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We study the error associated with the recently developed method of Gaussian halving [1] for calculating path
integrals in a general theory in d=1. We show that it is of order O(1/N 2) - an improvement over the standard O(1/N)
error of approximating the path integral of a continuum amplitude with its corresponding discretized expression in the
mid-point prescription. The obtained generic results are illustrated by the case of an anharmonic oscillator.

1. Gaussian Halving
The most compact form of any quantum theory is to write it in terms of probability amplitudes written as

Feynman path integrals, i.e. as the limit ][lim][ ,NDNN SZSZ ∞→= , where NDS ,  is the energy functional (action) of

the theory standardly discretized to N inverse temperature slices. In coordinate space we have
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In the above expression ],,[ 0 Nqq Kµ  is the measure depending on  the discretized coordinates Nqq ,,0 K  and

the form of the action of the theory [2, 3]. We have developed a new method, which we call Gaussian halving [1,
4] for calculating path integrals for generic theories. In this paper we present the new method for the case of
statistical mechanics models in one dimension. The class of models which we investigate has Hamiltonians of the

form )()(
2

1 2 qVqqGH += & . The generic representative of this class of theories is determined through specifying

the pair of functions G and V. The path integral measure for this class of theories in the mid-point prescription is
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where NN /β=ε .

If we take the expression for the functional integral with N slices and formally integrate out every other variable
we obtain an identity linking two discretizations of the same theory - one with N and the other with N/2 slices.
Repeating this procedure we find

L=== ][][][ )2(
4/,4/

)1(
2/,2/, NDNNDNNDN SZSZSZ .

If the above integrations were not formal, i.e. if we could actually do them, then the outlined halving procedure

would give us explicit expressions for the effective actions )(
2/,,

s
sNDsN

SS = . In this way it would be possible to use a

2s times courser discretization using sNS ,  and obtain the same result that we would get from the initial discretization

of the starting action.
The Gaussian halving method [1, 4] approximates the outlined integrals with Gaussian integrals by expanding
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the discretized action in the mid-point prescription up to quadratic terms in the differences ii qq −+1 . In this way it

becomes possible to solve all the integrals. The analytical justification for the above approximation is quite straight-

forward - the short time evolution of any theory gives Nii qq ε∝−+
2

1 )( , where Nε  denotes a short step, which is

the basic characteristic of a random walk or of a general diffusion process. Therefore, the approximation behind
the Gaussian halving method becomes better with increasing values of N. We wish to point put that the new
approximation differs from the standard semi-classical expansion (mean field approximation). Both methods ap-
proximate path integrals with Gaussian integrals but they do this through expanding the action around different
points. Semi-classical expansion expands the action around the mean field, while Gaussian halving assumes that
what are small are the differences of the coordinates across neighboring slices.

The second key feature of Gaussian halving is that it leads to effective actions that belong to the same class
as the starting action. In this way a rather straightforward calculation leads us to a recursive relation that con-

nects the starting action with a series of effective actions 1,NS , 2,NS , 3,NS , etc. In the case of an initial discret-

ization with 2s slices we get [1]
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In the above expressions sk ,,2,1,0 K= , and 0=k  corresponds to the functions G and V from our
starting action.

Fig. 1. Approximate values sNZ ,  for the parti-

tion function as functions of the number of slices

N. Here the parameters of the theory are 1=g ,

0=B , 1=β , while the number of Monte Carlo

steps was 710=MCN . The inset graph shows that

the scaling relation underlying the halving pro-
cedure holds very well
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2. Numerical results
We have checked the new method by considering the example of an oscillator with quartic anharmonicity g in

a wide range of parameters g, â (inverse temperature) and B (external field), as well as for a variety of boundary
conditions q

0
 and q

N
. All results were obtained using Monte Carlo simulations [5, 6].

Fig. 1 shows how the approximate values for a discretized functional integral depends on the number of slices
N. It is apparent that by increasing s (number of iterations of our recursive relation), the expressionssNZ ,   converge
faster to the same continuum limit.

In the inset graph sNZ ,  is plotted as a function of NN s
eff 2= . The fact that all the points collapse to the same

curve shows us just how well the Gaussian halving procedure is working. At the same time it explains why effective
actions speed up the convergence to the continuum limit - effN  is what we need to increase, and we can do that

Fig. 2. (left) Absolute value of the error associated with Gaussian halving for iterates 3,2,1,0=s .
For illustration of the 1/N 2 dependence of the error we have also shown the curve 0.1/N 2. (right) Ratio of

computation times for simulations using the starting action T0 and the s-th  iterate, Ts i.e. the speedup. The
parameters in this plot were 1=g , 0=B , 1=β , while the number of Monte Carlo steps was 710=MCN

either by increasing N (computer time scales as N 2) or by doing a few more iterations of our recursive relation. The
same behavior is found for all values of the parameters.

The error associated with the use of the Gaussian halving method can be seen from the left hand side of Fig. 2.
We find that the method has an error proportional to 1/N 2, i.e. negligible as compared to the dominant term in the
1/N expansion of ZN about its continuum value ZN = Z + a / N + b / N 2 + O (1 / N 3).

It is this subdominant character of the Gaussian halving error which has all the data points  falling onto a single
curve depending only on . On the other hand, this analytical improvement translates in the numerical approach into
the faster computation of path integrals (for the same precision). This is illustrated in the right hand side of Fig. 2.

From the plot we see that by using  instead of the starting action we get a significant speedup. For larger values
of N the speedup becomes 4s, which may easily be understood if we have in mind that the computing time for the
Monte Carlo algorithm used is proportional to N 2.

3. Conclusion
We have presented the derivation of a general method for a more efficient calculation of path integrals. The

method has been analyzed in detail for the case of quantum theories in d=1 dimensions. The analytical approxima-
tion employed in the Gaussian halving method is subdominant (O(1/N 2)) as compared to the expansion of Z

N
 about

its continuum value (O(1/N)). This analytical procedure makes it possible to iterate the derived recurrence relations
and in this way to significantly speed up path integral calculations. Although derived analytically, the recurrence
relation is non-linear and in this paper we have solved it numerically. We leave the analytical treatment of the
Gaussian halving recurrence relation to a following publication.
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We present an extension of a new Gaussian halving method for the calculation of path integrals introduced in
Refs. [1-3]. The original method leads to recursion relations that are nonlinear and could not be solved analytically.
In this paper we present a general analytical solution (including the continuum limit) of linearized recursions. We
show that the error associated with this linearization is of the order O(1/N 2), where N is the number of discretized
steps, i.e. it is of the same order of magnitude as the error inherent in the derivation of the original method. Using
this result we derive an improved algorithm for calculation of path integrals.

1. Linearized Recursion
In a series of previous papers [1-4] we have shown that in the case of quantum theories described by Hamiltonians

of the form )()(
2

1 2 qVqqGH += &  the solution of the associated path integral can be substantially sped up through

iterating the recursion relation
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where s is any positive integer, sk ,,2,1,0 K= , and functions G and V are given by
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