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We show through detailed numerical investigations and supporting variational
results that the ground state of a cigar-shaped Bose-Einstein condensate with a Gaussian-
shaped radially inhomogeneous scattering length has a density profile akin to that of a
coaxial cable. Monitoring the transition from homogeneous to inhomogeneous scat-
tering lengths, we show numerically the formation of a local minimum in the density
profile of the ground state positioned where the scattering length reaches its maximum.

1. INTRODUCTION

Over the past two decades, the ground state properties of Bose-Einstein con-
densates (BECs) have been subject to recurrent theoretical and computational inves-
tigations motivated by a long series of experiments with atomic species as different
as rubidium and dysprosium (see Ref. [1] for a textbook introduction). The T = 0
properties of BECs are governed by a nonlinear Schrödinger equation with cubic
nonlinearity, the so-called Gross-Pitaevskii equation (GPE), for whose solving, we
now have accurate numerical algorithms (see Refs. [2–4]) and detailed analytical
results (see Ref. [5] and references therein). The early works on the subject reported
results obtained by variational means for the density profiles of three-dimensional
condensates with repulsive and attractive interactions confined by parabolic magnetic
fields. These initial theoretical investigations were focused on the bulk properties of
the condensates and relied on Gaussian functions to describe the wave function of
the condensate (see, for instance, the classical treatment in Ref. [6]). Similar vari-
ational treatments tailored around Gaussian functions have been used in nonlinear
optics to describe the propagation of light pulses in nonlinear media [7]. More de-
tailed studies on the ground state properties of high-density condensates have shown
that the Gaussian functions are inaccurate in this regime and that the Thomas-Fermi
approximation is better suited (see the discussion in chapter 6 of Ref. [1]). Moreover,
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2 Ground state of Bose-Einstein condensates with inhomogeneous scattering lengths 205

for the surface structure of condensates, it was shown that one has to employ more
complex functions (such as those proposed in Ref. [8] or the q-Gaussians proposed
in Ref. [5]) which describe both the bulk properties of the condensate and its sur-
face. Finally, we notice that the analytic information concerning the ground-state of
one-dimensional condensates was used to craft effectively one- and two-dimensional
equations for the dynamics of cigar-shaped and pancake-shaped three-dimensional
condensates (see Refs. [9–11] for the low-density regime and Refs. [12–15] for the
high-density regime). We also observe the existence of the analytically exact soli-
tonic stationary states which are known for a wide variety of experimental setups
[16–18].

The simple picture depicted above changes for condensates consisting of two
(or more) atomic species, as their ground state configurations can be either miscible
or non-miscible. In the miscible case, the wave functions overlap and the previ-
ous variational calculation can be easily extended due to the localized nature of the
ground state. Non-miscible configurations, however, are qualitatively different, as the
ground state configurations exhibit symbiotic structures which can not be described
in terms of simple localized states and made-to-measure variational models have to
be used (see Ref. [19] for an example).

2. THE GROSS-PITAEVSKII EQUATION

The ground state properties and the dynamics of a three-dimensional BEC are
accurately described close to T = 0 by the time-independent

− ~2

2m
∇2ψ(r) +V (r)ψ(r) +g(r) |ψ(r)|2ψ(r) = 0 (1)

GPE, while the time-dependent GPE

i~
∂ψ(r, t)

∂t
=− ~2

2m
∇2ψ(r, t) +V (r)ψ(r, t) +g(r, t) |ψ(r, t)|2ψ(r, t) (2)

describes the dynamics, where

V (r) =
m

2

(
Ωρρ

2 + Ωzz
2
)

represents the external trapping potential and g= 4π~2as/m describes the strength of
the nonlinear interaction. As the scattering length as can be modulated in time and
space through Feshbach resonances (either magnetically [20, 21] or optically[22]),
one has excellent experimental control over the nonlinear term. This notable level
of experimental control inspired many theoretical works devoted to investigating the
dynamics of condensates subjected to temporal and/or spatial modulation of the non-
linear interaction. In particular, the application of such a Feshbach resonance man-
agement technique [23] in the temporal domain can be used to stabilize attractive
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higher-dimensional condensates against collapse [24, 25], and also to create robust
matter-wave breathers (in the effectively 1D setting) [23, 26].

Equations (1) and (2) are akin to the Ginzburg-Landau equations used in the
early fifties to model superconductivity and very similar nonlinear equations have
been used for the weakly nonlinear dynamics of a wave train propagating at the
surface of a liquid (the so-called water-wave problem), the Langmuir oscillations
(also referred to as Langmuir waves or electron plasma waves) that arise in non-
magnetized or weakly magnetized plasmas, the Alfvén waves that propagate along
an ambient magnetic field in a quasi-neutral plasma, and many other problems (see
Ref. [27] for a detailed discussion).

In this paper, we consider the Gaussian-shaped spatially inhomogeneous inter-
action

g(r) =
4π~2as
m

exp

(
− ρ2

2b2

)
(3)

= g0 exp

(
− ρ2

2b2

)
, (4)

characterized by a parameter b. Condensates subjected to such an interaction are usu-
ally refered to as collisionally inhomogeneous condensates [28] and they are known
to support a variety of new nonlinear phenomena. These include the adiabatic com-
pression of matter-waves [28, 29], Bloch oscillations of matter-wave solitons [28],
atomic soliton emission and atom lasers [30], dynamical trapping of matter-wave
solitons [31, 32], enhancement of transmissivity of matter-waves through barriers
[32, 33], the formation of stable condensates exhibiting both attractive and repul-
sive interatomic interactions [34], the delocalization transition in optical lattices [35],
spontaneous symmetry breaking in a nonlinear double-well pseudopotential [36], the
competition between incommensurable linear and nonlinear lattices [37] (for a re-
view on the topic of nonlinear lattices see Ref. [38]), the generation of dark and
bright solitons [39] and vortex rings [40], and many others.

We solve the time-independent GPE for a system with Ωρ = 160 ·2π Hz, Ωz =
7 · 2π Hz, N = 2.5 · 105 atoms of 87Rb using the parallelized version of the GPE
solvers introduced in Ref. [4]. On the analytical side, one can simplify the GPE to a
system of algebraic equations by variational means. To this end, one starts from the
associated Lagrangian density

L(r) =
~2

2m
|∇ψ(r)|2 +V (r) |ψ(r)|2 +

g(r)N

2
|ψ(r)|4 (5)

and the trial wave function

ψ(r) =A
(
1 +γρ2

)
exp

(
− ρ2

2w2
ρ

)
exp

(
− z2

2w2
z

)
, (6)
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where

A=
(
π3/2w2

ρwz + 2π3/2w4
ρwzγ+ 2π3/2w6

ρwzγ
2
)−1/2

, (7)

such that the wave function is normalized to unity and γ is a large parameter. The next
step is to minimize the ensuing Lagrangian with respect to the variational parameters
wρ, wz and γ. Computing the Lagrangian is straightforward and one finds without
difficulty that

L=

ˆ
drL(r)

=
1

4

(
23/2b2g0N

(
s4 + 8b2w2

ρs
3γ+ 48b4w4

ρs
2γ2 + 192b6w6

ρsγ
3 + 384b8w8

ργ
4
)

π3/2s5wz
(
wρ+ 2w3

ργ+ 2w5
ργ

2
)2

m

(
2w2

ρΩ
2
ρ

(
1 + 4w2

ργ+ 6w4
ργ

2
)

1 + 2w2
ργ
(
1 +w2

ργ
) +w2

zΩ
2
z

)

+
~2
(
w2
ρ + 2w2

z + 2w6
ργ

2 + 2w4
ργ
(
1 + 2w2

zγ
))

mw2
ρw

2
z

(
1 + 2w2

ργ
(
1 +w2

ργ
)) )

,

where s= 4b2 +w2
ρ.

The minimization yields the following three algebraic equations

∂L

∂wρ
= 0, (8)

∂L

∂wz
= 0, (9)

∂L

∂γ
= 0. (10)

which are not amenable to analytic manipulations. However, as γ is large, one can
solve equation (10) up to terms O

(
γ−4

)
and smaller which yields

γ =
24
√

2b6g0mNw
4
ρ + 2π3/2s5wz~2

mw4
ρ

(
π3/2w2

ρwz~2s5 +mπ3/2w2
ρwzΩ

2
ρs

5−48
√

2b8g0N
) . (11)

The equations for wρ and wz can then be simplified to

4mπ3/2w4
ρ

(
4b2 +w2

ρ

)6
wzΩ

2
ρ~2−12

√
2b6g0N

(
8m2w6

ρb
4Ω2

ρ

−3m2w6
ρw

4
zΩ

2
ρ+
(
4b2 +w2

ρ

)(
8b4 + 16b2w2

ρ +w4
ρ

)
~2
)

= 0 , (12)

−
42
√

2g0Nwz
(
b8 + 2b10γ

)
π3/2w2

ρ

(
4b2 +w2

ρ

)5
γ

+mw4
zΩ

2
z−

~2

m
= 0 , (13)

where we have neglected termsO
(
γ−2

)
and smaller. As we will see, these algebraic
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equations describe accurately the ground state of the condensate independent of the
value of the parameter b and represent the main analytical result of our paper.

3. RESULTS AND CONCLUSION

We have monitored the density profile of a condensate withN = 2.5 ·105 atoms
of 87Rb loaded in a magnetic trap with frequencies Ωρ = 160 · 2π Hz and Ωz =
7 ·2π Hz. We have first determined the ground state of the condensate for a spatially
homogeneous scattering length, corresponding to a limit b→∞, and set the radial
width of the longitudinally-integrated density profile of the condensate, hereafter
referred to as b0, as our reference value for b. For the system under investigation our
numerical simulations show that this value is b0 = 1.859 µm.

For values of b larger than b0, the ground state of the condensate is very similar
to that of a condensate with spatially homogeneous two-body interactions. As ex-
pected, the Gaussian approximation fails to describe quantitatively the density pro-
file of the condensate (which is, in fact, in the Thomas-Fermi regime), but it gives
nevertheless a clear overall picture regarding the peak density of the condensate and
its longitudinal extent. There is, in fact, a long series of investigations which use the
Gaussian approximation to describe high-density (or, equivalently, strongly interact-
ing) condensates and they all show that despite the apparent quantitative differences,
the approximation describes accurately the energy of the condensate and its dynami-
cal properties [6, 9, 41, 42, 44, 43, 45, 46].

In Fig. 1, we show the radial density profile of the condensate for b equal to b0,
2b0, 4b0 and b→∞ using both the full GPE numerics and the simplified variational
equations introduced in the previous section. We notice that the variational results
always exhibit a small cusp in a vicinity of ρ= 0 which is due to hybrid nature of our
trial wave function which combines a polynomial with a set of Gaussian functions.
As the parameter b gets closer to b0, one notices the formation of a small dip in the
radial density profile which is positioned at ρ = 0. The decreased density at ρ = 0
corresponds to the formation of a small local maximum in the scattering length and
this effect increases in visibility as b gets smaller.

The formation of the density dip is depicted in Fig. 2 where we show the ra-
dial density profile for b equal to b0/2 and b0/4. We observe that in this case, the
numerical results are in excellent agreement with the variational investigations as
the maximal value of the interaction along the ρ = 0 line makes the condensate an
effectively low-density one (or, equivalently, weakly-interacting) and the Gaussian
ansatz describes very accurately the cut-off of the wave function at large values of
ρ. We also notice that for b = b0/2, the condensate density in the center of the trap
decreases by a factor of 2, while for b = b0/4, the density decreases by an order of
magnitude and the condensate looks almost depleted of atoms at (ρ,z) = (0,0). For
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Figure 1 – Radial density profile of the condensate for z = 0 and: (a) b→∞, (b) b= 4b0, (c) b= 2b0,
(d) b = b0. The full red line shows the numerical results obtained from the GPE while the dashed
blue line corresponds to the numerical solution of the variational equations. Notice that the variational
results always exhibit a small cusp in a vicinity of ρ = 0, while the full numerical results show that it
only appears for b close to b0, panel (d).
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Figure 2 – Radial density profile of the condensate for z = 0 and: (a) b= b0/2, (b) b= b0/4. The full
red line shows the numerical results obtained from the GPE while the dashed blue line corresponds to
the numerical solution of the variational equations. Notice that for b = b0/4, the density in the center
of the condensate, i.e., (ρ,z) = (0,0), is smaller by an order of magnitude than its peak value.
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Figure 3 – Density profile of the condensate for: (a) b = 2b0, (b) b = b0/2. The profile for b = 2b0
corresponds to the longitudinal density profile depicted in Fig. 1(c), while the profile for b = b0/2
corresponds to the longitudinal density profile depicted in Fig. 2(a).

such small values of b, our ansatz effectively reduces to

ψ(r) =
ρ2√

2π3/2w6
ρwz

exp

(
− ρ2

2w2
ρ

)
exp

(
− z2

2w2
z

)
, (14)

and the corresponding variational equations for the radial and longitudinal width of
the condensate are given by

4mπ3/2w4
ρ

(
4b2 +w2

ρ

)6
wzΩ

2
ρ~2−12

√
2b6g0N

(
8m2w6

ρb
4Ω2

ρ

−3m2w6
ρw

4
zΩ

2
ρ+
(
4b2 +w2

ρ

)(
8b4 + 16b2w2

ρ +w4
ρ

)
~2
)

= 0 , (15)

−96
√

2b10g0mNwz +π3/2w2
ρ

(
4b2 +w2

ρ

)5 (
m2w4

zΩ
2
z−~2

)
= 0 . (16)

Finally, we depict in Fig. 3, the ρ− z density profile of the condensate for b
equal to 2b0 and b0/2. The results in Fig. 3(a) show that the wave function of the
condensate has a clear maximum at ρ = 0 and that it fades out for increasing values
of ρ. This behavior is typical for condensates with homogeneous scattering length
and is in clear violation of numerical results in Fig. 3(b), where one observes the
wave function slowly increasing as ρ increases from 0 to 1.9 µm and then abruptly
fading out for larger vales of ρ.

In conclusion, we have performed a series of detailed numerical investiga-
tions for the ground state of a cigar-shaped Bose-Einstein condensate subject to a
Gaussian-shaped radially inhomogeneous scattering length and have shown that its
density profile is similar to that of a coaxial cable. The numerical results are strength-
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8 Ground state of Bose-Einstein condensates with inhomogeneous scattering lengths 211

ened by a variational treatment which supports our numerical results and allows for
a simple description of the ground state using only two algebraic equations. We
plan to extend the current results to binary mixtures and study the emergence of den-
sity waves in condensates with inhomogeneous scattering lengths complementing
the very recent analytical results from Ref. [47] with detailed numerical simulations.
Also on the side of future investigations, we plan to study the dynamical stability of
density waves with respect to thermal fluctuations. As the condensate particle loss
is substantially higher after a parametric drive sets in, we expect that the interaction
of the condensate with the non-condensed cloud can impact strongly the dynamics
of the condensate for long time scales. To this end, we plan to graft self-consistently
onto the Gross-Pitaevskii equation a Boltzmann transport equation which describes
the thermal cloud in which the condensate is immersed.
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