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a b s t r a c t 

In present paper, authors examine the dynamics of a spring-slider model, considered as a phenomeno- 

logical setup of a geological fault motion. Research is based on an assumption of delayed interaction 

between the two blocks, which is an idea that dates back to original Burridge–Knopoff model. In con- 

trast to this first model, group of blocks on each side of transmission zone (with delayed interaction) is 

replaced by a single block. Results obtained indicate predominant impact of the introduced time delay, 

whose decrease leads to transition from steady state or aseismic creep to seismic regime, where each 

part of the seismic cycle (co-seismic, post-seismic and inter-seismic) could be recognized. In particular, 

for coupling strength of order 10 2 observed system exhibit inverse Andronov–Hopf bifurcation for very 

small value of time delay, τ≈0.01, when long-period (T = 12) and high-amplitude oscillations occur. Fur- 

ther increase of time delay, of order 10 −1 , induces an occurrence of a direct Andronov–Hopf bifurcation, 

with short-period (T = 0.5) oscillations of approximately ten times smaller amplitude. This reduction in 

time delay could be the consequence of the increase of temperature due to frictional heating, or due to 

decrease of pressure which follows the sudden movement along the fault. Analysis is conducted for the 

parameter values consistent with previous laboratory findings and geological observations relevant from 

the seismological viewpoint. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

It is generally considered that process of accumulation and re-

lease of stress along the seismogenic faults always obeys the same

rule: period with no movement along the fault (or with aseismic

creep), when the stress is being accumulated, is followed by its

sudden release, which could be further succeeded by the partial

emission of the remained stored energy. These three periods, for-

mally known as inter-seismic, co-seismic and post-seismic, respec-

tively, constitute a single seismic cycle, which could be manifested

at regular time intervals (for the strongest seismic events), or, more

likely, occurrence of seismic events appears as a random process

following Poisson distribution [1] . From the seismological view-

point previous studies on properties of a seismic cycle resulted in

sufficiently accurate characterization of each of the aforementioned

periods. It is well known that inter-seismic deformation indicates

depth of the zone that will eventually rupture seismically [2] and
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he rate at which stress is accumulating along the fault zone [3] .

he very end of this inter-seismic period could be marked by the

ccurrence of foreshocks as small partial releases of the stored po-

ential energy before the main event. On the other hand, post-

eismic deformation is usually driven by the preceding co-seismic

tress change [3] and it could be as large as the fault slip during

he main seismic event. Observed post-seismic behavior includes

oroelastic deformation [4] , frictional afterslip [5] and viscoelastic

elaxation [6] . Similarly to the inter-seismicposteriod, post-seismic

art of the seismic cycle could be marked by the occurrence of af-

ershocks, as sudden releases of the remaining stored energy with

ignificantly smaller magnitude in comparison to the main seismic

vent. 

From the purely mechanical viewpoint, it is commonly consid-

red that alternation of seismic cycles could be described by ir-

egular stick-slip behavior [7] . For a simple frictional system, like

ommonly used spring-block model, the occurrence of stick-slip

s due to a difference in static and kinetic friction, i.e. once the

lock starts to slide the friction drops suddenly to a lower level

8] . It is generally considered that surface roughness and normal

https://doi.org/10.1016/j.chaos.2017.11.037
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tress level play main role in “pushing” the spring-block model

nto stick-slip regime [9] . In present analysis, we analyze only the

ffect of friction on dynamics of spring-block model, by assuming

ome small constant value of normal stress which does not signif-

cantly affect the dynamics of the model. This could correspond

o shallow parts of the Earth’s crust, or parts where horizontal

tresses are much higher that vertical ones, due to significant ef-

ect of tectonics and surface erosion which reduced the thickness

f the overlying layers. 

Results of the pioneer work of Burridge and Knopoff [10] on

ynamics of a simple spring-block model set a solid base for suc-

eeding laboratory and theoretical research of seismogenic fault

otion. The main outcome of their work is that distribution of

isplacement sums (i.e. earthquake magnitudes) follows two key

acrosesimologic laws: Gutenberg–Richter and Omori–Utsu power

aw distribution. This finding enabled succeeding researchers a

ide specter of additional analyzes, from the purely seismologi-

al [11,12] , across the tribological [13,14] to purely dynamical [15] .

hese “dynamical” research are primarily in our focus, since they

howed that for a certain parameter range, dynamics of spring-

lock models exhibit a regular transition between different dy-

amical regimes, with the eventual occurrence of chaotic dynam-

cs [16,17] . Nevertheless, former studies did not treat the problem

f seismic cycle per se , except from our previous paper, where we

nalyzed the impact of transient seismic wave on the dynamics

f spring-block model, which resulted in transition between dif-

erent seismic cycles [18] . One of the goals of the present analysis

s to match different dynamical regimes of a spring-block model to

ppropriate phases of seismic cycles. In particular, the performed

nalysis should provide answers to the following questions: (1)

hat are the relevant parameter ranges for which the dynamic of

he spring-block model enters the stick-slip regime, (2) what are

he main dynamical features of that regime and (3) what does

t mean for the real conditions in Earth’s crust. In that way, we

ill be able to reveal the main controlling mechanism behind the

egularity of seismic cycle. One should note that, besides seismol-

gy, nonlinear models in general have been successively applied in

ther areas of natural sciences, as well [19–24] . 

Besides the analogy with the macroseismological laws, another

mportant outcome of the original work of Burridge and Knopoff

oncerns a delayed transition of motion among two sets of blocks,

ndicating possible highly complex dynamical behavior. In partic-

lar, they showed that displacement among two boundary group

f blocks in an one-dimensional chain is being transmitted with

 certain time delay, whose order of unit corresponds to the vis-

osity of the middle set of blocks. Although this finding opened a

ot of possibilities for investigating the cause and consequences of

uch a feature, it was not taken into consideration in succeeding

tudies. Effect of time delay was previously only implicitly intro-

uced in friction term [25,26] , and between the neighboring blocks

n an one-dimensional chain of blocks with rate-dependent fric-

ion law [27] . In present paper, we analyze the transition between

ifferent seismic cycles considering the delayed interaction among

he blocks with a rate-and state-dependent friction law. In con-

rast to our previous work, delayed interaction is assumed between

he blocks exhibiting rate-and state-dependent friction law, which

orresponds well to the laboratory observations of rock friction.

lso, present analysis is conducted for the values of parameters

hich are either observed in reality or in laboratory conditions.

e consider that this behavior is also relevant from the view-

oint of seismology, since different friction conditions along the

ault (e.g. different thickness and physico-mechanical properties of

ault gouge, impact of pore fluid, etc.) could cause a delayed tran-

ition of motion among different parts of the active seismogenic

ault. 
m  
To sum up, the main idea of the present study is to deter-

ine the main dynamical mechanism by which the fault motion

odel reaches stick-slip like oscillations, as an appropriate dy-

amical state of a seismic fault motion which includes the inter-

eismic, co-seismic and post-seismic regime. Thereby, dynamics of

he relevant model is examined for the parameter values meaning-

ul from the viewpoint of seismology, under the influence of the

ssumed delayed interaction of variable strength. Introduction of

ew influential parameters is motivated by the previous laboratory

ndings, with the aim of modeling the effect of changeable friction

roperties along the fault. The analysis is conducted using both an-

lytical and numerical methods, former of which involved the ap-

lication of local bifurcation analysis for the model with constant

ime delay whose results are corroborated numerically. 

. Model development 

.1. Original model of fault motion 

Our numerical simulations of a spring-block model are based

n the system of equations coupled with Dieterich–Ruina rate-and

tate-dependent friction law [16] : 

. = −
(
ν

L 

)(
θ + B log 

(
ν

ν0 

))
. 
u 

= ν − ν0 

. = 

(
− 1 

M 

)(
ku + θ + A log 

(
ν

ν0 

)) (1) 

here parameter M is the mass of the block and the spring stiff-

ess k corresponds to the linear elastic properties of the rock

ass surrounding the fault [28] . According to Dieterich and Kil-

ore [29] the parameter L corresponds to the critical sliding dis-

ance necessary to replace the population of asperity contacts. The

arameters A and B are empirical constants, which depend on ma-

erial properties. Variables u and ν represent displacement and ve-

ocity, while θ denotes the state variable describing the state of

he rough surface along which blocks are moving [30] . Parame-

er V 0 represents the constant background velocity of the upper

late Fig. 1 ). For convenience, system ( (2) is non-dimensionalized

y defining the new variables θ ’, v’, u’ and t’ in the following way:

= A θ ’, v = v 0 v’, u = Lu’, t = (L/v 0 )t’ , after which we return to the use

f θ , v, u and t . This non-dimensionalization puts the system into

he following form: 

. = −ν( θ + ( 1 + ε ) log ( ν) ) 
. 
u 

= ν − 1 

. = −γ 2 [ u + ( 1 /ξ ) ( θ + log ( ν) ) ] 

(2) 

here ε = (B − A)/A measures the sensitivity of the velocity re-

axation, ξ = (kL)/A is the nondimensional spring constant, and

= (k/M) 1/2 (L/v 0 ) is the nondimensional frequency [16] . As it was

reviously shown [18] , a supercritical direct Andronov–Hopf bifur-

ation curve occurs for the following parameter values ε = 0.27,

= 0.5 and γ = 0.8, leading from equilibrium state to regular pe-

iodic oscillations. 

.2. Fault motion model under study 

We analyze the dynamics of two coupled blocks Fig. 1 ), whose

otion is governed by the following system of first-order ordinary
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Fig. 1. Setup of the analyzed model. 
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Fig. 2. General scheme of a shear stress variation during the motion of analyzed 

model shown in Fig. 1 . 
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differential equations, starting from the original system (1) : 

˙ θ1 = −
(

V 1 

L 1 

)
·
(
θ1 + B 1 ln 

(
V 1 

V 0 

))
˙ 
 1 = V 1 − V 0 

˙ V 1 = (−1 /M 1 ) [ k 1 U 1 − k (U 2 (t − τ ) −U 1 (t)) + θ1 + A 1 ln (V 1 /V 0 ) ] 

˙ θ2 = −
(

V 2 

L 2 

)
·
(
θ2 + B 2 ln 

(
V 2 

V 0 

))
˙ 
 2 = V 2 − V 0 

˙ V 2 = ( −1 /M 2 ) [ k 2 U 2 − k ( U 1 ( t − τ ) − U 2 ( t ) ) + θ2 + A 2 ln ( V 2 /V 0 ) ] 

(3)

Here we introduced time delay between the two coupled

blocks. In this way, we simulate the original model of Burridge

and Knopoff [10] , where two blocks actually represent two bound-

ary sets of blocks, and the effect of the middle set of blocks (with

different viscosity properties in comparison to other two sets) is

replicated by the delayed interaction between the two blocks. 

Appropriate non-dimensionalization puts the system (3) into

the following form: 

θ . 
1 = −V 1 · ( θ1 + ( 1 + ε 1 ) ln V 1 ) 

 

. 
1 = V 1 − 1 

V 

. 
1 = γ 2 

1 

(
−U 1 + c 1 ( U 2 ( t − τ ) − U 1 ( t ) ) −

(
1 

ξ1 

)
( θ1 + ln ( V 1 ) ) 

)
θ . 

2 = −V 2 · ( θ2 + ( 1 + ε 2 ) ln V 2 ) 

 

. 
2 = V 2 − 1 

V 

. 
2 = γ 2 

2 

(
−U 2 + c 2 ( U 1 ( t − τ ) − U 2 ( t ) ) −

(
1 

ξ2 

)
( θ2 + ln ( V 2 ) ) 

)
(4)

where c i = k/k i , i = 1,2; θ1new 

= θ1old /A, V new 

= V old /V 0 , U new 

= U old /L,

t new 

= (L/V 0 )t old , ε = (B − A)/A, ξ = (kL)/A, γ = (k/M) 1/2 (L/V 0 ) .

In present paper, we consider that ε 1 = ε 2 = ε , γ 1 = γ 2 = γ ,

ξ 1 = ξ 2 = ξ and c 1 = c 2 = c . 

3. Choice of the relevant parameter values 

As it is commonly known, dynamics of any system is predomi-

nantly controlled by an action of a few control parameters, whose

tuning induce corresponding transitions between different dynam-

ical regimes. Thereby, variations of control parameters should be

performed within the relevant intervals, i.e. by taking the parame-

ter values which are of interest either from theoretical viewpoint,

or which are observed in laboratory conditions or in situ . 

Original model (2) has three main control parameters that pre-

determine its dynamics. As it was previously indicated, parameter

ε denotes the ratio of stress drop and stress increase during the

fault motion ( Fig. 2 ). According to the results of previous studies

[5] , this ratio needs to be positive in order to capture the velocity-

weakening behavior, i.e. for (B −A) > 0 one could observe the unsta-
le dynamics relevant from the viewpoint of seismology. Previous

esearch showed that this condition is fulfilled at depths in Earth’s

rust where the most crustal earthquake foci are located, approx-

mately between 5 and 15 km [5] . Below and above this zone,

arameter ε has negative values, indicating velocity-strengthening

ehavior, which secures the stable dynamics of fault motion. Re-

arding the relevant values of parameter ε, preceding laboratory

ndings on friction properties of granite samples (since continental

rust is mostly composed of granite) indicated that parameters A

nd B are of the order of magnitude 10 −3 [31] , with ratio (B −A)/A

n the interval [ −0.17,0.36], which indicates that meaningful values

f ε could be taken from the interval [ −1,1] ( Table 1 ). One should

ote that present analysis is constrained only to the dynamics of

rustal faults, since fault motion in the subduction zones is under

revailing gravitational influence, which is not examined in this

tudy. It should also be emphasized that in present analysis we

bserve only the velocity weakening behavior, so negative values

f dimensionless stress ratio are not examined. 

Parameter ξ is defined as a function of spring stiffness k L , block

ass M and stress increase A. Stiffness k L is related to the spring

y which blocks are attached to the upper moving plate, which ac-

ording to Brown et al. [32] needs to be much more flexible than

pring connecting the blocks (whose stiffness is described by k C ),

ince the distance between the interacting blocks along the fault is

uch smaller than the dimension of the driving plate. In present

nalysis if one takes that the value of k C is around 1, than parame-

er k L could take values two order of units smaller, k L = 10 −2 . This

urther means that relevant values of parameter c (k C /k L ) are of

0 2 order of unit. Regarding the block mass, we assume that M

akes very small values (order of unit of 10 −6 ), since, in present

nalysis, we do not analyze the effect of gravity (normal stress),

ut dynamic instability is assumed to occur due to effect of fric-

ion and delayed interaction. Hence, analysis is conducted for al-

ost massless blocks. When all of these assumptions, constraints

nd previously obtained results are taken into consideration, one

rrives at the relevant values of ξ of the order of 10 −1 ( Table 1 ). 
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Table 1 

Relevant parameter values for the analysis. 

Parameter Relevant value from the previous studies (order of unit) Reference 

Stress increase: A 10.3 − 19.9 × 10 −3 [25] 

Stress drop: B 12.1 − 20.3 × 10 −3 [25] 

Spring stiffness between the upper plate and the block: k L k L << k C (10 −2 ) [26] 

Critical slip distance: L 10 −2 [27] 

Velocity of the driving plate: V 0 1 [16] 

Controlling parameters 

Parameter Relevant value from the previous studies (order of unit) Adopted interval for present analysis 

ε = (B −A) / A [ −0.17,0.36] [ −1,1] 

ξ = k L × M/A 10 −1 [0,1] 

γ = (k L /M) 1/2 × (L/V 0 ) 1 [0,2] 
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Fig. 3. Diagram τ (c), for the fixed values of parameters ε = 0.4, ξ = 0.5 and γ = 0.8 

(limit cycle of the starting system). Andronov–Hopf bifurcation curves denotes the 

transition from limit cycle (LC) to equilibrium state (EQ) and again to limit cycle 

(LC). Qualitatively similar diagrams are obtained for other parameter values for the 

initial conditions near the equilibrium point. 

Fig. 4. Diagram τ ( ε), for the fixed values of parameters c = 100, ξ = 0.5 and γ = 0.8 

(limit cycle of the starting system). Andronov–Hopf bifurcation curve denotes the 

transition from the initial limit cycle (LC) across the equilibrium state (EQ) and 

again to limit cycle (LC). Qualitatively similar diagrams are obtained for other pa- 

rameter values for the initial conditions near the equilibrium point. 
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f

 

a  
Relevant values of parameter γ are determined by taking into

he consideration the spring stiffness k L , block mass M, critical

lip distance L and velocity of the upper driving plate V 0 . Accord-

ng to Scholz [33] , critical slip distance L represents a displace-

ent needed to make a transition between the steady-state fric-

ion regimes ( Fig. 2 ). Its recommended value is 10 −2 order of unit.

egarding the velocity of the upper driving plate, V 0 , its relevant

alue is determined by the stationary solution of system (2) , which

s ( θ ,U,V) = (0,0,1) according to Erickson et al. [16] . Hence, we take

 0 = 1 as a meaningful value of the upper plate velocity. Concern-

ng these appropriate values of k L , M, L and V 0 , one finds that rel-

vant value of γ is of a single order of unit ( Table 1 ). 

One should note that the value of time delay is observed in

omparison with the oscillation period relevant from the seismo-

ogical viewpoint. In present paper, authors consider time delay as

elevant for those values which are significantly smaller that the

orresponding oscillation period. This is in correspondence with

he proposal by Burridge and Knopoff, who took time delay signif-

cantly smaller for the part of the fault that exhibits viscous slip-

ing rather that the parts that move by fracture. 

. Results 

Regarding the local bifurcation analysis, the considered delay

ifferential equation (DDE) system is treated numerically using

DE BIFTOOL, having the obtained results further corroborated by

he Runge-Kutta 4th order numerical method. System (4) has only

ne stationary solution, namely ( θ1 ,U 1 ,V 1 , θ2 ,U 2 ,V 2 ) = (0,0,1,0,0,1) ,

hich corresponds to steady sliding. We proceed in the stan-

ard way to determine and analyze the characteristic equation of

4) around a stationary solution (0,0,1,0,0,1). Details of the analysis

re given in Appendix . 

Next we shall analyze the effect of stationary time delay cou-

led with the influence of coupling strength c and the main con-

rol parameters of the observed system, namely ε, ξ and γ . All the

nalyzes were done for the limit cycle as the starting dynamical

egime of the initial observed system ( τ = 0), which is considered

s a co-seismic regime. 

Fig. 3 shows the Hopf bifurcation curves in τ -c diagram. For

he relevant range of values for coupling strength (10 2 order of

nit), observed system exhibit inverse Andronov–Hopf bifurcation,

rom the initial oscillatory regime, with period T ≈12, to equilib-

ium state (fixed point), for very small value of time delay, τ≈0.01.

ncrease of time delay, e.g. τ = 0.3, for c = 100, induces an occur-

ence of a direct Andronov–Hopf bifurcation, with the appearance

f regular periodic oscillations, with period T = 0.5. Regarding the

scillation amplitudes, direct Andronov–Hopf bifurcation triggers

pproximately ten times smaller displacements. 

Effect of the interaction of time delay and dimensionless stress

atio ε is given in Fig. 4 . As in the previous case, an inverse su-

ercritical Andronov–Hopf bifurcation curve occurs with the in-
rease of τ , introducing the change of dynamical regime from the

imit cycle (for the values of ε > 0.27) to equilibrium state, and fur-

her again to regular periodic oscillations (for τ > 0.3), with the oc-

urrence of direct bifurcation. Qualitatively similar behavior is ob-

erved when τ and nondimensional frequency γ are simultane-

usly varied ( Fig. 5 ). With the increase of time delay, for constant

alue of γ , both inverse and direct supercritical Andronov–Hopf bi-

urcation occurs. 

In the case when τ and ξ are varied, while other parameters

re held fixed for the equilibrium state of the original system (2) ,
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Fig. 5. Diagram τ ( γ ), for the fixed values of parameters c = 100, ξ = 0.5 and ε = 0.4 

(limit cycle of the starting system). Andronov–Hopf bifurcation curve denotes the 

transition from equilibrium state (EQ) to limit cycle (LC). Qualitatively similar di- 

agrams are obtained for other parameter values for the initial conditions near the 

equilibrium point. 

Fig. 6. Diagram τ ( ξ ), for the fixed values of parameters c = 100, ε = 0.4 and γ = 0.8 

(limit cycle of the starting system). Andronov–Hopf bifurcation curve denotes the 

transition from the limit cycle (LC) across the equilibrium state (EQ) to limit cycle 

(LC). Qualitatively similar diagrams are obtained for other parameter values for the 

initial conditions near the equilibrium point. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Transition between seismic cycles in oscillatory regime of spring-slider dy- 

namics. Black line denotes the change of friction (state variable), red line is for dis- 

placement, while blue line indicates the change of velocity. 
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there is an Andronov–Hopf bifurcation curve occurs from the equi-

librium state to regular periodic oscillations ( Fig. 6 ). 

5. Discussion 

Results of the performed analysis are new and meaningful for

both the nonlinear dynamics and seismology. From the viewpoint

of nonlinear dynamics, present analysis is relevant from the phe-

nomenological aspect. In particular, the obtained results indicate

that by assuming the delayed interaction between the blocks, one

can observe two phenomena: inverse and direct Andronov–Hopf

bifurcation. It should be emphasized that this feature is observed

for the values of time delay about 4 × 10 2 order of unit smaller

than the corresponding period of regular oscillations of the start-

ing system (for τ≈0). 

From the seismological aspect, interpretation could be interest-

ing if one looks in the opposite direction. In particular, if the ex-
stence of delayed interaction among different fault segments is

ustified, considering different viscous properties of fault gouge,

han starting dynamical regime should be with introduced positive

alue of time delay. This means that the starting system is prob-

bly in equilibrium state (fixed point), which is proved to occur

ith the introduction of time delay. However, further increase of

ime delay induces the transition to regular periodic oscillations,

hich certainly could not be considered as the onset of co-seismic

egime, for two main reasons. Firstly, frequency of displacements

s very high, i.e. oscillation period is approximately 0.5, which is

ear the value of time delay (0.3), where the bifurcation point oc-

urs. Such large value of time delay could hardly be expected in

atural conditions. Secondly, displacement amplitude is about ten

imes smaller than for the starting system, which is also not likely

o happen, since the majority of displacement along the fault takes

lace during the earthquakes, i.e. in the co-seismic regime. Hence,

n order to “force” the examined system with the included time

elay to enter the co-seismic regime, one needs to analyze the

onditions which lead to the reduction of viscosity effect. Certainly,

eaker impact of viscosity is expected in high temperature and

ow pressure conditions, which are the two conditions usually sat-

sfied during the fault movement. In particular, the unconsolidated

ngular shaped rock material that constitutes the fault gouge ex-

ibits high friction, which further induces the increase in temper-

ture. Also, during the fault movement, fault itself is released of

he pressure generated by the strong tectonic forces acting in op-

osite directions along the fault. In particular, heat generated dur-

ng frictional sliding is a substantial component of the energy bud-

et of earthquakes [34,35] . When time delay is significantly small

 τ � 0.01), fault enters the co-seismic dynamical regime, where

egular periodic oscillations have low-frequency (i.e. high period,

 ≈12), and rather large amplitude (around 1.2 − 2.0 in our numer-

cal simulations). Certainly, case with τ = 0 is out of the question,

ince main assumption of the analysis is that delayed interaction

s inherent property of the compound fault. 

Once the examined model is in oscillatory regime, one could

asily recognize the co-seismic, post-seismic and inter-seismic

egime, latter of which represent short-term occurrence ( Fig. 7 ).
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ne should note that such dynamics, relevant from the viewpoint

f seismology, is observed for the parameter values adopted using

he previous laboratory findings. 

. Conclusion 

In present paper, authors examine dynamics of a spring-slider

odel as a setup of fault movement. Examined model is composed

f two blocks with delayed interaction, which mimics delayed in-

eraction among a group of blocks from the original Burridge–

nopoff model. Analysis is conducted for the parameter values rel-

vant from the seismological viewpoint, based on the previous lab-

ratory findings and seismological observations. Main goal of the

esearch was to establish the background dynamics of a seismic

ycle, including the transition from steady state or aseismic creep

o stick-slip-like seismic regime, with alternation of inter-seismic,

o-seismic and post-seismic cycles. 

Results of the performed analysis indicate the following. Intro-

uction of small time delay, significantly smaller when compared

o the period of oscillatory regime, leads to transition from fixed

oint (equilibrium state) to periodic oscillations (limit cycle). From

he viewpoint of seismology, these findings indicate a key role of

he interaction among different parts of a compound fault in gen-

ration of seismogenic motion. More closely, effect of viscosity of

 fault zone plays a crucial role in transmission of a movement

long the fault. From the standpoint of earthquake phenomenol-

gy, one could consider regular periodic oscillations as an exam-

le of stick-slip like regime, with the successive shifts between

he co-seismic regime (increasing velocity branch and decreasing

riction), post-seismic regime (decreasing velocity branch and in-

reasing friction) and inter-seismic regime (quasi-stationary veloc-

ty branch). On the other hand, some authors could consider the

hole oscillatory regime as a representative of a co-seismic fault

ovement [36] . 

Another interesting outcome of the present research lies in the

pecific effect of the main controlling parameters, which were pre-

iously indicated as the most relevant for the modeled fault dy-

amics [16] . Apparently, ratio of stress drop to stress increase (pa-

ameter ε), for the range of other parameters’ values relevant from

he seismological viewpoint and for the assumed delayed interac-

ion as inherent property of fault dynamics, induces the transition

rom equilibrium state to periodic oscillations. Regarding the ef-

ect of other two parameters, γ and ξ , related to the stiffness of

he spring connecting the blocks and the upper driving plate, re-

ults obtained imply that a change from steady state or aseismic

reep to seismic fault motion occurs with the increase of γ and

. However, these parameters are considered as constants for the

bserved system, so it is highly unlikely to expect their significant

hanges during the fault motion. The expected changes of these

arameters are either small or these changes are slow from the

iewpoint relevant for the duration of seismogenic fault motion. 

As for the effect of coupling strength c , increase of c for the

elevant range of parameter values ( > 10 2 ) leads to the change of

ynamical regime only for rather high values of time delay, which

s certainly not expected in the real conditions along the fault zone

n the Earth’s crust. Hence, in this case, time delay plays again the

ignificant role, in a way that the reduction of time delay could

ead to the onset of co-seismic regime. 

Concerning the predominant effect of delayed coupling on dy-

amics of fault motion, further research could include the analy-

is of time varying delay on fault motion. Such an assumption is

ustified from the seismological viewpoint, since one could expect

hanges of friction properties along the fault zone in a reasonable

eriod of time. From the standpoint of nonlinear dynamics, in-

roduction of coupling with variable delay would certainly induce
ore complex behavior and, maybe, indicate some new dynamical

echanisms in the background of earthquake nucleation. 
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ppendix 

Linearization of the system (4) and substitution θ1 = A 1 e 
λt ,

 1 = B 1 e 
λt , V 1 = C 1 e 

λt , θ2 = A 2 e 
λt , U 2 = B 2 e 

λt , V 2 = C 2 e 
λt and with

 1 (t- τ ) = B 1 e 
λ(t- τ ) and U 2 (t- τ ) = B 2 e 

λ(t- τ ) results in a system of al-

ebraic equations for the constants A 1 , B 1 , C 1 , A 2 , B 2 and C 2 . This

ystem has a nontrivial solution if the following is satisfied: 

−( λ + 1 ) 

[ 
λ
(
λ + γ 2 

1 

(
1 

ξ1 

))
· D 

+ γ 2 
1 ( 1 + c 1 ) · D + γ 2 

1 c 1 e 
−λτ ( λ + 1 ) γ 2 

2 c 2 e 
−λτ

]
+ λ( 1 + ε 1 ) γ

2 
1 

(
1 

ξ1 

)
· D = 0 (1A) 

here: 

 = 

∣∣∣∣∣
−( λ + 1 ) 0 −( 1 + ε 2 ) 

0 −λ 1 

−γ 2 
2 

(
1 
ξ2 

)
−γ 2 

2 ( 1 + c 2 ) −
(
λ + γ 2 

2 

(
1 
ξ2 

))
∣∣∣∣∣

The Eq. (1A) is the characteristic equation of the system (4) and

an be written in the following form: 
 

−(λ+ 1) 
[ 
λ
(
λ+ γ 2 

1 

(
1 

ξ1 

))
+ γ 2 

1 ( 1 + c 1 ) 

] 
+ λ( 1 + ε 1 ) γ

2 
1 

(
1 

ξ1 

)} 

·

 = ( λ + 1 ) 
2 γ 2 

1 γ
2 

2 c 1 c 2 e 
−2 λτ (2A)

n which we substitute λ= i ω to obtain: 

{ [ 
ω 2 γ 2 

1 

(
1 
ξ1 

)
+ ω 2 −γ 2 

1 ( 1+ c 1 ) 
] 
+ iω 

[ 
ω 2 −γ 2 

1 ( 1+ c 1 ) −γ 2 
1 

(
1 
ξ1 

)
+ ( 1+ ε 1 ) γ 2 

1 

(
1 
ξ1 

)] } 
D 

γ 2 
1 
γ 2 

2 
c 1 c 2 [ −ω 2 +1+ i 2 ω ] = 

 cos ( 2 ωτ ) − i sin ( 2 ωτ ) 

(3A) 

The resulting two equations for the real and imaginary part of

3A) after squaring and adding give an equation for each of the

arameters, c 1 , c 2 , ε 1 and ε 2 in terms of the other parameters, ω,

, γ 1 and γ 2 , and after division, an equation for τ in terms of

he parameters ω, μ, γ 1 , γ 2 , ε1 , ε2 , ξ 1 and ξ 2 . In this way, one

btains parametric representations of the relations between τ and

he parameters, which correspond to the bifurcation values λ= i ω.

he general form of such relations is illustrated by the following

ormula for ε1 as a function of ω: 

( 1 + ε 1 ) 1 / 2 = −F ± √ 

F 2 − G 

2 

H 

(4A) 

here F, G and H are abbreviations for the following terms: 

F = 

(
ω 

[ (
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))
B + AD 

] (
−ω 

2 + 1 

)

−2 

[ 
AB − ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))
D 

] )
·

ω γ 2 
1 

(
1 

ξ1 

){
B 

(
−ω 

2 + 1 

)
+ 2 ω 

2 D 

}

+ 

((
AB − ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Dγ 2 

1 

(
1 

ξ1 

)))(
−ω 

2 + 1 

)

+ B ω 

2 
(

2 

(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))
+ AD 

))
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G = 

[(
ω γ 2 

1 

(
1 

ξ1 

){
B 

(
−ω 

2 + 1 

)
+ 2 ω 

2 D 

})2 
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(
ω 

2 γ 2 
1 

(
1 

ξ1 

){ 

B 

(
1 + 

1 

μ

)
− D 

(
−ω 

2 + 1 

)} )2 
]

·
[ ((

ω 

[ (
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Bγ 2 

1 

(
1 

ξ1 

))
+ AD 

] (
−ω 

2 + 1 

)

−2 

[ 
AB − D ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))] ))2 

+ 

+ 

((
AB − ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Dγ 2 

1 

(
1 

ξ1 

)))(
−ω 

2 + 1 

)

+ ω 

2 
(

2 

(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Bγ 2 

1 

(
1 

ξ1 

))
+ AD 

))2 

−

−
(((

−ω 

2 + 1 

)2 + 2 ω 

2 
)(

γ 2 
1 γ

2 
2 c 1 c 2 

))2 
]

H = 

(
γ 2 

1 

(
1 

ξ1 

)
ω 

{
B 

(
−ω 

2 + 1 

)
+ 2 ω 

2 D 

})2 

+ 

(
ω 

2 γ 2 
1 

(
1 

ξ1 

){
2 B − D 

(
−ω 

2 + 1 

)})2 

(5A)

and A, B and D are: 

A = ω 

2 γ 2 
1 

(
1 

ξ1 

)
+ ω 

2 − γ 2 
1 ( 1 + c 1 ) 

B = ω 

2 ·
(
γ 2 

2 

(
1 

ξ2 

)
+ 1 

)
− γ 2 

2 ( 1 + c 2 ) 

D = ω 

2 − γ 2 
2 ( 1 + c 2 ) − γ 2 

2 

(
1 

ξ2 

)
+ γ 2 

2 ( 1 + ε 2 ) 
(

1 

ξ2 

) (6A)

On the other hand, for c 1 as a function of ω: 

( c 1 ) 1 / 2 = 

−F ± √ 

F 2 − GH 

H 

(7A)

where F,G and H are the same as in (7). 

For τ as a function of ω: 

τ = 

1 

2 ω 

{ 

arctan 

(
− J 

K 

)
+ kπ

} 

(8A)

where k is any nonnegative integer such that τ k ≥ 0 , and J and K

are the abbreviations for the following terms: 

J = 

ω (
−ω 

2 + 1 

)2 + 4 ω 

2 

{
[ CB + AD ] 

(
−ω 

2 + 1 

)
−

[
2 AB − ω 

2 CD 

]}

K = 

1 (
−ω 

2 + 1 

)2 + 4 ω 

2 

{[
AB − ω 

2 CD 

](
−ω 

2 + 1 

)
+ 2 ω 

2 [ CB + AD ] 
}

(9A)

where A, B and D are the same as in (8), and C stands for the

following term: 

 = ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

)
+ ( 1 + ε 1 ) γ

2 
1 

(
1 

ξ1 

)
. (10A)
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