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We study the error associated with the recently developed method of Gaussian halving [1] for calculating patt
integrals in a general theorydix1. We show that it is of ord€(1/N?) - an improvement over the stand@./N)
error of approximating the path integral of a continuum amplitude with its corresponding discretized expression in the

mid-point prescription. The obtained generic results are illustrated by the case of an anharmonic oscillator.

1. Gaussian Halving
The most compact form of any quantum theory is to write it in terms of probability amplitudes written as

Feynman path integrals, i.e. as the lidfi§] = lim  _, Z\[S, ], whereS,  is the energy functional (action) of
the theory standardly discretized\toverse temperature slices. In coordinate space we have

o

Zy[Son]= Iqu doy-1 H[dos -+ On] eXF{_SD,N[CIo’-"’CIN]}- (2)
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In the above expressigiq,,...,q, ] is the measure depending on the discretized coordopatesq, and

the form of the action of the theory [2, 3]. We have developed a new method, which we call Gaussian halving |
4] for calculating path integrals for generic theories. In this paper we present the new method for the case
statistical mechanics models in one dimension. The class of models which we investigate has Hamiltonians of tl

1 . . . . . . .
form H = 2 G(9)q* +V () . The generic representative of this class of theories is determined through specifying

the pair of function® anadV. The path integral measure for this class of theories in the mid-point prescription is
GEgiﬂ + qi H
o 2 O

2TE,,

N-1

u[qo,---,qN]=|]

whereg =3/ N..

If we take the expression for the functional integral Wtices and formally integrate out every other variable
we obtain an identity linking two discretizations of the same theory - onBlwaitl the other witN/2 slices.
Repeating this procedure we find

Zy[Sonl= ZN/Z[SI(DI,)N/Z] = ZN/4[SI(32,)N/4 =
If the above integrations were not formal, i.e. if we could actually do them, then the outlined halving procedure
would give us explicit expressions for the effective actgns= s[(fzms . In this way it would be possible to use a

2°times courser discretization usiig; and obtain the same result that we would get from the initial discretization

of the starting action.
The Gaussian halving method [1, 4] approximates the outlined integrals with Gaussian integrals by expandin
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the discretized action in the mid-point prescription up to quadratic terms in the diffefenees. In this way it
becomes possible to solve all the integrals. The analytical justification for the above approximation is quite straigh

forward - the short time evolution of any theory gifgs — q,)*> O €, , Wwheree , denotes a short step, which is

the basic characteristic of a random walk or of a general diffusion process. Therefore, the approximation behir
the Gaussian halving method becomes better with increasing vaNid&/efvish to point put that the new
approximation differs from the standard semi-classical expansion (mean field approximation). Both methods ar.
proximate path integrals with Gaussian integrals but they do this through expanding the action around differer
points. Semi-classical expansion expands the action around the mean field, while Gaussian halving assumes t
what are small are the differences of the coordinates across neighboring slices.

The second key feature of Gaussian halving is that it leads to effective actions that belong to the same cla
as the starting action. In this way a rather straightforward calculation leads us to a recursive relation that cor

nects the starting action with a series of effective actiqns S, , , Sy 5, etc. In the case of an initial discret-
ization with 2slices we get [1]

(k+1) — (K) \/(K)
G, G% AVA 25_“_1 2)

(k+1) — ® vk & O
V —V% VAN 25__1% (3)

where

clo.v, ey]=6-5 22 - Ha Sy (g

In the above expressioks=0,1, 2, ..., s, andk =0 corresponds to the functio@sandV from our
starting action.

0215

an .! = [l Fig. 1. Approximate valuesZ, . for the parti-
_ M] = tion function as functions of the number of slices
o :| g N. Here the parameters of the theory arg =1,
. a |H )
g oap | \.\____ B=0. B =1, while the number of Monte Carlo
e | e steps wasN,,. =10". The inset graph shows that

the scaling relation underlying the halving pro-

o S, cedure holds very well

50



Du3uKa HU3KOPA3ZMEPHBIX CIPYKHIYD Ne 1
Physics of Low-Dimensional Structures 2006

2. Numerical results

We have checked the new method by considering the example of an oscillator with quartic anhagnmonicity
a wide range of parametgg® (inverse temperature) aBdexternal field), as well as for a variety of boundary
conditionsy, anda, . All results were obtained using Monte Carlo simulations [5, 6].

Fig. 1 shows how the approximate values for a discretized functional integral depends on the number of slice
N. Itis apparent that by increassi@umber of iterations of our recursive relation), the expresgjpnsonverge
faster to the same continuum limit.

In the inset grapl,, . is plotted as a function &.; = 2°N . The fact that all the points collapse to the same
curve shows us just how well the Gaussian halving procedure is working. At the same time it explains why effectiv
actions speed up the convergence to the continuum Iigjt s what we need to increase, and we can do that
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Fig. 2. (left) Absolute value of the error associated with Gaussian halving for iterages0, 1, 2, 3.

For illustration of the 1/N 2 dependence of the error we have also shown the curve (?1(Nght) Ratio of
computation times for simulations using the starting action and the s-th iterate, [li.e. the speedup. The
parameters in this plot wereg =1, B=0, 8 =1, while the number of Monte Carlo steps wa¥,,. =10

either by increasing (computer time scalesld$) or by doing a few more iterations of our recursive relation. The
same behavior is found for all values of the parameters.

The error associated with the use of the Gaussian halving method can be seen from the left hand side of Fig
We find that the method has an error proportionaNg,1/e. negligible as compared to the dominant term in the
1/N expansion o, about its continuum valig =Z+a/N+b/N+ O (1/N?3).

It is this subdominant character of the Gaussian halving error which has all the data points falling onto a sing|
curve depending only on . On the other hand, this analytical improvement translates in the numerical approach in
the faster computation of path integrals (for the same precision). This is illustrated in the right hand side of Fig. 2

From the plot we see that by using instead of the starting action we get a significant speedup. For larger valu
of N the speedup becomeéswhich may easily be understood if we have in mind that the computing time for the
Monte Carlo algorithm used is proportionaNté

3. Conclusion

We have presented the derivation of a general method for a more efficient calculation of path integrals. Th
method has been analyzed in detail for the case of quantum thesbriedimensions. The analytical approxima-
tion employed in the Gaussian halving method is subdom{DéiiN®)) as compared to the expansiod ghbout
its continuum value®(1/N)). This analytical procedure makes it possible to iterate the derived recurrence relations
and in this way to significantly speed up path integral calculations. Although derived analytically, the recurrence
relation is non-linear and in this paper we have solved it numerically. We leave the analytical treatment of thi
Gaussian halving recurrence relation to a following publication.
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We present an extension of a new Gaussian halving method for the calculation of path integrals introduced
Refs. [1-3]. The original method leads to recursion relations that are nonlinear and could not be solved analyticall
In this paper we present a general analytical solution (including the continuum limit) of linearized recursions. We
show that the error associated with this linearization is of the©(tl#&t?), whereN is the number of discretized
steps, i.e. itis of the same order of magnitude as the error inherent in the derivation of the original method. Usir
this result we derive an improved algorithm for calculation of path integrals.

1. Linearized Recursion
In a series of previous papers [1-4] we have shown that in the case of quantum theories described by Hamiltonie

1 o . . . .
of the formi = 5 G(q)q’ +V (q) the solution of the associated path integral can be substantially sped up through

iterating the recursion relation

" ey O

G!*=G gss‘k) Ve g @)
) ey O

Vs(k D=y %ék) ’Vs(k) ’ Zs—l\l‘(—l E, (2)

wheresis any positive integek = 0,1, 2, ..., s, and function& anaV are given by
ey LG" 'O &l
G|G,V, ¢, |=G-"X —BG—S Ny
[ 8N] 16 55 0G O EH- 16 ) (3)
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