells in vitro,” having shown how the lifetimes of the so-called UP
states with elevated spiking activity and the DOWN states of relative
quiescence”'~** depend on the noise intensity.

The studies of the mechanism behind ISR have so far mostly
been focused on Type II neural oscillators with bistable dynam-
ics poised close to a subcritical Hopf bifurcation,'***~* considering
Hodgkin-Huxley and Morris-Lecar models. Under the influence of
noise, such systems exhibit switching between the two metastable
states, derived from the periodic and the stationary attractor of the
deterministic dynamics. At an intermediate noise level, one observes
that the switching rates become strongly asymmetric, with the sys-
tem spending substantially more time in a quasi-stationary state.
This is reflected in a characteristic non-monotone dependence of
the spiking frequency on noise, which is a hallmark of ISR.

Nevertheless, a number of important issues on the mechanism
giving rise to ISR have remained unresolved. In particular, is the
effect dependent on the type of neuronal excitability? Also, can there
be more than a single mechanism of ISR? And finally, how does the
effect depend on the form of couplings and whether it can be robust
for adaptively changing couplings, typical for neuronal systems?

To address these issues, we invoke a simple, yet paradig-
matic model that combines the three typical ingredients of neuronal
dynamics, including excitability, noise, and coupling plasticity. In
particular, we consider a system of two identical, adaptively coupled

active rotators®*”’* influenced by independent Gaussian white noise
sources

@i = lo — sin g; + k; sin (¢; — @) + V/DE(D),
Ki = &(—kK; + sin(¢; — @i + B)).

1

The indices i,j € {1,2},i # j denote the particular units, described
by the respective phases {¢;,¢,} € S', which constitute the fast
variables and the slowly varying coupling weights {«;,«,} € R.
The scale separation between the characteristic timescales is set by
the small parameter ¢ < 1 that defines the adaptivity rate. The
local dynamics is controlled by the excitability parameter I, such
that the saddle-node of infinite period (SNIPER) bifurcation at
Iy = 1 mediates the transition between the excitable (I, < 1) and
the oscillatory regimes (I, > 1). The excitable units may still exhibit
oscillations, induced either by the action of the coupling (emergent
oscillations) and/or evoked by the stochastic terms (noise-induced
oscillations). The noiseless coupled system (1) is invariant with
respect to exchange of the units’ indices such that all the station-
ary or the periodic solutions always appear in pairs connected by the
Z, symmetry. Given the similarity between the active rotators and
the theta neurons, which also conform to Type I excitability, sys-
tem (1) may be considered qualitatively analogous to a motif of two
adaptively coupled neurons,” influenced by an external bias current
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Iy and the synaptic noise. Adaptivity is modeled in terms of phase-
dependent plasticity’**=*" of coupling weights, having the modality
of the plasticity rule adjusted by parameter 8. This form of plastic-
ity has already been shown to be capable of qualitatively reproducing
the features of some well-known neuronal plasticity rules.””* In par-
ticular, for B = 3m/2, one recovers Hebbian-like learning," where
the synaptic potentiation promotes phase synchronization, while for
B = m, adaptation acts similarly to spike-timing-dependent plastic-
ity (STDP),"~*° whose typical form™* favors a causal relationship
between the pre- and post-synaptic neuron firing times.”"’

Il. INVERSE STOCHASTIC RESONANCE DUE TO A
BIASED SWITCHING

The first generic scenario for ISR we demonstrate is based
on biased switching between the metastable states associated with
coexisting stationary and periodic attractors of the correspond-
ing deterministic system. As an example, we consider the noise-
induced reduction of frequency of emergent oscillations on a motif
of two adaptively coupled stochastic active rotators with excitable
local dynamics (I, = 0.95). To elucidate the mechanism behind
the effect, we first summarize the details of the noise-free dynam-
ics and then address the switching behavior. A complete bifur-
cation analysis of the noiseless version of (1) with excitable local
dynamics has been carried out in Refs. 6 and 29, having shown
(i) how the number and stability of the fixed points depends on
the plasticity rule, characterized by B, as well as (ii) how the inter-
play between B and the adaptivity rate, controlled by the small
parameter &, gives rise to limit cycle attractors. Our focus is on
the interval 8 € (3.298,4.495), which approximately interpolates
between the limiting cases of Hebbian-like and STDP-like plastic-
ity rules. There, the system exhibits two stable equilibria born from
the symmetry-breaking pitchfork bifurcation and has four addi-
tional unstable fixed points. For the particular case 8 = 4.2 analyzed
below, the two stable equilibria, given by EQl:= (¢}, ¢5, k], k)
= (1.2757,0.2127, —0.0078, —0.8456) and EQ:= (¢}, ¢}, k], k})
= (0.2127,1.2757, —0.8456, —0.0078), have been shown to manifest
excitable behavior.

The onset of emergent oscillations, as well as the coexis-
tence between the stable stationary and periodic solutions in the
noiseless version of (1), is illustrated in Fig. 1. The maximal sta-
bility region of the two Z, symmetry-related periodic solutions is
indicated in Fig. 1(a), which shows the variation of «; variable,
0., = max(k;(t)) — min(k;(#)), in the (B, ¢) parameter plane. The
scan was performed by the method of numerical continuation start-
ing from a stable periodic solution such that the initial conditions for
an incremented parameter value are given by the final state obtained
for the previous iteration step. One finds that for a given B, there
exists an interval € € (€min, Emax) Of intermediate scale-separation
ratios supporting the oscillations, cf. the highlighted region in
Fig. 1(b). In particular, the two Z,-symmetry related branches of sta-
ble periodic solutions emanate from the fold of cycles bifurcations,
denoted by FC in Fig. 1(b) such that the associated threshold scale-
separation &y, (8) decreases with 8. The two branches of oscilla-
tory solutions merge around ¢ = 0.06, where the system undergoes
an inverse pitchfork bifurcation (PFC) of limit cycles. The incipi-
ent stable limit cycle acquires the anti-phase space-time symmetry
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¢1(t) = (ﬂz(t + Tosc/z)) Kl(t) = KZ(t + Tasc/z)) with Tosc denOting
the oscillation period.® An example illustrating the basins of stability
of stationary and oscillatory solutions for ¢ = 0.1, obtained by fixing
the initial values of phases and varying the initial coupling weights
within the range «;;,; € (—1,1), is shown in Fig. 1(c). In the pres-
ence of noise, the coexisting attractors of the deterministic system
turn to metastable states, which are connected by the noise-induced
switching.

Inverse stochastic resonance manifests itself as the noise-
mediated suppression of oscillations, whereby the frequency of
noise-perturbed oscillations becomes minimal at an intermediate
noise level. For the motif of two adaptively coupled excitable active
rotators, such characteristic non-monotone dependence on noise is
generically found for intermediate adaptivity rates supporting mul-
tistability between the stationary and the oscillatory solutions. A
family of curves illustrating the dependence of the oscillation fre-
quency on noise variance (f)(D) for a set of different ¢ values
is shown in Fig. 2(a). The angular brackets (-) refer to averaging
over an ensemble of a 100 different stochastic realizations, having
fixed a set of initial conditions within the basin of attraction of
the limit cycle attractor. Nonetheless, qualitatively analogous results
are recovered if for each realization of the stochastic process, one
selects a set of random initial conditions lying within the stability
basin of a periodic solution. In Ref. 29, we have shown that the
noise-induced switching gives rise to a bursting-like behavior, where
the spiking is interspersed by the quiescent episodes which corre-
spond to the system residing in the vicinity of the quasi-stationary
metastable states. Such episodes become prevalent at the noise lev-
els around the minimum of ( f) (D). For weaker noise D < 1073, the
frequency of emergent oscillations remains close to the determinis-
tic one, whereas for a much stronger noise, it increases above that of
unperturbed oscillations. One observes that the suppression effect
of noise depends on the adaptivity rate such that it is enhanced for
faster adaptivity, see Ref. 29 for a more detailed analysis. In order to
illustrate how the ISR effect is reflected at the level of the dynamics
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of coupling weights, in Figs. 2(b)-2(d) are shown the stationary
distributions P(k,) for the noise levels below, at, and above the reso-
nant level. To provide a reference to the deterministic case, we have
denoted by the dashed-dotted lines the weight levels associated with
the two equilibria EQ1 and EQ2, while the blue shading indicates
the variation o, of the stable limit cycle. Note that the stable periodic
solution is unique because for the considered ¢ value, the determin-
istic system lies above the pitchfork of cycles bifurcation, cf. PFC
in Fig. 1(b). The stationary distribution P(k;) at the resonant noise
expectedly shows a pronounced peak at one of the quasi-stationary
states, while the distributions below or above the resonant noise level
indicate a high occupancy of the oscillatory metastable state.

In order to elucidate the mechanism behind ISR, we have cal-
culated how the fraction of the total time spent at the oscillatory
metastable states, Tos:/T1or» changes with noise. In terms of numeri-
cal experiments, the quasi-stationary and the oscillatory metastable
states can readily be distinguished by considering the correspond-
ing k;(t) series, using the fact that the typical distance |« (f) — k2 (f)]
is much larger for the quasi-stationary than the oscillatory solu-
tions. This has allowed us to employ a simple threshold method
to identify the particular system’s states and trace the associated
transitions. Figure 3(a) indicates a non-monotone dependence of
Tose/ Tiot (D), implying that the switching process around the reso-
nant noise level becomes strongly biased toward the quasi-stationary
state, even more so for a faster adaptivity. The biased switching is
facilitated by the geometry of the phase space, featuring an asymmet-
rical structure with respect to the separatrix between the coexisting
attractors such that the limit cycle lies much closer to the separatrix
than the stationary states.

The nonlinear response to noise may be understood in terms
of the competition between the transition processes from and to the
limit cycle attractor. These processes are characterized by the tran-
sition rates from the stability basin of the limit cycle attractor to
that of the stationary states yyc_, p and vice versa, yrp_, 1, which are
numerically estimated as the reciprocal values of the corresponding
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FIG. 1. Emergent oscillations in (1) for ly = 0.95, D = 0. (a) Variation o, of the coupling weight «+ in the (8, &) plane. (b) Dependencies o, (¢),i € {1, 2} for the repre-
sentative stationary (blue) and oscillatory solution (red and green refer to the two units) at fixed 8 = 4.2. Shading indicates the ¢ interval that supports multistability between
the two symmetry-related stable equilibria and the limit cycle attractor(s). FC and PFC denote the ¢ values where the fold of cycles and pitchfork of cycles occur. (c) Basins of
stability of the stationary (FP, blue) and oscillatory solutions (LC, yellow) in the (1, «2) plane, obtained by fixing the initial phases to (¢1, ¢2) = (1.32,0.58). The remaining

parameters are B = 4.2,¢ = 0.1.
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FIG. 2. (a) Dependencies of the mean oscillation frequency on noise for scale separation ¢ = 0.06 (diamonds), ¢ = 0.08 (circles) and ¢ = 0.1 (squares), obtained for
fixed Iy = 0.95, B = 4.2. Averaging has been performed over an ensemble of 100 different stochastic realizations. (b)—(d) show the stationary distributions P(«1) below
(D = 0.001), at (D = 0.0025), and above (D = 0.009) the resonant noise intensity for ¢ = 0.1. The dashed-dotted lines denote the 1 levels associated with the two stable
equilibria, «;*(EQ1) and «; (EQ2), while the blue shaded interval indicates the variation o, of the unique stable periodic solution.

mean first-passage times.” In Figs. 3(b) and 3(c) is illustrated the
qualitative distinction between the noise-dependencies of the tran-
sition rates: while y;cpp displays a maximum at the resonant
noise level, ypp_,1c just increases monotonously with noise. For
small noise D < 1073, one observes virtually no switches to the
quasi-stationary state, as evinced by the fact that the correspond-
ing oscillation frequency is identical to the deterministic one. For
increasing noise, the competition between the two processes is
resolved in such a way that at an intermediate/large noise, the impact
of yrc—rp/Vrr—1c becomes prevalent. The large values of ypp_ ¢
found for quite strong noise D 2 0.04 reflect the point that the sys-
tem there spends most of the time in the oscillatory metastable state,
making only quite short excursions to the quasi-stationary state.
Though ISR is most pronounced for intermediate ¢, it turns
out that an additional subtlety in the mechanism of biased switching
may be explained by employing the singular perturbation theory to

the noiseless version of (1). In particular, by combining the critical
manifold theory" and the averaging approach,” one may demon-
strate the facilitatory role of plasticity in enhancing the resonant
effect, showing that the adaptation drives the fast flow toward the
parameter region where the stationary state is a focus rather than
a node.” The response to noise in multiple timescale systems has
already been indicated to qualitatively depend on the character
of the stationary states, yielding fundamentally different scaling
regimes with respect to noise variance and the scale-separation
ratio.”’~* Intuitively, one expects that the resonant effects should be
associated with the quasi-stationary states derived from the focuses
rather than the nodes™ because the local dynamics then involves an
eigenfrequency.

The fast-slow analysis of (1) for Iy = 0.95 has been carried
out in detail in Refs. 6 and 29 such that here we only summa-
rize the main results concerning the associated layer and reduced
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FIG. 3. (a) Fraction of the time spent at the oscillatory metastable state Tys;/ Tyt @s a function of noise for ¢ = 0.06 (circles) and & = 0.08 (squares). (b) and (c) Numerically
estimated transition rates from the oscillatory to the quasi-stationary metastable states, yic_.rr(D) and vice versa, yep_..c(D). The remaining parameters are Iy = 0.95,

B =42
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FIG. 4. (a) Fast-slow analysis of (1) for Iy = 0.95, D = 0. The fast flow exhibits a periodic attractor (grey shaded region) and a stable equilibrium (white region), with two
branches of SNIPER bifurcations (red lines) outlining the boundary between them. The arrows indicate the vector fields corresponding to the stable sheets of the slow flow.
The inset shows «;(t) series corresponding to a switching episode from the oscillatory to the stationary state and back, obtained for ¢ = 0.06, 8 = 4.2. The corresponding
(k1 (), k2 (t)) orbit is indicated by the blue line. Within the two orange regions, the two stable equilibria are focuses rather than the nodes. (b) Conditional probability pg (D)
of having the crossing of SNIPER bifurcation followed by a visit to the orange-shaded region from (a), obtained for ¢ = 0.06 (squares) and ¢ = 0.1 (circles).

problems."® Within the layer problem, the fast flow dynamics

¢1=1Ip — singy + k1 sin (92 — 1), 2)

$2 = Ip — singy + Ky sin (91 — ¢2)
is considered by treating the slow variables ki, k, € [—1, 1] as addi-
tional system parameters. Depending on «; and k,, the fast flow
dynamics is found to be almost always monostable, exhibiting either
a stable equilibrium or a limit cycle attractor, apart from a small
region of bistability between the two.®*’ The maximal stability region
of the oscillatory regime, encompassing both the domain where the
oscillatory solution is monostable and where it coexists with a sta-
ble equilibrium, is indicated by the gray shading in Fig. 4(a). The
latter has been determined by the method of numerical continua-
tion, starting from a periodic solution. The thick red lines outlining
the region’s boundaries correspond to the two branches of SNIPER
bifurcations.® Note that for each periodic solution above the main
diagonal «; = k», there exists a Z, symmetry-related counterpart
below the diagonal.

By averaging over the different attractors of the fast flow
dynamics, we have obtained multiple stable sheets of the slow flow."
The explicit procedure consists in determining the time average
(@2 — @1)r = h(ky, k2) by iterating (2) for each fixed set («y,k,)*"
and then substituting these averages into the equations of the slow
flow

K; = [~k + sin(h(ky, k3) + B)],

, (3
Ky, = [_KZ + Sin(_h(KI) KZ) + ,6)])

where the prime refers to a derivative over the rescaled time variable
T := t/e. The arrows in Fig. 4(a) show the vector fields on the two
stable sheets of the slow flow (3) associated with the stationary and
the periodic attractors of the fast flow.

The performed fast-slow analysis has allowed us to gain a
deeper insight into the facilitatory role of adaptivity within the

ISR. In particular, in the inset of Fig. 4(a) are extracted the time
series (k1 (1), k2(¢)), which (from left to right) illustrate the switch-
ing episode from an oscillatory to the quasi-stationary metastable
state. The triggering/termination of this switching event is asso-
ciated with an inverse/direct SNIPER bifurcation of the fast flow.
Note that for (ky,x,) values immediately after the inverse SNIPER
bifurcation, the stable equilibrium of the fast flow is a node. Never-
theless, for the noise levels corresponding to the most pronounced
ISR effect, the coupling dynamics guides the system into the trian-
gular orange-shaded regions in Fig. 4(a), where the equilibrium is
a stable focus rather than a node. We have verified that this fea-
ture is a hallmark of ISR by numerically calculating the conditional
probability pr that the events of crossing the SNIPER bifurcation
are followed by the system’s orbit visiting the («;, «,) regions with
a focus equilibrium. The pr(D) dependencies for two characteris-
tic & values in Fig. 4(b) indeed show a maximum for the resonant
noise levels, corresponding to the minima of the frequency depen-
dencies in Fig. 2(a). The local dynamics around the focus gives rise
to a trapping effect such that the phase variables remain for a longer
time in the associated quasi-stationary states than in case where the
metastable states derive from the nodes of the fast flow. Small noise
below the resonant values is insufficient to drive the system to the
regions featuring focal equilibria, whereas for too strong noise, the
stochastic fluctuations completely take over, washing out the quasi-
stationary regime. The trapping effect is enhanced for the faster
adaptivity rate, as evinced by the fact that the curve pr(D) fore = 0.1
lies above the one for ¢ = 0.06.

11l. INVERSE STOCHASTIC RESONANCE DUE TO A
TRAPPING EFFECT

As the second paradigmatic scenario for ISR, we consider the
case where the oscillation frequency is reduced due to a noise-
induced trapping in the vicinity of an unstable fixed point of the
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FIG. 5. Family of dependencies ( f )(D) for scale separations ¢ € {0.005, 0.02,
0.05,0.09,0.2} at fixed Iy = 1.05, 8 = 7. Stochastic averaging has involved an
ensemble of 100 different process realizations.

noiseless system. Such a trapping effect may be interpreted as an
example of the phenomenon of noise-enhanced stability of an unsta-
ble fixed point.”'* This mechanism is distinct from the one based
on biased switching because there the quasi-stationary states derive
from the stable equilibria of the noise-free system such that the noise
gives rise to crossing over the separatrix between the oscillatory
and the quiescent regime. Nevertheless, in the scenario below, noise
induces “tunneling” through the bifurcation threshold, temporarily
stabilizing an unstable fixed point of the deterministic system.

In particular, we study an example of a system (1) comprised of
two adaptively coupled active rotators in the oscillatory, rather than
the excitable regime, setting the parameter I, = 1.05 close to a bifur-
cation threshold. The plasticity parameter is fixed to 8 = 7 such
that the modality of the phase-dependent adaptivity resembles the
STDP rule in neuronal systems. One finds that this system exhibits a
characteristic non-monotone response to noise, with the oscillation
frequency of the phases (f) displaying a minimum at an intermedi-
ate noise level (see Fig. 5). In contrast to the mechanism described
in Sec. 11, the onset of ISR here does not qualitatively depend on the
adaptivity rate. One only finds a quantitative dependence of the sys-
tem’s nonlinear response to noise on ¢, in a sense that the resonant
noise level shifts to larger values with increasing &. Our exhaus-
tive numerical simulations indicate that the ISR effect persists for
slow adaptivity rates, cf. the example of the (f(D)) for ¢ = 0.005 in
Fig. 5, and the results of the fast-slow analysis below will further
show that all the ingredients required for the ISR effect remain in
the singular perturbation limit ¢ — 0. The persistence of the ISR
effect has also been numerically confirmed for faster adaptivity rates
& ~ 0.1. In this case, we have observed that the minima of the { (D))
curves become deeper with ¢, suggesting that the ISR becomes more
pronounced for higher adaptivity rates.

To elucidate the mechanism behind ISR, we again perform
the fast-slow analysis of the corresponding noise-free system. Prior
to this, we briefly summarize the results of the numerical bifur-
cation analysis for the noiseless system in the case of finite scale
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separation. First note that selecting a particular plasticity rule 8 =
confines the dynamics of the couplings to a symmetry invariant sub-
space k1 (f) = —k,(t) = k (t). Due to this, the noiseless version of the
original system (1) can be reduced to a three-dimensional form

¢1 = Iy — sing; + « sin (¢, — ¢1),
@y = Iy — sing, + « sin (@, — ¢1), (4)
K = &(—k —sin(p2 — ¢1))-

By numerically solving the eigenvalue problem, we have verified
that (4) possesses no stable fixed points, but rather a pair of sad-
dle nodes and a pair of saddle focuses. Also, we have determined
that the maximal real part of the eigenvalues of the focuses displays
a power-law dependence on the scale separation, tending to zero
in the singular limit ¢ — 0. Concerning the oscillatory states, our
numerical experiments show that (4) exhibits multistability between
three periodic solutions, whereby two of them are characterized by
the non-zero couplings and a constant phase-shift between the fast
variables, whereas the third solution corresponds to a case of effec-
tively uncoupled units [« (f) = 0] and the fast variables synchronized
in-phase.

A deeper understanding of the ingredients relevant for the
trapping mechanism can be gained within the framework of the
fast-slow analysis, considering the layer problem

¢, = Iy — sing; + « sin (@, — ¢1), %)
¢y = Iy — sing, + k sin (¢, — @1).

Treating k € [—1, 1] as an additional system parameter, we first look
for the stationary and periodic attractors of the fast flow. It is con-
venient to apply the coordinate transformation (¢, ¢;) = (P, @)
= (92, 99 rewriting (5) as

8¢ = —sindg cos D,
‘ , , ©)
® = Iy — cosdp(sin @ + 2« sin ).

From the second equation, one readily finds that the fast flow cannot
possess any fixed points on the synchronization manifold §¢ = 0
because Iy > 1 such that the stationary solutions derive only from
the condition cos ® = 0. A numerical analysis shows that, depend-
ing on «, the fast flow for I, 2 1 can exhibit two or no fixed
points. For the particular value I, = 1.05, one finds that two fixed
points, namely, a saddle and a center, exist within the interval « €
[—0.1674,0.1674]. The appearance of a center point is associated
with the time-reversal symmetry of the fast flow (5). Indeed, one
may show that the fast flow is invariant to a symmetry-preserving
map R of the form

Q1 —> T — ¢
R=Jp,—>7m—q, (7)

t— —t.

Note that in case of the finite scale separation, the counterpart of
the center point of the fast flow is a weakly unstable focus of the
complete system (4).

The structure of the fast flow is organized around the saddle-
center bifurcation, which occurs at k = kgc = —0.1674. There, the
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FIG. 6. Typical dynamics of the fast flow (5) for Iy = 1.05
below (« = —0.8) and above the saddle-center bifurcation
(k = —0.08) are illustrated in (a) and (b), respectively. In (a),
the system possesses two unstable fixed points, a saddle (SP)
and a center (CP), and exhibits three types of closed orbits:
a limit cycle attractor (orange), homoclinic connections to SP
(blue and green), and subthreshold oscillations around the cen-
ter (purple). In (b), the system exhibits bistability between two
oscillatory states, shown in orange and blue.

two fixed points get annihilated as a homoclinic orbit associated
with the saddle collapses onto the center. To gain a complete pic-
ture of the dynamics of the fast flow, we have shown in Figs. 6(a)
and 6(b) the illustrative examples of the phase portraits and the
associated vector fields for ¥ < «sc and « > K, respectively. For
k € [—1,ksc), the fast flow possesses a limit cycle attractor, essen-
tially derived from the local dynamics of the units, cf. the orbit
indicated in red in Fig. 6(a). Apart from an attracting periodic
orbit, one observes two additional types of closed orbits, namely, the
homoclinic connections to the saddle point (SP), shown by blue and

04—

(a)!

4000 4200 4400 4600

green, as well as the periodic orbits around the center point (CP), an
example of which is indicated in orange. For k > kg, the fast flow
exhibits bistability between two oscillatory solutions, such that there
is a coexistence of a limit cycle inherited from the local dynamics
of units and the limit cycle associated with the former homoclinic
orbits, cf. Fig. 6(b).

In the presence of noise, the described attractors of the fast
flow turn to metastable states. Nevertheless, in contrast to the case
of two adaptively coupled excitable units, the slow stochastic fluc-
tuations here do not only involve switching between the metastable

4200 4400

t

3800 4000 4600

FIG. 7. (a) and (b) show the time traces of «;(f) and ¢;(t), respectively, with an episode where the system remains in the vicinity of an unstable fixed point highlighted in
green. The parameters are Iy = 1.05,¢ = 0.035, 8 = r, D = 10~*. (c) The orbits conforming to the two metastable states characterized by large-amplitude oscillations of
phases are shown in red and blue, whereas the subthreshold oscillations are indicated in green. Superimposed is the vector field of the fast flow, corresponding to the limit

e — 0.
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—5-¢=0.035
—o—¢=0.06 D

FIG. 8. Numerically estimated fraction of time spent in the vicinity of the unsta-
ble fixed point T,/ Ty as a function of noise for & = 0.035 (squares) and
& = 0.06 (circles). Note that the positions of the maxima coincide with the cor-
responding resonant noise levels from Fig. 5. Remaining system parameters are
Ih=1058=m.

states but also comprise the subthreshold oscillations derived from
the periodic orbits around the center point. These subthreshold
oscillations provide for the trapping effect, which effectively leads
to a reduced oscillation frequency. An example of the time series
k;i(t) and @;(t),i € {1,2} obtained for an intermediate & = 0.035
in Figs. 7(a) and 7(b) indeed shows three characteristic episodes,
including visits to two distinct oscillatory metastable states and an
extended stay in the vicinity of the center, cf. the stochastic orbits

ARTICLE scitation.org/journal/cha

(91 (£), p2()) and the vector field of the fast flow in Fig. 7(c). In the
case of finite scale separation, the trapping effect is manifested as the
noise-enhanced stability of an unstable fixed point. The prevalence
of subthreshold oscillations changes with noise in a non-monotone
fashion, see the inset in Fig. 7(c), becoming maximal around the res-
onant noise level where the frequency dependence on noise exhibits
a minimum, cf. Figs. 5 and 8. The fraction of time spent in the
metastable state corresponding to subthreshold oscillations has been
estimated by the numerical procedure analogous to the one already
described in Sec. II.

IV. TWO MECHANISMS OF ISR IN CLASSICAL
NEURONAL MODELS

So far, we have demonstrated the two paradigmatic scenar-
ios for ISR considering the examples of coupled Type I units,
whose local dynamics is close to a SNIPER bifurcation, be it in the
excitable or the oscillatory regime. Nevertheless, the onset of ISR
and the specific mechanisms of the phenomenon do not depend
on the excitability class of local dynamics. In particular, we have
recently demonstrated that a single Type II Fitzhugh-Nagumo
relaxation oscillator exhibits qualitatively the same form of
non-monotone dependence on noise,”’ with the mechanism involv-
ing noise-induced subthreshold oscillations that follow the maximal
canard of an unstable focus. In that case, it has been established
that the trapping effect and the related subthreshold oscillations are
triggered due to a phase-sensitive excitability of a limit cycle. More-
over, we have verified that the same model of neuronal dynamics,
set to different parameter regimes, may exhibit two different scenar-
ios of ISR. In particular, by an appropriate selection of the system

FIG. 9. (a) Bifurcation diagram showing the dependence of
the amplitudes of the membrane potential V on the external
bias current / for the version of Morris-Lecar model exhibiting a
supercritical Hopf bifurcation. (b) illustrates the ( f ) (D) depen-
dence for the Morris—Lecar neural oscillator in close vicinity

of the supercritical Hopf bifurcation. (c) V(/) bifurcation dia-
gram for the setup where the Morris-Lecar model displays a

V 1 —#— Stable FP ] 0.08 <f>
0 | —— Stable LC

I 1 10.06
AOM 10.04

| 10.02

'80'(55‘) T Y 4

36 42 48 10
30[p : :

|| —*— Stable FP

|| —%— Stable LC

| Unstable LC
1

0.02

—=o— Unstable FP

-10
0.01

(d)

subcritical Hopf bifurcation. (d) Characteristic non-monotone
dependence ( f ) (D) for the Morris-Lecar model from (c), with
the bifurcation parameter | = 95 set in the bistable regime. The
two sets of parameters putting the Morris—Lecar model in the
vicinity of a supercritical or a subcritical Hopf bifurcation are
specified in the main text.

80 100 120 %04 10° 102
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parameters, the Morris-Lecar neuron model

dv
CE = _gfastm(v)(v - ENu) - gslawW(V - EK)
- gleak(v - Eleak) + I;
ﬂ We(v) — W
dt T(v)

m(v) = 0.5 |:1 + tanh (V;iﬁm)] , (8)

W (v) = [1 + tanh (V;ﬂwﬂ,

T(v) = l/cosh(vz_ 'BW>,

Yw

where v and W, respectively, denote the membrane potential and
the slow recovery variable, can be placed in the vicinity of a
supercritical or a subcritical Hopf bifurcation,”” with the exter-
nal bias current I being the bifurcation parameter. In the first
case, obtained for Ey, = 50mV, Ex = —100mV, Ep; = —70mV,
Zhast = 20mS/cm?, gy, = 20 mS/cm?, gk = 2mS/cm?, ¢ = 0.15,
C=2uF/cm? B,=-12mV, B,=-13mV, y,=18mV,
¥w = 10mV, the model is monostable under the variation of
I, and the ISR is observed slightly above the Hopf bifurcation
(I =43 uA/cm?) due to a noise-enhanced stability of an unstable
fixed point, cf. Figs. 9(a) and 9(b). In the second case, conforming to
the parameter set Ey, = 120mV, Ex = —84mV, Ej = —60mV,
Zpast = 4.4mS/cm?, gy, = 8mS/cm?, gk = 2mS/cm?, ¢ = 0.04,
C=20uF/cm? B,=-12mV, B,=2mV, y,=18mV,
¥w = 30 mV, the model displays bistability between a limit cycle and
a stable equilibrium in a range of I just below the Hopf thresh-
old. There, ISR emerges due to a mechanism based on biased
switching, see the bifurcation diagram V(I) in Fig. 9(c) and the
dependence of the oscillation frequency on noise for I = 95 A /cm?
in Fig. 9(d).

V. DISCUSSION AND OUTLOOK

Considering a model which involves the classical ingredients of
neuronal dynamics, such as excitable behavior and coupling plastic-
ity, we have demonstrated two paradigmatic scenarios for inverse
stochastic resonance. By one scenario, the phenomenon arises in
systems with multistable deterministic dynamics, where at least one
of the attractors is a stable equilibrium. Due to the structure of
the phase space, and, in particular, the position of the separatri-
ces, the switching dynamics between the associated metastable states
becomes biased at an intermediate noise level such that the longevity
of the quasi-stationary states substantially increases or they may
even turn into absorbing states. In the other scenario, an oscilla-
tory system possesses a weakly unstable fixed point, whose stability
is enhanced due to the action of noise. The latter results in a trap-
ping effect such that the system exhibits subthreshold oscillations,
whose prevalence is noise-dependent and is found to be maximal
at the resonant noise level. Both scenarios involve classical facilita-
tory effects of noise, such as crossing the separatrices or stochastic
mixing across the bifurcation threshold, which should warrant the

ARTICLE scitation.org/journal/cha

ubiquity of ISR. In terms of the robustness of the effect, we have
demonstrated that the onset of ISR is independent on the excitabil-
ity class of local dynamics, and moreover, that the same model of
neuronal dynamics, depending on the particular parameters, may
display two different scenarios for ISR.

Given that ISR has so far been observed at the level of mod-
els of individual neurons,”»”**>*" motifs of units with neuron-like
dynamics*>”’ and neural networks,” it stands to reason that the phe-
nomenon should be universal to neuronal dynamics, affecting both
the emergent oscillations and systems of coupled oscillators. The
explained mechanisms appear to be generic and should be expected
in other systems comprised of units with local dynamics poised close
to a bifurcation threshold. Inverse stochastic resonance should play
important functional roles in neuronal systems, including the reduc-
tion of spiking frequency in the absence of neuromodulators, the
triggering of stochastic bursting, i.e., of on-off tonic spiking activity,
the suppression of pathologically long short-term memories,"******
and most notably, may contribute to generation of UP-DOWN
states, characteristic for spontaneous and induced activity in cortical
networks.”"**
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