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Macroscopic variability is an emergent property of neural networks, typically manifested in

spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes.

We investigate the conditions that facilitate switching dynamics, focusing on the interplay between

the different sources of noise and heterogeneity of the network topology. We consider clustered

networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model

where the network dynamics is described by a set of coupled second-order stochastic mean-field sys-

tems representing each of the clusters. The model provides an insight into the different contributions

to effective macroscopic noise and qualitatively indicates the parameter domains where switching

dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate

that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider

parameter region compared to the case of a non-clustered network with sparse random connection

topology. Published by AIP Publishing. https://doi.org/10.1063/1.5017822

The striking feature of neuronal systems is that variability

is reflected on two fundamentally different levels. While

there is substantial knowledge on microscopic variability

associated to spike trains of individual neurons, much less

is known about macroscopic variability, which is a form

of emergent behavior in neural networks. Macroscopic

variability involves considerably longer timescales than

the microscopic one, whereby its signature activity con-

sists in slow rate oscillations, reflected in spontaneous

alternation between the distinct network states. The latter

are typically referred to as the UP and the DOWN states,

such that in the UP state, both the firing rates and the syn-

aptic conductances of neurons are elevated relative to the

DOWN state. The switching dynamics between the collec-

tive states is especially relevant for activity of neocortical

pyramidal neurons and is believed to facilitate or mediate

different types of learning and memory. In this paper, we

investigate the key ingredients behind switching dynam-

ics, focusing on the interplay of different sources of noise

and the network topology. In particular, we consider a

clustered network of rate-based neurons and derive an

effective model which describes its collective activity in

terms of coupled second-order stochastic mean-field sys-

tems representing the particular clusters. The effective

model is used to qualitatively analyze the mechanisms

behind the switching dynamics in the non-clustered and

clustered networks, comparing the associated parameter

domains. For a homogeneous random network, where

all neurons comprise a single cluster, switching is found

only within a small parameter region in the vicinity of the

pitchfork bifurcation, with the underlying mechanism

resembling the motion of a noise-driven particle in a

double-well potential. We demonstrate that clustering

plays a facilitatory role with respect to switching dynam-

ics, enhancing the network multistability compared to the

case of a homogeneous random network.

I. INTRODUCTION

The fascinating feature of neuronal dynamics is that vari-

ability appears in a twofold fashion. For single units, one

observes the spike-train variability,1 reflected in that the same

input sequence applied to a given neuron under identical

experimental conditions gives rise to different neuronal

responses. Apart from the variability on the short timescale,

one also encounters variability as an emergent network phe-

nomenon2–4 associated to much longer timescales.5 The hall-

mark of macroscopic variability is irregular slow rate

oscillations,6,7 alternatively called up-down states (UDS),8–10

which comprise large amplitude, low frequency (0.1–2 Hz)

spontaneous fluctuations between the collective UP and

DOWN states.11 These states are characterized by clearly dis-

tinct firing rates and synaptic conductances, whereby the UP

state involves neurons with depolarized membrane potential,

elevated firing rates, and increased synaptic conductances rel-

ative to those in the DOWN state.12–15 Switching is induced

by coherent activity of a large number of neurons and has been

observed in cortical assemblies in-vivo during quiet wakeful-

ness, sleep, and under the influence of anesthetic agents, as

well as in certain in-vitro preparations.8,10,16–18 UDS are the

prominent form of spontaneous activity of neocortical pyrami-

dal neurons, facilitating coordination of temporal interactions

between neocortex and hippocampus,12,19,20 which is funda-

mental to several types of learning and memory.19,21–23

The issue of the mechanisms that give rise to macro-

scopic variability as an emergent network phenomenon has

remained unresolved, but there are two general directions of
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research.24 One connects the slow rate fluctuations to deter-

ministic networks with balanced massive excitation and inhi-

bition,4,25,26 which leaves the collective dynamics highly

sensitive to fluctuations. The other direction relates slow

rate oscillations to bistability or multistability in attractor

model networks where alternation between the coexisting

states emerges due to noise,27,28 which acts as the finite-size

effect.29–31 In this paper, we develop the latter framework by

examining the interplay of stochastic neuronal dynamics and

heterogeneous network topology on the onset and robustness

of slow rate oscillations. In particular, we consider a network

of rate-based neurons, focusing on how the different sources

of noise, combined with the clustered network topology,

give rise to slow stochastic fluctuations of the mean-rate.

A qualitative insight into the mechanisms behind the slow

fluctuations and the associated parameter domains is gained

by developing an effective model of network activity, where

the collective dynamics is described by coupled stochastic

mean-field systems representing each of the clusters. The

effective model for the clustered network with random inter-

and intra-cluster connectivity is derived here for the first

time, using the approach which incorporates the Gaussian

closure hypothesis.32–34 As an intermediate result, we deter-

mine how the different sources of noise from local dynamics

as well as statistical heterogeneity of the connection topology

contribute to noise at the macroscopic level. This presents

generalization of our previous work, where we have consid-

ered bistability and slow fluctuations in a network with sim-

ple random connection topology.30,35

Investigating the impact of clustered topology on collec-

tive dynamics is biologically plausible, given that neural net-

works with statistically inhomogeneous wiring are inherent to

mammalian neocortex,36,37 where the clustered structures with

stronger synapses and increased connection probability make

up the so-called cell assemblies. Earlier studies have indicated

that clustered connectivity could give rise to bistability or mul-

tistability,4,25,38 potentially allowing for switching dynamics

between interacting populations, considered as a likely para-

digm for decision-making processes during perception or cog-

nition. In this study, we demonstrate that clustering promotes

multistability, thereby substantially enhancing the parameter

domain admitting the slow rate fluctuations, as compared to a

network with simple random connection topology.

The paper is organized as follows. In Sec. II, we present

the key points of the derivation of the effective model for

collective dynamics of the clustered network, explicitly dem-

onstrating how the neuronal noise and network heterogeneity

contribute to different finite-size effects. In Sec. III, we ana-

lyze how the network multistability and switching dynamics

are influenced by the clustered topology. It is first indicated

that in the absence of clustering, switching occurs in a rela-

tively narrow parameter domain, whereby its mechanism

resembles the noise-driven motion of a particle in a double-

well potential. Then, we show that by introducing clustering,

one enhances the network multistability, which ultimately

makes the switching phenomenon considerably more robust.

In Sec. IV, we provide a brief summary and discussion of the

results obtained.

II. DERIVATION OF THE MEAN-FIELD MODEL

We consider a network comprising N neurons arranged

into clusters, such that intra-cluster connectivity is larger

than the connectivity between neurons from different clus-

ters. The local dynamics of a given neuron i from cluster X
follows the rate model30,35,39,40

drXi

dt
¼ �kXrXi þ HðvXiÞ þ

ffiffiffiffiffiffiffiffiffi
2DX

p
nXiðtÞ; (1)

where kX defines the rate relaxation time, nXiðtÞ denotes the

intrinsic neuronal noise which typically derives from stochas-

tic opening of ion-gating channels, whereas H is the nonlinear

gain function, whose form will be specified further below.

The total input to a neuron vXi ¼ uXi þ IX þ
ffiffiffiffiffiffiffiffi
2BX

p
gXiðtÞ con-

sists of a synaptic input uXi ¼
P

Y jYX

P
j aYXjirYj and the

external bias current IX, while fluctuations in the embedding

environment are accounted for by synaptic (external) noise

gXiðtÞ, characterized by BX. The coupling scheme is given by

the adjacency matrix aYXji 2 f0; 1g, with the notation aYXji

referring to the link which projects from neuron j in cluster

Y to neuron i from cluster X. Coupling weights between

two clusters or within a single cluster are assumed to be

homogeneous, whereby we adopt the scaling jYX ¼ KYX=N.

To improve readability, a summary of the most relevant nota-

tion is provided in Table I. Both external and intrinsic fluctua-

tions are represented by Gaussian white noise terms which

satisfy hhnXiðtÞnYjðt0Þii¼ hhgXiðtÞgYjðt0Þii¼ dXYdijdðt� t0Þ and

hhnXiðtÞgYjðt0Þhi ¼ 0.

The mean-field model involves a Gaussian closure

hypothesis,32–34,41 such that the collective dynamics of each

cluster X is described by the mean-rate RX and the associated

variance SX

RX ¼
1

NX

X
i

rXi � hrXii:

SX ¼ hr2
Xii � R2

X; (2)

where NX¼ nxN is the size of the cluster X, whereas h�i refers

to averaging over the neurons within the given cluster. The

network behavior will be represented in terms of dynamics

of interacting mean-field systems, each attributed to the

TABLE I. Summary of notation in Sec. II.

kX Relaxation time of units in cluster X

DX Intensity of internal noise in cluster X

BX Intensity of external noise in cluster X

IX External current to cluster X

UX Average input to cluster X

NX � nXN Size of cluster X

KYX Strength of couplings projecting from cluster

Y to cluster X

jYX � KYX=N Normalized coupling strength

aYXji Element of adjacency matrix characterizing links

projecting from neuron j of cluster Y to neuron i in cluster X

pYX Connection probability from cluster Y to cluster X

RX Mean rate of cluster X

SX Rate variance in cluster X
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particular cluster. Our immediate goal is to derive a second-

order stochastic mean-field (macroscopic) model for an

arbitrary cluster by appropriately averaging the local (micro-

scopic) neuronal dynamics. To this end, we first introduce an

Ansatz regarding the local variables,30,35 which will ulti-

mately allow us to treat the nonlinear threshold term HðvXiÞ.
In particular, one assumes that rXi may be written as rXi

¼ RX þ
ffiffiffiffiffi
SX

p
qXi,

42 where qXi is a set of variables that satis-

fies hqXii ¼ 0; hq2
Xii ¼ 1, as follows from definition (2).

Using the Ansatz, the total input vXi to the neuron may be

rewritten as vxi ¼ UX þ dvXi, where

UX ¼ IX þ
1

N

X
Y

KYXpYXNYRY ; (3)

dvXi ¼
1

N

X
Y

KYXRY�YXi þ
1

N

X
Y

KYX

ffiffiffiffiffi
SY

p
rYXi: (4)

In particular, Eq. (3) presents the assembly-averaged input to

cluster X, with pY X denoting the connectedness probability

from cluster Y to cluster X. The deviation dvXi from the aver-

age input UX contains two terms, namely, the “topological”

and the “dynamical” one, whereby �YXi ¼
P

j aYXji � pYXNY

accounts for the deviation from the average number of connec-

tions pYXNY , and rYXi ¼
P

j aYXjiqYj describes the effect of

local rate fluctuations. Equations (3) and (4) enable one to

expand HðvXiÞ about UX, which proves crucial for deriving the

reduced system for cluster dynamics. In particular, one obtains

HðvXiÞ ¼ H0X þ H1XdvXi þ H2Xdv2
Xi, where we have intro-

duced notation H0X�HðUXÞ;H1X¼ dH
dvXi
ðUXÞ;H2X¼ 1

2
d2H
dv2

Xi

ðUXÞ.
From the latter expression and the definition of RX, one obtains

dRX

dt
¼ �kXhrXii þ H0X þ 2BXH2X þ H1XhC1Xi

þH2XhC2Xi þ
ffiffiffiffiffiffiffiffiffi
2DX

p
hnXiðtÞi; (5)

with hC1Xi and hC1Xi given by

hC1Xi ¼
1

N

X
Y

KYXRYh�YXii þ
1

N

X
Y

KYX

ffiffiffiffiffi
SY

p
hrYXii

þ
ffiffiffiffiffiffiffiffi
2BX

p
hgXii; (6)

hC2Xi ¼
1

N2

X
YZ

KYXKZXRYRZh�YXi�ZXii

þ 1

N2

X
YZ

KYXKZX

ffiffiffiffiffiffiffiffiffiffi
SYSZ

p
hrYXirZXii

þ 2

N2

X
YZ

KYXKZXRY

ffiffiffiffiffi
SZ

p
h�YXirZXii

þ 2
ffiffiffiffiffiffiffiffi
2BX

p

N

X
Y

KYXRYh�YXigXiðtÞi

þ 2
ffiffiffiffiffiffiffiffi
2BX

p

N

X
Y

KYX

ffiffiffiffiffi
SY

p
hrYXigXiðtÞi: (7)

In order to calculate the final expression for the cluster mean-

rate, one has to estimate the terms containing �Y Xi and rY Xi

and the associated averages. We have been able to carry this

out in a systematic fashion, assessing the order of each term.

Ultimately, the stochastic mean-field model will include sto-

chastic terms as finite-size effects, whereby we neglect the

terms whose order is higher than Oð1=NÞ. In Subsection II A,

we briefly discuss how one may determine the contributions

from each term comprising hC1Xi and hC2Xi.

A. Evaluating the finite-size effects

Let us first address the terms �YXi, which by definition

present the deviation from the average number of links

pYXNY projecting from cluster Y to a given node i of subas-

sembly X. From the theory of complex networks, it is known

that the average over the ensemble of different network

configurations, which we denote by ½��, is ½�YXi� ¼ 0, whereas

the associated variance is ½�2
YXi� ¼ pYXð1� pYXÞNY . By these

arguments, it follows that h�YXii contributes to a constant

random parameter dependent on the particular network

configuration, which is manifestation of the quenched ran-

domness introduced by fixing the given configuration. The

variance of such a term between the different configurations

is approximately ½h�YXii2� ¼ pYXð1�pYXÞNY

NX
� fpYX NY=NX, wherefpYX ¼ pYX for the sparse connectivity pYX � 1 and fpYX ¼ 0

in the limit of strong connectivity p � 1. Note that the divi-

sion by NX comes from the fact that the variance of a sum of

independent random variables is equal to the sum of varian-

ces of the given variables. The terms h�YXi�ZXii may be

treated in a similar fashion, though one has to distinguish

between the cases Y¼Z and Y 6¼ Z. If Y¼ Z, one may clearly

use the estimate ½h�2
YXii� ¼ pYXð1� pYXÞNY � pYXNY , while

if Y 6¼ Z, the terms h�YXi�ZXii contribute to a random constant

parameter, whose variance over the ensemble of different

network configurations may be evaluated as ½h�YXi�ZXii2�
¼ pYXNYpZXNZ=NX.

The terms containing rY Xi may heuristically be

approached as follows. From the definition, it follows that

rYXi ¼
P

j aYXjiqYj ¼
P

j2CYXi
qYj, i.e., the sum runs over the

subassembly of neurons from cluster Y which project to neu-

ron i from cluster X. By construction, such subassembly con-

tains a small number of units pYXNY , if the connectivity

between clusters Y and X is sparse (pYX � 1). In the limit of

strong connectivity (pYX � 1), one has the sum rYXi � 0,

because the departure from the limit case pY X¼ 1 due to the

subset of neurons that do not project from Y to Xi is small.

Though one cannot say a priori anything regarding the distri-

bution of qYj, in the first approximation, one may consider

them as a set of normally distributed random variables of

zero mean and unit variance. This enables us to treat rY Xi as

a set of normally distributed random variables of zero mean

and variance pYXNY . Also note that the correlation rYXkrYXl

¼
P

i;j aYXikaYXjl ¼ p2
YXNY , which is small due to smallness

of pYX, such that all the terms rYXi may be taken as

uncorrelated.

The above arguments imply that hrYXii may be evaluated

as effective noisy terms of zero mean and variance ½hrYXii2�
¼ ð1� fpYXÞNY=NX. By the above line of arguments, it may

explicitly be shown that the variables r2
YXi can effectively be
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treated as random variables whose mean and variance satisfy

½r2
YXi� ¼ pYXNY and ½r4

YXi� � ½r2
YXi�

2 ¼ 2p2
YXN2

Y , respectively.

B. Equations of the mean-field model

The results from Subsection II A enable us to systemati-

cally evaluate the contributions from all the terms on the

r.h.s. of (6) and (7). Focussing on (6) first, one finds that the

three associated terms give rise to finite-size effects of differ-

ent nature. In particular, the first term contains an effective

random parameter associated to the given network configura-

tion and may be written as 1
N KYXRY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pYXNY=NX

p
c1, where c1

is a Nð0; 1Þ variable. The latter should not be confound with

noise, as c1 can be treated as a random parameter. The sec-

ond element from the r.h.s. of (6) contributes to pseudo-

noise of the order Oð1=NÞ, which is given by 1
N KYX

ffiffiffiffiffi
SY

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pYXNY=NX

p
c2ðtÞ. One refers to it as pseudo-noise because it

fluctuates randomly in time, but does not derive from the

actual microscopic noise. The third term on the r.h.s. of (6)

presents the sum of local external noises, which gives rise to

a genuine macroscopic noise
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BX=NX

p
nXðtÞ.

As far as hC2Xi is concerned, the terms containing

h�YXi�ZXii and hrYXirZXii for Y¼ Z together provide the

Oð1=NÞ deterministic finite-size effect of the form 1
N K2

YXpYXnY

ðR2
Y þ SYÞ. The remaining contribution from such terms for

Y¼Z and Y 6¼ Z amounts to random constant parameters and

pseudo-noises, respectively, whose intensity is of the order

OðN�3=2Þ and as such can be neglected. As an illustration,

we state that the terms involving h�YXi�ZXii for Y 6¼ Z may

be evaluated as 1
N2 KYXKZXRYRZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pYXpZXNYNZ=NX

p
, which is

indeed OðN�3=2Þ. Finally, averaging over all the terms at the

r.h.s. of (7) containing the genuine noises gXiðtÞ at the macro-

scopic level provides stochastic effects of the order Oð1=N2Þ,
which can also be neglected within our mean-field model.

Collecting all the results stated so far, one arrives at the

following equation for the dynamics of the cluster mean-

rate:

dRX

dt
¼ �kXRX þ H0X þ 2BXH2X

þH2X

X
Y

K2
YXpYXnYðR2

Y þ SYÞ=N

þ
ffiffiffiffiffiffiffi
WX

p
bðtÞ þ

ffiffiffiffiffiffi
XX

p
g; (8)

where the “macroscopic” noise is of intensity WX

¼ 1
N ð2DX þ 2BXH2

1XÞ þ 1
N H2

1X

P
Y K2

YXpYX
NY

NX
SY , and the asso-

ciated random variable bðtÞ is Gaussian distributed. The mac-

roscopic noise is made up of three terms which may be

interpreted as follows. The two terms in the first bracket rep-

resent the contribution from the local intrinsic and external

noise translated to macroscopic level, whereby the latter is

manifested as multiplicative, rather than the additive noise.

The third term is of different character and essentially reflects

the impact of local fluctuations in the input provided to each

neuron within the cluster. Apart from this, Eq. (8) also

contains a random term where g is just a constant random

number Nð0; 1Þ, whereas the associated intensity is XX

¼ 1
N H2

1X

P
Y K2

YXpYX
NY

NX
R2

Y . Note that the latter factor derives

from the topological “uncertainty” effect related to quenched

randomness, in a sense that each particular network realiza-

tion is characterized by distinct deviations from the average

connectivity degree.

Starting from the definition and applying the It�o deriva-

tive, one may use analogous methods to obtain the final equa-

tion for the variance SX. We omit the details of the lengthy

calculation, but just state that here we also neglect the deter-

ministic finite-size correction of the order of Oð1=NÞ, as well

as all the noisy terms and the terms related to uncertainty

parameter derived from the particular network realization.

The final equation for the variance then becomes

dSX

dt
¼ �2kXSX þ 2BXH2

1X þ 2DX: (9)

Equations (8) and (9) make up the second-order stochastic

mean-field model describing the collective activity of each

cluster within the network. To complete the model, it is nec-

essary to specify the gain function H. In general, the gain

function should meet the requirements that it is zero for suffi-

ciently small input and that it saturates for large enough

input, whereas for intermediate input values, H should just

be smooth and monotonous. For convenience of analytical

study,30,35 we adopt the following form of H:

HðQÞ ¼
0; Q 	 0;

3Q2 � 2Q3; 0 < Q < 1;

1; Q 
 1:

8><
>: (10)

III. ANALYSIS OF THE MEAN-FIELD MODEL AND
SWITCHING DYNAMICS

In order to demonstrate the facilitatory role of clustering

on switching dynamics more explicitly, we first investigate

how the switching emerges in case of statistically homoge-

neous random network and then draw comparison to scenario

the involving clustered network topology. In both instances,

the analysis of the mean-field model in the thermodynamic

limit N !1 is used to gain qualitative insight into the param-

eter domains supporting coexistence of different stationary

states. The latter is a necessary ingredient for the onset of slow

rate fluctuations, which emerge due to the finite-size effect. It

will be demonstrated that the switching dynamics in clustered

and non-clustered networks are based on different mecha-

nisms, which we relate to the finding that clustering promotes

network multistability.

A. Slow rate fluctuations in a non-clustered network

Let us first consider the deterministic dynamics of the non-

clustered network with uniform coupling strengths. Given that

this case has been analyzed in detail in our previous papers,30,35

here we provide only a brief summary of the main results.

The network behavior is described by the deterministic

part of the system Eqs. (8) and (9), whereby (4) implies that

the average input to each neuron amounts to U ¼ I þ KpR
¼ I þ aR, with a ¼ Kp being the connectivity parameter.

Note that S generally affects the R dynamics only via Oð1=NÞ
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terms, which contribute to the small deterministic correction

term and the macroscopic noise. Thus, in the thermodynamic

limit, one may neglect the S evolution and replace it with the

corresponding stationary value S0 ¼ ðBXH2
1 þ DÞ=k. For sim-

plicity, we adopt k¼ 1 in the remainder of the paper. In order

to analyze the stability of (8) in the limit N !1, it is conve-

nient to rewrite it in terms of the average input U as30,35

dU

dt
¼ �2aU3 þ 3aU2 � 12aBU � U þ 6aBþ I: (11)

Equation (11) always admits at least one stable station-

ary state. For the given external noise B, the onset of bistable

regime is associated to the pitchfork bifurcation that occurs

at ap ¼ 2=ð3ð1� 8BÞÞ and Ip ¼ ð1� apÞ=2. From this cusp

point emanate two branches of saddle-node bifurcations,

which outline the bistability “tongue” where the UP and the

DOWN states characterized by the high and low mean-rates

coexist, cf. Fig. 1(a). In particular, the upper curve corre-

sponds to creation of the UP state, whereas the lower curve

coincides with annihilation of the DOWN state. Within the

coexistence region, the two stable states are separated by the

unstable state, cf. Fig. 1(b), whereby the level of the unstable

state decreases with a. This confines the attraction basin of

the DOWN state, facilitating the prevalence of the UP state

at higher connectivity. Figure 1(c) further shows that for

increasing B, the bistability domain gets shifted toward

larger a. Note that the change of a is achieved by increasing

the coupling strength K while the connectedness probability

p¼ 0.2 is kept fixed to conform to the case of sparse random

network, which maintains certain biological plausibility.

The mechanism behind switching dynamics in the non-

clustered network may be explained by analyzing the finite-

size effect and is reminiscent of the noise-driven motion of a

particle in a double-well potential. The analogy lies in the

fact that the macroscopic noise, as the finite-size effect,

allows for the network mean-rate to jump between the min-

ima of the potential, which correspond to the two stationary

levels of the deterministic part of the mean-field model, see

the example of R(t) series in Fig. 2(a). Replacing S by its sta-

tionary value, Eq. (8) for the stochastic dynamics of the

mean-rate may be written in term of U as

dU

dt
¼ � dV

dU
þ

ffiffiffiffi
W
p

n; (12)

where V presents the potential VðUÞ ¼ aU4=2� aU3

þð6aBþ 1=2ÞU2 � ð6aBþ IÞU þOð1=NÞ, whereas the

macroscopic noise amounts to W ¼ a2ð2þ a2Þ½36BU2

ð1� UÞ2 þ D�=N. In the vicinity of the pitchfork bifurcation,

V indeed has the shape of a double-well potential, as illus-

trated in Fig. 2(b).

The described switching mechanism is generic, in a sense

that one expects to observe it close to bifurcation inducing the

bistability, but is not robust, given that the physically mean-

ingful switching rates are obtained in the sufficiently small

parameter domain about the bifurcation value. Beyond this

area, the potential barrier becomes too high for the noise to

overcome it, making the switching events extremely unlikely.

In principle, the macroscopic noise WðUÞ is multiplica-

tive, which makes finding the analytical expression for the

underlying transition rates extremely difficult. Nevertheless,

in a first approximation, the setup may be reduced to the

classical Kramers problem43 if W is replaced by its mean Wm

obtained by averaging over the U values between the two

potential wells. Figure 3(a) illustrates that Wm may be con-

sidered representative for the whole range of WðUÞ values,30

especially given that the macroscopic noise is well bounded

FIG. 1. Analysis of the mean-field model of a non-clustered random network in the thermodynamic limit N !1. (a) Bistability domain (highlighted region)

in the ðI � aÞ plane is bounded by two branches of saddle-node bifurcations. The latter meets at the cusp point CP, located at ðIp; apÞ, where the pitchfork bifur-

cation occurs. External noise is set to B¼ 0.004, whereas D¼ 0.02. (b) RðaÞ dependence within the bistability tongue ðI ¼ 0:15;B ¼ 0:004Þ shows coexistence

between the UP and the DOWN state. (c) Shift of bistability domain for increasing B 2 f0; 0:004; 0:01; 0:02g.

FIG. 2. Slow rate fluctuations illus-

trated by the R(t) series in (a) and the

associated stationary probability distri-

bution f(R) in (b). The results are

obtained numerically for I ¼ 0:15; a
¼ 0:7;B ¼ 0:004;D ¼ 0:02 and the

network size N¼ 400. The dashed-

dotted lines in (a) indicate the UP and

DOWN levels of the corresponding

mean-field model in the thermody-

namic limit. The solid line in (b)

presents the double-well potential V,

cf. Eq. (12).
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within the relevant U interval. Within this framework, the

first passage time between the two wells can be determined

via the Kramers formula44–46

TU6!U7
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jV00ðUmaxÞjV00ðU6Þ
p exp

VðUmaxÞ � VðU6Þ
Wm

� �
;

(13)

where U6 refer to the two minima of the double-well poten-

tial, whereas Umax denotes the location of its maximum. The

total transition rate is then given by h ¼ 1=ðTUþ!U�

þTU�!UþÞ. For a values in vicinity of the pitchfork bifurca-

tion, the last expression may be used to compare with the

numerical findings, cf. Fig. 3(b). One finds qualitative

matching of the prediction derived from the mean-field

model and the simulation within two aspects: (i) the region

where hðaÞ is positive corresponds well to the region where

the exact system exhibits slow rate fluctuations, and (ii) the

order of the predicted h values is the same as the one

obtained from simulations.

B. Switching dynamics in clustered networks

In Subsection III A, we have shown that switching in

homogeneous random networks is confined to the parameter

domain in close vicinity of the pitchfork bifurcation. The

main goal here is to demonstrate that switching in clustered

networks is based on the paradigm that clustering promotes

networks multistability. The outcome is that the switching

phenomenon gains on robustness, in a sense that it can be

found for parameter regions where it cannot be observed in

statistically homogeneous random networks.

We shall show that sufficiently strong clustering sup-

ports multistability by giving rise to network states which do

not exist in the non-clustered case. The increased number of

network levels derives from the states with broken symme-

try, where subsets of clusters occupy different levels, lying

either in the UP or the DOWN state. By analyzing the mean-

field model in the thermodynamic limit, we find that such

multistability can be achieved only by varying the connectiv-

ity features of the network (topological heterogeneity), rather

than by introducing the parameter heterogeneity over the

subsets of network clusters. With increased multistability,

the stochastic terms contributing to finite-size effect may

cause the network to cross to another level just by inducing

the switching event within a single cluster. The slow rate

oscillations are then naturally supported by the fact that the

impact of the finite-size effect is more pronounced for indi-

vidual clusters than for the entire network.

Though the system Eqs. (8) and (9) are quite general in a

sense that they may be applied to a network comprising an

arbitrary number of clusters of arbitrary sizes, for simplicity,

we address here the case where the network consists of m
equal clusters of size Nc ¼ N=m. Clustering algorithm consists

in rearranging the links from the homogeneous random net-

work, such that the average connectedness probability p¼ 0.2

is preserved. We introduce additional clustering parameter g to

characterize topological heterogeneity, cf. Table II for the sum-

mary of notation relevant for Sec. III B. Parameter g presents

the ratio between the intra-cluster and cross-cluster connectiv-

ity, ain and aout, respectively, such that ain ¼ gaout with g> 1.

Larger g implies stronger clustering, whereby the limiting case

g¼ 1 describes the non-clustered network, whereas the case

g!1 corresponds to the network of disconnected clusters.

One may show that ain and aout can be expressed in terms of

the connectivity of the original homogeneous network a as

ain ¼
gm

m� 1þ g
a; aout ¼

m

m� 1þ g
a: (14)

This allows us to compare the relevant parameter domains

between the homogeneous and the clustered networks.

Let us now focus on the scenario where l clusters occupy

state Ra, and m – l clusters lie at Rb. While the homogeneous

state has the permutation symmetry Rm with respect to

exchange of all the cluster indices, the solutions we consider

now have a reduced symmetry Rl � Rm�l. One may analyze

the stability and bifurcations of the corresponding mean-field

model in the thermodynamic limit N !1, cf. (11). The

model is given by

dRa

dt
¼ �2U3

aðRa;RbÞ þ 3U2
aðRa;RbÞ

þ 6Bð1� 2UaðRa;RbÞÞ � Ra

dRb

dt
¼ �2U3

bðRa;RbÞ þ 3U2
bðRa;RbÞ

þ 6Bð1� 2UbðRa;RbÞÞ � Rb; (15)

where the average input to the two groups of clusters reads

UaðRa;RbÞ ¼ I þ a
m� 1þ g

ðgþ l� 1ÞRa þ ðm� lÞRb½ �;

UbðRa;RbÞ ¼ I þ a
m� 1þ g

lRa þ ðgþ m� l� 1ÞRb½ �:

(16)

As for the non-clustered network, the variances Sa and Sb

can be substituted by their respective stationary values

FIG. 3. (a) Macroscopic noise W as a function of the mean-input X. The dot-

ted line indicates the average Wm over the relevant X range. (b) The solid

line shows hðaÞ dependence obtained for the mean-field model via the

Kramers formula (13). Dots denote the switching rates obtained numerically

for I ¼ 0:15;B ¼ 0:004;D ¼ 0:02, and N¼ 400.

TABLE II. Summary of notation in Sec. III B.

a � Kp Connectivity parameter of the homogeneous network

m Total number of clusters

ain Intra-cluster connectivity

aout Inter-cluster connectivity

g � ain=aout Clustering parameter

d � 1=ðg� 1Þ Inverse clustering parameter
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S�i ¼ ðBXH2
i þ DÞ=k, with i 2 fa; bg. Using (16), one may

express Ra and Rb in terms of Ua and Ub via

Ra ¼
Ua � I

a
þ m� l

aðg� 1Þ ðUa � UbÞ;

Rb ¼
Ub � I

a
þ l

aðg� 1Þ ðUb � UaÞ:
(17)

Inserting the latter expressions into (15), we obtain that the

steady states of the mean-field model satisfy

I � f ðUaÞ þ dðm� lÞðUb � UaÞ ¼ 0;

I � f ðUbÞ þ dlðUb � UaÞ ¼ 0:
(18)

In (18), f ðUiÞ is given by f ðUiÞ ¼ 2aU3
i � 3aU2

i þ ð1
þ12BaÞUi � 6Ba, which implies that the terms I � f ðUiÞ
have exactly the same form as the r.h.s. of (11) for the homoge-

neous random network. For convenience, we have introduced

the inverse clustering parameter d ¼ ðg� 1Þ�1
, whereby the

limit d!1 corresponds to the non-clustered network, while

the case d! 0 coincides with ultimate clustering, i.e., the sce-

nario where the network comprised effectively independent

clusters. The system (18) naturally possesses the symmetry

with respect to exchanging l and m – l together with Ua and Ub

(l$ m� l;Ua $ Ub).

Our interest lies with the inhomogeneous states where

the respective stationary levels of the two groups of clusters

are different, R�a 6¼ R�b. The analysis of (18) reveals that apart

from the homogeneous states described in Sec. III A, one

may indeed find one or two coexisting inhomogeneous states

depending on the inverse clustering parameter d under fixed

ðm; l; I;BÞ. While the system (15) and the subsequent Eqs.

(16)–(18) can describe a network of arbitrary number of

equal clusters, the analysis below is focused on the network

of m¼ 5 clusters. This is chosen as a minimal paradigmatic

example, convenient since due to symmetry, the cases l¼ 1

and l¼ 2 exhaust all the possible inhomogeneous solutions.

Onset of inhomogeneous states is investigated in detail

by constructing the d� I bifurcation diagrams (see Fig. 4).

The left and the right plots refer to cases l¼ 1 and l¼ 2,

respectively, with the remaining network parameters fixed to

a ¼ 0:8;B ¼ 0:004. For d values less than the level indicated

by the red dotted line in Fig. 4(b), there exists an I interval

where two inhomogeneous solutions can coexist, whereas

above the given d, one can find only monostable inhomoge-

neous states.

Note that the region of coexistence between the two inho-

mogeneous states admits a total of 9 solutions of the mean-

field model (15), cf. the notation in Fig. 4(b), whereas in the

two domains with a single genuine clustered regime, one finds

a total of 7 solutions of the mean-field model. Most of the

curves indicated in Fig. 4 correspond to saddle-node bifurca-

tions. In particular, the transitions from regions with 1 to

regions with 3 solutions and vice versa coincide with creation

or annihilation of the homogeneous states already described in

Sec. III A. Also, the boundary between regions with 5 and 7

solutions is given by the branches of saddle-node bifurcations

which meet at the cusp point where the pitchfork bifurcation

occurs. Exceptions to this paradigm are the transitions involv-

ing regions with 3 and 5 solutions of the mean-field model.

The latter present fold bifurcations of the inhomogeneous

states within the symmetry subgroup Rl � Rm�l, whereby the

emanating branches correspond to an unstable fixed point and

a saddle point.

A more detailed picture of the inhomogeneous states and

their stability domains relative to homogeneous states may be

obtained by analyzing the corresponding R(I) bifurcation dia-

grams for fixed ðm; l;B; d; aÞ. The plots in Fig. 5 are provided

for ðd; IÞ values supporting the coexistence of two inhomoge-

neous states. The top and the bottom panels refer to cases

l¼ 1 and l¼ 2, respectively. In each panel, the left and the

middle plots indicate the states occupied by the groups of

l and m – l clusters, respectively, whereas the right plot con-

cerns the entire network (left and middle plots superimposed).

FIG. 4. Bifurcation diagrams dðIÞ for the inhomogeneous solutions of the mean-field model (15). (a) corresponds to case l¼ 1, whereas (b) refers to case l¼ 2.

In (b), the total number of solutions obtained for the mean-field model within the different parameter domains is indicated. The regions with 1 and 3 solutions

admit only homogeneous states, while the region with 5 solutions contains unstable inhomogeneous states. The regions with 7 and 9 solutions facilitate mono-

stable inhomogeneous states and coexistence between the two inhomogeneous states, respectively. The bistability between inhomogeneous states arises only

for sufficiently strong clustering below the red dotted line, cf. the bifurcation diagrams in Fig. 5 and Fig. 6 obtained for the d level just above the red line and

the d value indicated by the green dashed line, respectively. The remaining network parameters are m ¼ 5;B ¼ 0:004; a ¼ 0:8.
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One clearly distinguishes between the regions where

only one inhomogeneous solution is stable (either l clusters

in the DOWN state and m – l in the UP state or vice versa)

and the central I region where two inhomogeneous solutions

coexist. For instance, in the bottom panel, coexistence of two

inhomogeneous states is found for I 2 ð0:0866; 0:1135Þ,
whereas the regions with l clusters UP or DOWN as the only

inhomogeneous solutions are given by I 2 ð0:0845; 0:0866Þ
and I 2 ð0:1135; 0:1156Þ. The presentation scheme is such

that the solid (dashed) lines indicate the stable (unstable)

branches of solutions. Note that the top-most (red solid line)

and the bottom-most curves (blue solid line) in both panels

indicate the homogeneous states. In case of inhomogeneous

states, the color coding is such that Ra and Rb corresponding

to the same solution are assigned with the same color. As

expected, the stability domains of the inhomogeneous states

are smaller than the regions supporting the homogeneous

states.

In Fig. 6, the R(I) bifurcation diagrams for lower cluster-

ing (larger d) are shown, which no longer admits bistability

between the inhomogeneous states. The top and the bottom

panels again refer to cases l¼ 1 and l¼ 2, respectively. From

both panels, one learns that the two I intervals, where single

inhomogeneous solutions exist, are separated by the I interval

FIG. 5. Bifurcation diagrams R(I) for strong clustering d ¼ 0:004, cf. the level denoted by the green dashed line in Fig. 4(b). Panels (a) and (b) correspond to

cases l¼ 1 and l¼ 2, respectively. The left and middle columns refer to states of particular groups of clusters Ra and Rb. The latter are superimposed in

the right column to indicate the possible network states. The stable solutions are given by the solid lines, and the unstable branches are shown by the gray

dashed lines. The Ra and Rb states corresponding to the same solution are presented by the same color. The remaining system parameters are m ¼ 5;
B ¼ 0:004; a ¼ 0:8.

FIG. 6. Bifurcation diagrams R(I) in case of weak clustering d ¼ 0:0151, the value just above the level indicated by the red dotted line in Fig. 4(b). The top

and bottom panels correspond to cases l¼ 1 and l¼ 2, respectively. The presentation style is the same as in Fig. 5. The remaining network parameters are

m ¼ 5;B ¼ 0:004; a ¼ 0:8.
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where only the two homogeneous states are available. A

more detailed view of the basins of attraction of the particular

states can be obtained by examining the vector fields for the

relevant I values, cf. Fig. 7.

To gain a more general understanding of the multistabil-

ity of the mean-field model (15), one should note that it is

affected by two types of parameters, namely (i) the ones

associated to homogeneous network and (ii) those character-

izing the clustering. System (18) implies that the case of ulti-

mate clustering (d¼ 0) leads to the same type of dynamics as

that of a homogeneous network. Consequently, the area of

bistability of the homogeneous network corresponds to the

maximal multistability of the clustered network: each cluster

may either be in the UP or the DOWN state, which yields

mþ 1 different stable solutions in total. Bistability of the

homogeneous network has been addressed in Fig. 1 and has

been examined in greater detail in our earlier papers.30,35

The main novelty here concerns the impact of the cluster-

ing degree and its interplay with a;B, and m. As already indi-

cated in Fig. 4, reduction of the clustering degree, i.e.,

increase of d, leads to gradual extinction of the inhomoge-

neous states via saddle-node bifurcations. Nevertheless, we

have established that the stronger average network connectiv-

ity a allows for the inhomogeneous states to occur at lower

clustering, as corroborated by the shift of the relevant d region

to higher values when a is increased under all the other

parameters fixed (not shown). Also, one finds that the d region

admitting inhomogeneous states reduces under increasing

noise B.

In order to investigate the effect of the number of clusters

m, one may introduce the ratio l ¼ l=m and rewrite Eq. (18) as

I � f ðUaÞ þ dmð1� lÞðUb � UaÞ ¼ 0;

I � f ðUbÞ þ dmlðUb � UaÞ ¼ 0:
(19)

It follows that for the given ration l, the bifurcations in the

system depend only on the product md. The latter implies

that the increase in the number of clusters m leads to the onset

of the relevant bifurcations for smaller d. In other words, the

more clusters present in the network, the stronger clustering

is required to support the same level of multistability.

The analysis on multistability of the clustered network

derived from the mean-field model is qualitative in character,

but allows one to classify all the network states and gain under-

standing of the mechanism behind the switching dynamics.

The qualitative character of the predictions is reflected in that

the mean-field model becomes the least accurate in vicinity of

bifurcations where fluctuations are most pronounced, such that

the finite-size effect prevails. Nevertheless, via the mean-field

approach, one is also able to compare the effect of certain sys-

tem parameters on the dynamics of the homogeneous and the

clustered network. In particular, we are interested in compari-

son with respect to parameters I and a. For the homogeneous

network, one finds the bistability tongue, whereby the switch-

ing dynamics occurs in close vicinity of the cusp. Using the

model (15), we have constructed analogous d� I bifurcation

diagrams for the clustered network with fixed a. Our goal is to

apply these results to explicitly demonstrate that multistability

promoted by the clustered topology plays the facilitatory role

with respect to switching dynamics. This is easily understood

intuitively, as additional multistability induced by clustering

implies more network levels distributed less widely. Then,

switching between different levels becomes more efficient

because it may be achieved just by alternations within individ-

ual clusters, and the finite-size effect within the clusters is

more pronounced given their smaller size compared to the

whole network.

To illustrate the impact of clustering on the onset of slow

rate oscillations, we consider an example where the system

parameters B; I; a are fixed to B ¼ 0:01; I ¼ 0:0513; a ¼ 0:9,

respectively. For the given B, the selected ða; IÞ values lie

deep within the bistability tongue of the homogeneous ran-

dom network, viz., far from the cusp point, cf. Figure 1(c).

The corresponding time series of the network mean-rate

RNðtÞ and the associated stationary probability distribution

obtained for the full system Eq. (1) are shown in Fig. 8. The

latter corroborates that indeed no switching can be observed

for the given parameter set in case of the homogeneous net-

work. Nevertheless, for the sufficiently large g (small d), the

clustered network exhibits strong switching dynamics for the

same ðI; aÞ values, see the results for the full system Eq. (1)

in Fig. 9. In Fig. 9(a), the sequences from the mean-rate

dynamics of individual clusters RiðtÞ and the network rate

RNðtÞ are shown, whereas in panel (b), the corresponding

probability distributions are provided. Note that the network

parameters are selected from the domain supporting maximal

multistability, i.e., the region where the mean-field model

(15) admits 9 different solutions, allowing for the coexistence

of two inhomogeneous states within the same Rl � Rm�l sym-

metry subgroup.

FIG. 7. Vector field plots indicating basins of attraction for the different types solutions of the mean-field model (15) in the (Ra, Rb) plane. The bias current I
increases systematically from (a)-(e). The plots correspond to the example indicated in Fig. 5(b). The network parameters are m ¼ 5;B ¼ 0:004;
d ¼ 0:004; a ¼ 0:8.
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The results in Figs. 8 and 9 indicate a good qualitative

agreement between the dynamics of the full system and the

effective model, in a sense that the analysis of the mean-field

model can anticipate the parameter values where one may

observe the switching dynamics in the full system. Naturally,

the levels of the effective model obtained for the clustered

network correspond to metastable states of the full system,

whereby switching between them occurs due to the finite-size

effects.

IV. CONCLUSION

In this paper, we have analyzed the interplay of clustered

topology and different types of noise on the spontaneous activ-

ity of networks of rate-based neurons. Clustered topology

appears to be biologically relevant,4,25,49 as the recent research

on the microstructure of cortical networks has indicated that

the small clusters of excitatory neurons are significantly over-

represented.36,47 In real neural networks, the clusters may be

important as functional units performing certain tasks48 or may

constitute processing units adapted to receiving a certain type

of stimuli.50–52 We have demonstrated that clustering affects

the collective dynamics of neural networks in a nontrivial fash-

ion by promoting multistability such that spontaneous slow

rate fluctuations gain on robustness.

From the theoretical perspective, our main contribution

consists in derivation of the reduced system which describes

the network activity in terms of interacting mean-field mod-

els representing each of the clusters. Typically, the reduced

models address the two limit cases of a globally connected

network32–34 or a network with the random sparse connectiv-

ity,30,35 such that the fluctuations of input between the units

are small. The model presented here interpolates between

these two scenarios, as the intra-cluster connectivity is

strong, whereas the inter-cluster connectivity is weaker. We

have identified three types of finite-size effects, including the

small deterministic correction term, the macroscopic noise,

and the topological uncertainty derived from the fact that

each particular network realization features distinct devia-

tions from the average connectivity degree. The macroscopic

noise is a multiplicative one and incorporates three different

sources of randomness, describing the impact of local neuro-

nal noise on collective activity and the fluctuations in the

input received by each of the units. Interestingly, the local

intrinsic noise translates to additive macroscopic noise,

whereas the microscopic external noise is reflected as multi-

plicative noise at the macroscopic level.

It has been demonstrated that the mean-field model can

be used to qualitatively analyze the spontaneous activity of

FIG. 8. Absence of switching dynam-

ics for the non-clustered network

beyond the vicinity of pitchfork bifur-

cation. In (a), the time trace of the

network mean-rate RNðtÞ for the full

system (1) is shown, whereas in (b),

the corresponding stationary probabil-

ity distribution f(R) is provided.

The network parameters are a ¼ 0:9;
I ¼ 0:05;B ¼ 0:01;N ¼ 500. Note that

the selected ða; IÞ values lie within the

B¼ 0.01 bistability tongue, but far

from the cusp point, cf. Fig. 1(c).

FIG. 9. Example of switching dynamics in the clustered network. Panel (a) shows the time traces of mean-rates of individual clusters RiðtÞ; i 2 f1;…; 5g and

the network RNðtÞ obtained by simulating the full system (1). In panel (b), the corresponding probability distributions f(R) for the single clusters and the net-

work are presented. The network parameters are m ¼ 5;B ¼ 0:01; a ¼ 0:9; I ¼ 0:0513; d ¼ 0:01;N ¼ 500. The fact that clustering promotes multistability

allows for the switching dynamics to occur in the much broader ðI; aÞ domain than for the homogeneous random network, cf. Fig. 1(c) and the time series in

Fig. 8.
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the clustered network. The mechanism behind slow rate fluc-

tuations has been explained by considering the stability and

bifurcations of the mean-field model in the thermodynamic

limit. The latter also allowed us to contrast the cases of the

non-clustered and clustered network. In the non-clustered net-

work, the crucial ingredient to slow rate fluctuations is that

the network parameters lie close to pitchfork bifurcation. The

evolution of the mean-rate may then locally be described by

the paradigm of noise-driven motion of a particle in a double-

well potential, so that its local minima coincide with the UP

and DOWN states of the network. Such mechanism is per se
generic, but lacks robustness, as it is confined to a small vicin-

ity of the pitchfork bifurcation. The key effect of introducing

clustering consists in the increased multistability of the net-

work, facilitated by the onset and coexistence of states where

different groups of clusters lie in the UP or the DOWN states.

This promotes the switching dynamics, making it more effi-

cient in a sense that alternation between the different network

levels can be achieved just by changing the states of individ-

ual clusters rather than the whole network. Alternations within

single clusters are naturally more likely since the finite-size

effect associated to macroscopic noise is more pronounced.

This way, the switching phenomenon gains on robustness,

extending into the parameter domains where it cannot be

observed for the non-clustered network.

The importance of clustered topology for macroscopic

variability has earlier been indicated for the networks of spik-

ing neurons with balanced excitatory-inhibitory input.4,24,25,53

However, with such local dynamics, slow fluctuations of the

mean network activity cannot even be observed for a simple

random network topology, which implies that clustering

indeed plays the crucial role in inducing the switching behav-

ior. Thus, our results on the rate-based neurons together with

the previous work on spiking neurons suggest that promoting

of slow rate fluctuations by clustered topology may indeed be

a universal phenomenon independent on the particular model

of local neuronal dynamics.

In view of the fact that the spontaneous activity of real

neurons may indeed be described as a doubly stochastic

process,54–56 combining the fluctuations on short and long

timescales, the presented work has been aimed at providing

theoretical tools for analysis of macroscopic variability in

neural networks and its relation to microscopic dynamics

and the network topology. We believe that the same

method can be used to analyze the evoked activity of the

network, examining the impact of clustering on the net-

work’s response to external stimulation. Also, our research

so far has been confined to networks of excitatory neurons,

but we believe that the same theoretical framework can

readily be used to analyze the complex behavior of net-

works with both excitatory and inhibitory neurons. One

expects that the presence of inhibitory subassembly should

have a nontrivial impact both to spontaneous and evoked

network activities.
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