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We discuss several pairing-related phenomena in nuclear systems, ranging from super- 
fluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We describe 
recent experimental evidence that points to a relation between pairing and phase transi- 
tions (or transformations) in finite nuclear systems. A simple pairing interaction model is 
used in order to study and classify an eventual pairing phase transition in finite fermionic 
systems such as nuclei. We show that systems with as few as N 10 - 16 fermions can 
exhibit clear features reminiscent of a phase transition. 

1. INTRODUCTION 

The standard BCS theory has been widely used to describe systems with pairing corre- 
lations and phase transitions to a superconducting phase for large systems, from the solid 
state to nuclear physics, with neutron stars as perhaps the largest object in the universe 
exhibiting superfluidity in its interior. An eventual superfluid phase in a neutron star will 
condition the neutrino emission and thereby the cooling history of such a star, in addition 
to inducing mechanisms such as sudden spin ups in the rotational period of the star; see, 
for example, Ref. [1,2] f or recent reviews. For an infinite system, such as a neutron star, 
the nature of the pairing phase transition is well established as second order. 

When a system of correlated fermions such as electrons or nucleons is sufficiently small, 
the fermionic spectrum becomes discrete. If the spacing approaches the size of the pairing 
gap, superconductivity is expected to break down [3]; however, recent experiments on 
superconducting ultrasmall aluminum grains by Tinkham et al. [4] revealed the existence 
of a spectroscopic gap larger than the average electronic level density. This feature was 
interpreted as a reminiscence of superconductivity and renewed the interest [5-81 in studies 
of what is the lower size limit for superconductivity. 

Other finite fermionic systems such as nuclei are expected to exhibit a variety of in- 
teresting phase-transition like phenomena, like the disappearence of pairing at a critical 
temperature T, M 0.5 - 1 MeV or the nuclear shape transitions of deformed nuclei associ- 
ated with the melting of shell effects at T, M l- 12 MeV. Pairing correlations are expected 
to play an essential role in nuclear systems, ranging from the binding energy, excitation 
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spectrum and odd-even effects in finite nuclei to superfluidity in the interior of neutron 
stars. In recent theoretical and experimental studies [9,10] of thermodynamical properties 
of finite nuclei, the heat capacity has been found to exhibit a non-vanishing bump at tem- 
peratures proportional to half the pairing gap. These bumps were interpreted as signs of 
the quenching of pair correlations, representing in turn features of the pairing transition 
for an infinitely large system. In the study of eventual transitions in e.g., nuclear physics, 
it is important to know whether a given transition really is of first order, discontinuous, 
or if there is a continuous change in a physical quantity like the mean energy, as in phase 
transitions of second order. If one works in the canonical or grand canonical ensembles, 
for finite systems it is rather difficult to decide on the order of the phase transition. This 
is due to the fact that in ensembles like the canonical, any anomaly is smeared over a 
temperature range of l/N, N being the number of particles. In the analysis of finite 
systems, both a S-function peak and a power law singularity sharpen as the number of 
particles is increased, making it difficult to distinguish between the two cases, see, for ex- 
ample, Ref. [ll]. I n addition, first order phase transitions in finite systems have recently 
been inferred, theoretically and experimentally, from observed negative heat capacities 
that are associated with anomalous convex intruders in the entropy versus energy curves, 
resulting in backbendings in the caloric curves; see, for example, Refs. [lo-151. Negative 
heat capacities are often claimed to appear only in calculations done in the microcanonical 
ensemble and are thought to vanish in the canonical or grand-canonical ensembles. 

In this work we give first a brief review in Sec. 2 of pairing features in infinite neutron 
matter. In Sec. 3 we discuss experimental results indicating the gradual breaking of 
pairs in nuclei. A simple pairing model is in turn used in Sec. 4 to show the similarities 
between the experimental results and the gradual breaking of pairs. Concluding remarks 
are presented in Sec. 5. 

2. PAIRING IN INFINITE NEUTRON MATTER 

The presence of neutron superfluidity in the crust and the inner part of neutron stars 
are considered well established in the physics of these compact stellar objects. In the low 
density outer part of a neutron star, the neutron superfluidity is expected mainly in the 
attractive ‘S’s channel. At higher density, the nuclei in the crust dissolve, and one expects 
a region consisting of a quantum liquid of neutrons and protons in beta equilibrium. The 
proton contaminant should be superfluid in the ‘S’s channel, while neutron superfluidity 
is expected to occur mainly in the coupled 3P2-3Fz two-neutron channel. In the core of 
the star any superfluid phase should finally disappear. 

The presence of two different superfluid regimes is suggested by the known trend of the 
nucleon-nucleon (NN) phase shifts in each scattering channel. In both the ‘Ss and 3P2-3Fx 
channels the phase shifts indicate that the NN interaction is attractive. In particular for 
the ‘Se channel, the occurrence of the well known virtual state in the neutron-neutron 
channel strongly suggests the possibility of a pairing condensate at low density, while for 
the 3Ps-3Fs channel the interaction becomes strongly attractive only at higher energy, 
which therefore suggests a possible pairing condensate in this channel at higher densities. 
In recent years the BCS gap equation has been solved with realistic interactions, and the 
results confirm these expectations. 
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The ‘Sa neutron superfluid is relevant for phenomena that can occur in the inner crust 
of neutron stars, like the formation of glitches, which may to be related to vortex pinning 
of the superfluid phase in the solid crust [16]. Th e results of different groups are in 
close agreement on the ‘So pairing gap values and on its density dependence, which 
shows a peak value of about 3 MeV at a Fermi momentum close to kF G 0.8 fm-’ [17- 
201. All these calculations adopt the bare NN interaction or effective interactions without 
screening corrections as the pairing force. It has been pointed out that the screening by the 
medium of the interaction could strongly reduce the pairing strength in this channel [20- 
22]. However, the issue of the many-body calculation of the pairing effective interaction 
is a complex one and still far from a satisfactory solution. 

The precise knowledge of the 3P2-3Fz pairing gap is of paramount relevance for, e.g., 
the cooling of neutron stars, and different values correspond to drastically different sce- 
narios for the cooling process. Generally, the gap suppresses the cooling by a factor 
- exp(-A/T) ( w h ere A is the energy gap) which is severe for temperatures well below 
the gap energy. 

For P-stable matter in equilibrium, the neutron ‘So pairing gap appears at densities 
corresponding to the crust of the star. It is generally believed that it is the proton 
contaminant and its ‘Se pairing gap which dominates in the region from the inner crust 
to the densities 2-3 times nuclear matter saturation density, together with the 3P2 gap. 
The general picture can be summarized as follows: 

l The ‘So proton gap in P-stable matter is < 1 MeV, and if polarization effects were 
taken into account [20], it could be further reduced by a factor 2-3. 

* The 3 Pz gap is also small, of the order of N 0.1 MeV in P-stable matter. If relativistic 
effects are taken into account, it is almost vanishing. However, there is quite some 
uncertainty with the value for this pairing gap for densities above N 0.3 fme3 due to 
the fact that the NN interactions are not fitted for the corresponding lab energies. 

l Higher partial waves give essentially vanishing pairing gaps in P-stable matter. 

Thus, the ‘5’0 and 3P~ partial waves are crucial for our understanding of superfluidity 
in neutron star matter. However, hyperons such as C-l and A may be present at twice 
or more nuclear matter saturation energy. There are indications that the AA interaction 
is too weak to support a A gap, while An-1 N 10 MeV. Recent cooling simulations 
seems to indicate that available observations of thermal emissions from pulsars can aid 
in constraining hyperon gaps. However, all these calculations suffer from the fact that 
the microscopic inputs, pairing gaps, composition of matter, emissivity rates, etc. are not 
computed at the same many-body theoretical level. This leaves a considerable uncertainty. 

We have not mentioned recent developments beyond the BCS approach, nor have we 
discussed results for proton-neutron pairing in symmetric or asymmetric matter. Such 
topics are addressed in the recent works of Lombardo, Schulze and collaborators, see e.g., 
Refs. [2,23,24] and references therein. 

3. THERMODYNAMIC PROPERTIES OF NUCLEI AND PAIRING 

The thermodynamical properties of nuclei deviate from infinite systems, although the 
spectroscopy of finite nuclei and especially many isotopes, are dominated by the same 
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partial waves which are important in neutron star matter, see ref. [2]. 
While the quenching of pairing in superconductors is well described as a function of 

temperature, the nucleus represents a finite many body system characterized by large 
fluctuations in the thermodynamic observables. A long-standing problem in experimental 
nuclear physics has been to observe the transition from strongly paired states, at around 
T = 0, to unpaired states at higher temperatures. 

In nuclear theory, the pairing gap parameter LJ can be studied as function of temper- 
ature using the BCS gap equations [25,26]. From this simple model the gap decreases 
monotonically to zero at a critical temperature of T, - 0.5 a. However, if particle num- 
ber is projected out [27,28], the decrease is significantly delayed. The predicted decrease 
of pair correlations takes place over several MeV of excitation energy [28]. Recently [lo], 
structures in the level densities in the l-7 MeV region were reported, structures which 
probably are due to the breaking of nucleon pairs and a gradual decrease of pair correla- 
tions. 
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Figure 1. Heat capacity for iron isotopes, see Ref. [36], and for 161.162Dy. See text for 
further details. 

Experimental data on the quenching of pair correlations are important as a test for 
nuclear theories. Within finite temperature BCS and RPA models, level density and 
specific heat are calculated for e.g., “‘Ni [29]; within the shell model Monte Carlo method 
(SMMC) [30,31] one is now able to estimate level densities [32] in heavy nuclei [33] up 
to high excitation energies. Here we report on the observation of the gradual transition 
from strongly paired states to unpaired states in rare earth nuclei at low spin. The 
canonical heat capacity is used as a thermometer. Since only particles at the Fermi 
surface contribute to this quantity, it is very sensitive to phase transitions. It has been 
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demonstrated from SMMC calculations in the Fe region [34,35], that breaking of only one 
nucleon pair increases the heat capacity significantly. 

The experiments were carried out with 45 MeV 3He projectiles from the MC-35 cy- 
clotron at the University of Oslo. In that experiment, one could extract level densities 
and y strength functions for the 161.162Dy and 171,172Yb nuclei. The data for the even 
nuclei are published recently [lo]. 

The partition function in the canonical ensemble Z(T) = C~EO~(E,)e-En/T is deter- 
mined by the measured level density of accessible states p(E,) in the present nuclear 
reaction. Strictly, the sum should run from zero to infinity. Here we calculate 2 for 
temperatures up to T = 1 MeV. However, the experimental level densities only cover the 
excitation region up close to the neutron binding energy of about 6 and 8 MeV for odd 
and even mass nuclei, respectively. For higher energies it is reasonable to assume Fermi 
gas properties, since single particles are excited into the continuum region with high level 
density. Therefore, due to lack of experimental data, the level density is extrapolated 
to higher energies by the shifted Fermi gas model expression [37]. The extraction of the 
microcanonical heat capacity C&(E) g ives large fluctuations which are difficult to inter- 
pret [lo]. Th ere f ore, the heat capacity Cv(T) is calculated within the canonical ensemble, 
where T is a fixed input value in the theory, and a more appropriate parameter, see e.g., 
Schiller et al. [lo] for further details. 

The deduced heat capacities for the 161,162Dy nuclei are shown in Fig. 1 together with 
the SMMC results of Liu and Alhassid [36] f or various iron isotopes. The results labelled 
‘model’ are discussed further in Refs. [2,10]. W e note that both the theoretical and ex- 
perimental results exhibit S-shaped Cv(T)- curves. The S-shaped curve is interpreted as 
a fingerprint of a phase transition in a finite system from a phase with strong pairing 
correlations to a phase without such correlations. Due to the strong smoothing intro- 
duced by the transformation to the canonical ensemble, we do not expect to see discrete 
transitions between the various quasiparticle regimes, but only the transition where all 
pairing correlations are quenched as a whole. It is worth noticing that the S-shape is 
much less pronounced for the odd system, again a possible indication of the importance 
of pairing correlations. This can also be seen from Fig. 2, taken from Ref. [lo]. 

Here we notice that the entropy of the even and odd systems merge at a temperature 
T M 0.5 MeV, in close agreement with the point where the S-shape of the heat capacity of 
the 161.162Dy nuclei appears in Fig 1. The temperature where the experimental entropies 
merge, could in turn be interpreted as the point where other degrees of freedom than 
pairing take over. A theoretical interpretation in terms of the vanishing of pairing corre- 
lations is given in Refs. [lo]. Th e extraction of the microcanonical heat capacity C”(E) 
gives large fluctuations which are difficult to interpret [lo]. Therefore, the heat capacity 
Cv(T) is calculated within the canonical ensemble, where T is a fixed input value in the 
theory, and a more appropriate parameter, see e.g., Schiller et al. [lo] for further details. 

The deduced heat capacities for the 161.162Dy nuclei are shown in Fig. 1 together with 
the SMMC results of Liu and Alhassid [36] f or various iron isotopes. The results labelled 
‘model’ are discussed further in Ref. [lo]. W e note that both the theoretical and exper- 
imental results exhibit S-shaped C”(T)- curves. The S-shaped curve is interpreted as a 
fingerprint of a phase transition in a finite system from a phase with strong pairing cor- 
relations to a phase without such correlations. Due to the strong smoothing introduced 
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Figure 2. Experimental entropy in the canonical ensemble for 161,162Dy and for 171,172Yb. 

by the transformation to the canonical ensemble, we do not expect to see discrete transi- 
tions between the various quasiparticle regimes, but only the transition where all pairing 
correlations are quenched as a whole. It is worth noticing that the S-shape is much less 
pronounced for the odd system, again a possible indication of the importance of pairing 
correlations. This can also be seen from Fig. 2, taken from Ref. [lo]. 

Here we notice that the entropy of the even and odd systems merge at a temperature 
T w 0.5 MeV, in close agreement with the point where the S-shape of the heat capacity 
of the 161,162Dy nuclei appears in Fig. 1. The temperature where the experimental en- 
tropies merge, could in turn be interpreted as the point where other degrees of freedom 
than pairing take over. A theoretical interpretation in terms of the vanishing of pairing 
correlations is given in Ref. [lo] and in the next section. 

4. SIMPLE PAIRING MODEL AND NATURE OF THE PAIRING TRAN- 
SITION 

We aim here to identify the nature of the pairing transition and give a theoretical 
interpretation of the results from the previous section. Since we are dealing with pairing 
correlations, our Hamiltonian is 

(1) 

where ai and a are fermion creation and annihilation operators, respectively. The indices 
i and j run over the number of levels L, and the label 2 stands for a time-reversed 
state. The parameter G is the strength of the pairing force while E; is the single-particle 



A. BeliC et al. /Nuclear Physics A731 (2004) 381-391 387 

energy of level i. We assume that the single-particle levels are equidistant with a fixed 
spacing d. Moreover, in our simple model, the degeneracy of the single-particle levels 
is set to 25 + 1 = 2, with J = l/2 being the spin of the particle. Seniority S is a 
good quantum number and the eigenvalue problem can be block-diagonalized in terms 
of different seniority values. Loosely speaking, the seniority quantum number S is equal 
to the number of unpaired particles. For systems with less than N 16 - 18 particles, 
this model can be diagonalized exactly, and we can obtain all eigenstates. In our studies 
below, we will always consider the case of half-filling, i.e., equally many particles and 
single-particle levels. This case has the largest dimensionality: for 16 particles in 16 
doubly degenerate single-particle shells, we have a total of 4 x 10’ states. We choose units 
MeV for the energy and set G = 0.2 MeV in all calculations while we let d vary. 

Through diagonalization of the above Hamiltonian we can define exactly the density of 
states RN(E) for an N-particle system with excitation energy E. An alternative to the 
exact diagonalization, would be to use Richardson’s well-known solution [38], however, 
we are interested in all eigenstates, and the amount of numerical labor will most likely be 
similar. The density of states is an essential ingredient in the evaluation of thermal aver- 
ages and for the discussion of phase transitions in finite systems. For nuclei, experimental 
information on the density of states is expected to reveal important information on nu- 
clear shell structure, pair correlations and other correlation phenomena in the nucleonic 
motion. 

The density of states RN(E) is the statistical weight of the given state with excitation 
energy E, and its logarithm 

is the entropy (we set Boltzmann’s constant k~ = 1) of the N-particle system. The 
density of states defines also the partition function in the microcanonical ensemble and 
can be used to compute the partition function 2 of the canonical ensemble through 

Z(P) = c fldE)epPE, 
E 

with p = l/T the inverse temperature. With 2 it is straightforward to generate other 
thermodynamical properties such as the mean energy (E) or the specific heat Cv. 

The density of states can also be used to define the free energy F(E) in the microcanon- 
ical ensemble at a fixed temperature T (actually an expectation value in this ensemble), 

F(E) = -Tin [RN(E)e-OE] . 

Note that here we include only configurations at a particular E. 
The above free energy was used by e.g., Lee and Kosterlitz [39], based on the histogram 

approach for studying phase transitions developed by Ferrenberg and Swendsen [40], in 
their studies of phase transitions of classical spin systems. If a phase transition is present, a 
plot of F(E) versus E will show two local minima which correspond to configurations that 
are characteristic of the high and low temperature phases. At the transition temperature 
Tc the value of F(E) at the two minima equal, while at temperatures below Tc, the low- 
energy minimum is the absolute minimum. At temperatures above Tc, the high-energy 
minimum is the largest. If there is no phase transition, the system developes only one 
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minimum for all temperatures. Since we are dealing with finite systems, we can study the 
development of the two minima as function of the dimension of the system and thereby 
extract information about the nature of the phase transition. If we are dealing with a 
second order phase transition, the behavior of F(E) d oes not change dramatically as the 
size of the system increases. However, if the transition is first order, the difference in free 
energy, i.e., the distance between the maximum and minimum values, will increase with 
increasing dimension. 

To elucidate the nature of the transition we calculate exactly the free energy F(E) of 
Eq. (4) through diagonalization of the pairing Hamiltonian of Eq. (1) for systems with up 
to 16 particles in 16 doubly degenerate levels. For d/G = 0.5 and 16 single-particle levels, 
we develop two clear minima for the free energy. This is seen in Fig. 3 where we show 
the free energy as function of excitation energy using Eq. (4) at temperatures T = 0.5, 
T = 0.85 and T = 1.0 MeV. The first minimum corresponds to the case where we break 
one pair. The second and third minima correspond to cases where two and three pairs 
are broken, respectively. When two pairs are broken, corresponding to seniority S = 4, 
the free energy minimum is made up of contributions from states with S = 0,2,4. These 
contributions serve to lower the free energy. Similarly, with three pairs broken we see 
a new free energy minimum which receives contributions from S = 0,2,4,6. At higher 
excitation energies, population inversion takes place, and our model is no longer realistic. 

We note that for T = 0.5 MeV, the minima at lower excitation energies are favored. 
At T = 1.0 MeV, the higher energy phase (more broken pairs) is favored. We see also, at 
T = 0.85 MeV, that the free-energy minima where we break two and three pairs equal. 
Where two minima coexist, we may have an indication of a phase transition. Note however 
that this is not a phase transition in the ordinary thermodynamical sense. There is no 
abrupt transition from a purely paired phase to a nonpaired phase. Instead, our system 
developes several such intermediate steps where different numbers of broken pairs can 
coexist. At e.g., T = 0.95 MeV, we find again two equal minima. For this case, seniority 
S = 6 and S = 8 yield two equal minima. This picture repeats itself for higher seniority 
and higher temperatures. 

If we then focus on the second and third minima, i.e., where we break two and three 
pairs, respectively, the difference AF between the minimum and the maximum of the 
free energy, can aid us in distinguishing between a first order and a second order phase 
transition. If AF/N remains constant as N increases, we have a second order transition. 
An increasing AFIN indicates a first order phase transition. In Table 4 we display AFIN 
for N = 10, 12, 14 and 16 at T = 0.85 MeV. It is important to note that the features seen 
in Fig. 3, apply to the cases with N = 10, 12 and 14 as well, where T = 0.85 MeV is the 
temperature where the second and third minima equal. This means that the temperature 
where the transition is meant to take place remains stable as function of number of 

N 10 12 14 16 
AF/N [MeV] 0.531 0.505 0.501 0.495 

Table 1 
AF/N for T = 0.85 MeV. See text for further details. 
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Figure 3. Free energy from Eq. (4) at T = 0.5, 0.85 and T = 1.0 MeV with d/G = 0.5 
with 16 particles in 16 doubly degenerate levels. All energies are in units of MeV and an 
energy bin of lop3 MeV has been chosen. 

single-particle levels and particles. This is in agreement with the simulations of Lee and 
Kosterlitz [39]. We find a similar result for the minima developed at T = 0.95 MeV, where 
both S = 6 and S = 8 coexist. However, due to population inversion, these minima are 
only seen clearly for N = 12, 14 and 16 particles. 

Table 4 reveals that AF/N is nearly constant, with nF/N M 0.5 MeV, indicating a 
transition of second order. This result is in agreement with what is expected for an infinite 
system. It is also easy to see from Fig. 3, that the entropy in the microcanonical ensemble 
can be convex for certain excitation energy ranges, resulting in eventual negative heat 
capacities, as inferred from the authors of Refs. [11,12]. The analysis above however, does 
not lend support to interpreting this as a sign of a first order phase transition. 

We note the important result that for d/G > 1.5, our free energy, for N 2 16, developes 
only one minimum for all temperatures. That is, for larger single-particle spacings, there 
is no sign of a phase transition. This means that there is a critical relation between d 
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and G for the appearance of a phase transition-like behavior, being a reminiscence of 
the thermodynamical limit. This agrees also with e.g., the results for ultrasmall metallic 
grains [8]. 

We have thus indications that the transition from the paired seniority zero ground state 
to a mixed phase state is second order. The free-energy analysis also demonstrates that 
each transition in seniority phases in the microcanonical ensemble is of second order. The 
strength of the pairing in these systems determines the nature of the phase transitions. In 
particular, for a weakly paired system, we found no evidence for two phases, while normal 
pairing strengths, such as those found in nuclei, may well exhibit the paired-phase and 
mixed seniority phases that we demonstrated in this model. We will include more realistic 
interactions to investigate this point in future work. We also found, using Auxiliary Field 
Monte Carlo computations for this system [31] together with the histogram method of 
Refs. [39,40], that th e energy fluctuations in the canonical ensemble make it rather difficult 
to extract useful information on the nature of the phase transitions from these techniques. 

5. CONCLUSIONS 

In summary, the ‘5’s and 3P2 partial waves are crucial for our understanding of super- 
fluidity in neutron star matter. The role of polarization terms and hyperon pairing are 
still open and unsettled topics, see ref. [2] for further discussions. Furthermore, we have 
also discussed recent experimental and theoretical studies of thermodynamical properties 
of finite nuclei and their interpretation in terms of eventual pairing transitions in finite 
nuclei. For a more detailed theoretical analysis we would howerver need extensive shell- 
model Monte Carlo simulations in order to test the role played by e.g., pairing terms 
in the interaction. It is an open question whether such calculations lend support to the 
experimentally observed level densities. 
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