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We present an extension of a new Gaussian halving method for the calculation of path integrals introduced in
Refs. [1-3]. The original method leads to recursion relations that are nonlinear and could not be solved analytically.
In this paper we present a general analytical solution (including the continuum limit) of linearized recursions. We
show that the error associated with this linearization is of the order O(1/N 2), where N is the number of discretized
steps, i.e. it is of the same order of magnitude as the error inherent in the derivation of the original method. Using
this result we derive an improved algorithm for calculation of path integrals.

1. Linearized Recursion
In a series of previous papers [1-4] we have shown that in the case of quantum theories described by Hamiltonians

of the form )()(
2

1 2 qVqqGH += &  the solution of the associated path integral can be substantially sped up through

iterating the recursion relation
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where s is any positive integer, sk ,,2,1,0 K= , and functions G and V are given by
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The above recursion relations link different discretizations of the same theory. In the case of N slices the minimal

discretization step is given by NâåN /= , where β denotes the inverse temperature. The seed terms in the recursion

(corresponding to 0=k ) are the functions G and V from the starting action S, while the remaining iterates represent

corresponding terms for a series of effective actions kNS , .

The Gaussian halving method starts from solving the odd numbered integrations in the expression for the generating
functional. In this way one obtains a connection between the N-point and N/2-point discretizations of the theory.
The aforementioned integrations are calculated through an analytical approximation that casts them in the form of
Gaussian integrals. This is done by expanding the discretized action in the mid-point prescription up to quadratic

terms in the differences ii qq −+1 . We have shown [1, 2] that by the recursive application of this halving scheme we

end up with an error proportional to 1/N 2, i.e. an error that is subdominant with respect to the standard expansion

of NZ  about its continuum limit [5, 6], which is of the form )/1(// 32 NONbNaZZN +++= . Note that equations

(1-4) drive the Gaussian halving procedure from an initial discretization with 2sN slices ( 0=k ) to a final discretization

with N slices ( sk = ).

It was also shown [2] that by using the effective action kNS ,  instead of the original action S one finds

)/1(/'2/' 32
, NONbNaZZ k
kN +++= . The crucial thing to note is that in both expansions one is dealing with

the same continuum value Z. In addition, both continuum expansions are given in terms of the same coefficient a.
As a result of this we see that it is best to start with as high an iterate in the recursion relation for the effective action
as possible as this decreases the error. Ideally we should use the continuum limit of the recursion (set sk =  and
take the limit ∞→s ) as this would eliminate the dominant O(1/N) term in the above expansion and would lead to
a much smaller error.

The nonlinearity of the recursion relations, however, makes it impossible to obtain an analytical solution. In this
paper we will linearize the Gaussian halving recursion relations and will present a general solution of those relations.

Let us note that for short time of propagation the generic theory obeys Nii åqq ∝−+
2

1 )( . This means that the

original recursion relations can be linearized (through an expansion in Nå ) without introducing a significant new

coarsening of our method. A straightforward linearization gives us
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We note that the V’s and G’s are expanded to different powers in Nå  since in the expression for the

discretized action the potential term is multiplied by Nå , while the kinetic term is multiplied by Nå/1 . The

linearized recursions are easily solved. The solution for the theories with G = 1 in the original action (the

majority of theories of interest) is
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In passing, let us note that the Gaussian halving method guarantees that all the effective actions remain of the
same general form as the starting action (in particular, they are all quadratic in velocities). However, as we can see,
the effective actions will acquire non-trivial kinetic terms (1≠G ) even if the starting action has a trivial kinetic term.

On the basis of the above general solution we easily find the thing that interests us most - the continuum limit of

the effective action recursions. This is just the ∞→s  limit of the above expressions for )(s
sG  and )(s

sV , i.e.
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2. Numerical results
We have tested the validity of the obtained analytical results on a broad slice of parameter space of a harmonic

oscillator with quartic anharmonicity, including very large values of coupling (e.g. 100=g ) and of inverse
temperature β. All the results were obtained through the use of numerical Monte Carlo simulations [7]. Fig. 1
shows the error brought in by linearization. The deviations from the solutions of the original Gaussian halving

Fig. 1. The error brought in by linearizing as a function of N. 1/N 2 dependence is illustrated by plotting the
curve 0.1/N 2. The parameters of the theory: g = 1, β = β = β = β = β = 1, number of Monte Carlo steps
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recursion relations is of order O(1/N 2), i.e. it is of the same order of magnitude as the error associated with the
Gaussian halving method itself.

As a result of this we can calculate path integrals by using the analytically calculated expressions for the effective

actions obtained through the solution of the linearized recursions. Fig. 2 shows how lin
sNZ ,  converges to the same

continuum limit as the original action, only faster. The inset plot shows that the linearized expressions display the

same scaling as the original expressions, i.e. that all the lin
sNZ ,  collapse to a single curve depending only on

NN s
eff 2= .

A more detailed numerical investigation shows that for the lin
sNZ ,  we have the following behavior:

)/1(/''2/ 32
, NONbNaZZ slin
sN +++= . The dominant O(1/N) term remains the same as in the original Gaussian

halving (since the error associated with linearization is of order O(1/N 2)). What has changed is the coefficient of the
subdominant term. Unlike the case of the original Gaussian halving recursions, here we can do the  limit ∞→s .
Fig. 3 shows that by doing this we really do get rid of the dominant term in expansion of the partition function. As

we have already indicated, by using lin
NZ ∞,  for calculating the path integral of the generating functional we make an

error that is of order O(1/N 2). From the above plot we see that this new calculation scheme gives excellent results
even for extremely coarse discretizations, i.e. for very small values of N.

In the language of numerical simulations this can be stated in another way - the continuum limit of linearized
Gaussian halving leads to a vast speed-up in the algorithm for the calculating of generic path integrals (several
thousand fold speed-up for typical precisions, and a much greater speed-up in the case of high precision path
integral calculations).

Fig. 2. lin
sNZ ,  as a function of the number of discretized time steps N. The parameters of the theory: 1=g ,

1=â , 710=MCN . The inset graph shows that the effective actions calculated from the linearized theory lead

to the same kind of scaling as do the solutions of the original Gaussian halving recursion (i.e. all the N and s

dependence of these generating functionals is combined in a single parameter NN s
eff 2= )
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3. Conclusion
In this paper we have presented the linearization of recently developed recursion relations for path integrals

[1-4]. We have analytically solved these linearized relations for the case of a general theory (including the
continuum limit) and have shown that the error due to linearization is of the order O(1/N 2), the same order as the
error inherent in the method of Gaussian halving. Using this we have presented a generic algorithm for calculating
path integrals that is far more efficient than the standard one: for the same time of calculation the standard
algorithm leads to an error that is of order O(1/N), while the new algorithm has a total error proportional to
1/N 2. Alternately, for a given precision, the new algorithm leads to a vast speed-up in the time needed to
calculate a generic path integral.
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Fig. 3. Comparison of how NZ  (standard algorithm for calculating path integrals) and lin
NZ ∞,

(new algorithm) tend to the continuum value Z. The parameters of the theory: 1=g , 1=â , 710=MCN . The

inset plot shows that the new algorithm has an error of order O(1/N 2), while the error in the standard algo-
rithm is of order O(1/N)




