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a b s t r a c t

Wepresent hybrid OpenMP/MPI (OpenMulti-Processing/Message Passing Interface) parallelized versions
of earlier published C programs (Vudragović et al. 2012) for calculating both stationary and non-
stationary solutions of the time-dependent Gross–Pitaevskii (GP) equation in three spatial dimensions.
The GP equation describes the properties of dilute Bose–Einstein condensates at ultra-cold temperatures.
Hybrid versions of programs use the same algorithms as the C ones, involving real- and imaginary-time
propagation based on a split-step Crank–Nicolson method, but consider only a fully-anisotropic three-
dimensional GP equation, where algorithmic complexity for large grid sizes necessitates parallelization
in order to reduce execution time and/or memory requirements per node. Since distributed memory
approach is required to address the latter,we combineMPI programming paradigmwith existingOpenMP
codes, thus creating fully flexible parallelism within a combined distributed/shared memory model,
suitable for different modern computer architectures. The two presented C/OpenMP/MPI programs for
real- and imaginary-time propagation are optimized and accompanied by a customizable makefile. We
present typical scalability results for the provided OpenMP/MPI codes and demonstrate almost linear
speedup until inter-process communication time starts to dominate over calculation time per iteration.
Such a scalability study is necessary for large grid sizes in order to determine optimal number of MPI
nodes and OpenMP threads per node.

New version program summary

Program title: GP-SCL-HYB package, consisting of: (i) imagtime3d-hyb, (ii) realtime3d-hyb.

Catalogue identifier: AEDU_v3_0

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v3_0.html

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.

Licensing provisions: Apache License 2.0

No. of lines in distributed program, including test data, etc.: 26397.

No. of bytes in distributed program, including test data, etc.: 161195.

Distribution format: tar.gz.

Programming language: C/OpenMP/MPI.

Computer: Any modern computer with C language, OpenMP- and MPI-capable compiler installed.

Operating system: Linux, Unix, Mac OS X, Windows.
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RAM: Total memory required to run programs with the supplied input files, distributed over the usedMPI
nodes: (i) 310 MB, (ii) 400 MB. Larger grid sizes require more memory, which scales with Nx*Ny*Nz.

Number of processors used: No limit, from one to all available CPU cores can used on all MPI nodes.

Number of nodes used: No limit on the number of MPI nodes that can be used. Depending on the grid size
of the physical problem and communication overheads, optimal number of MPI nodes and threads per
node can be determined by a scalability study for a given hardware platform.

Classification: 2.9, 4.3, 4.12.

Catalogue identifier of previous version: AEDU_v2_0.

Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 2021.

Does the new version supersede the previous version?: No.

Nature of problem: These programs are designed to solve the time-dependent Gross–Pitaevskii (GP)
nonlinear partial differential equation in three spatial dimensions in a fully anisotropic trap using a
hybridOpenMP/MPI parallelization approach. TheGP equation describes the properties of a dilute trapped
Bose–Einstein condensate.

Solution method: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
using discretization in space and time. The discretized equation is then solved by propagation, in either
imaginary or real time, over small time steps. The method yields solutions of stationary and/or non-
stationary problems.

Reasons for the new version: Previous C [1] and Fortran [2] programs are widely used within the ultracold
atoms and nonlinear optics communities, aswell as in various other fields [3]. This new version represents
extension of the two previously OpenMP-parallelized programs (imagtime3d-th and realtime3d-th)
for propagation in imaginary and real time in three spatial dimensions to a hybrid, fully distributed
OpenMP/MPI programs (imagtime3d-hyb and realtime3d-hyb). Hybrid extensions of previous OpenMP
codes enable interested researchers to numerically study Bose–Einstein condensates in much greater
detail (i.e., with much finer resolution) than with OpenMP codes. In OpenMP (threaded) versions of
programs, numbers of discretization points in X , Y , and Z directions are bound by the total amount of
available memory on a single computing node where the code is being executed. New, hybrid versions
of programs are not limited in this way, as large numbers of grid points in each spatial direction can
be evenly distributed among the nodes of a cluster, effectively distributing required memory over many
MPI nodes. This is the first reason for development of hybrid versions of 3d codes. The second reason for
new versions is speedup in the execution of numerical simulations that can be gained by using multiple
computing nodes with OpenMP/MPI codes.

Summary of revisions: Two C/OpenMP programs in three spatial dimensions from previous version [1] of
the codes (imagtime3d-th and realtime3d-th) are transformed and rewritten into a hybrid OpenMP/MPI
programs and named imagtime3d-hyb and realtime3d-hyb. The overall structure of two programs is
identical. The directory structure of the GP-SCL-HYB package is extended compared to the previous
version and now contains a folder scripts, where examples of scripts that can be used to run the programs
on a typical MPI cluster are given. The corresponding readme.txt file contains more details. We have also
included a makefile with tested and verified settings for most popular MPI compliers, including OpenMPI
(Open Message Passing Interface) [4] and MPICH (Message Passing Interface Chameleon) [5].

Transformation from pure OpenMP to a hybrid OpenMP/MPI approach has required that the array
containing condensate wavefunction is distributed among MPI nodes of a computer cluster. Several data
distribution models have been considered for this purpose, including block distribution and block cyclic
distribution of data in a 2d matrix. Finally, we decided to distribute the wavefunction values across
different nodes so that each node contains only one slice of the X-dimension data, while containing the
complete corresponding Y - and Z-dimension data, as illustrated in Fig. 1. This allows central functions of
our numerical algorithm, calcluy, calcuz, and calcnu to be executed purely in parallel on different MPI
nodes of a cluster, without any overhead or communication, as nodes contain all the information for
Y - and Z-dimension data in the givenX-sub-domain. However, the problemariseswhen functions calclux,
calcrms, and calcmuen need to be executed, as they also operate on thewhole X-dimension data. Thus, the
need for additional communication arises during the execution of the function calcrms,while in the case of
functions calclux and calcmuen also the transposition of data between X- and Y -dimensions is necessary,
while data in Z dimension have to stay contiguous. Transposition provides nodes with all the necessary
X-dimension data to execute functions calclux and calcmuen. However, this needs to be done in each
iteration of numerical algorithm, thus necessarily increasing communication overhead of the simulation.

Transposition algorithms that were considered where the ones that account for greatest common
divisor (GCD) between number of nodes in columns (designated by N) and rows (designated by M) of
a cluster configured as 2d mash of nodes [6]. Two of such algorithms have been tested and tried for
implementation: the case when GCD = 1 and the case when GCD > 1. The trivial situation N = M = 1 is
already covered by the previous, purely OpenMP programs, and therefore, without any loss of generality,
we have considered only configurations with number of nodes in X-dimension satisfying N > 1. Only
the former algorithm (GCD = 1) was found to be sound in case where data matrix is not a 2d, but a
3d structure. Latter case was found to be too demanding implementation-wise, since MPI functions and
data-types are bound to certain limitations. Therefore, the algorithm with M = 1 nodes in Y -dimension
was implemented, as depicted by the wavefunction data structure in Fig. 1.
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Fig. 1. BEC wavefunction data structure in the employed algorithm. Data are sliced so that the complete Y - and
Z-dimension data reside on a single node for a given range of data in X-dimension, while data in X-dimension are
distributed over N = gsize nodes. Figures show data transposition and MPI indexed datatype creation parameters for
the case of: (a) sending side and (b) receiving side.

Implementation of the algorithm relies on a sliced distribution of data among the nodes, as explained
in Fig. 2. This successfully solves the problem of large RAM consumption of 3d codes, which arises even
for moderate grid sizes. However, it does not solve the question of data transposition between the nodes.
In order to implement the most effective (GCD = 1) transposition algorithm according to Ref. [6], we
had to carry out block distribution of data within one data slice contained on a single node. This block
distribution of data was done implicitly, i.e. data on one node have been put in a single 1d array (psi) of
contiguousmemory, in which Z-dimension has stride 1, Y -dimension has stride Nz, and X-dimension has
stride Ny*Nz. This is different from previous implementation of the programs, where the wavefunction
was represented by an explicit 3d array. This changewas also introduced in order tomore easily form user
MPI datatypes, which allow for implicit block distribution of data, and represent 3d blocks of data within
1d data array. These blocks are then swapped between nodes, effectively performing the transposition in
X–Y and Y–X directions.

Together with transposition of blocks between the nodes, the block data also have to be redistributed.
To illustrate how this works, let us consider example shown in Fig. 1(a), where one data block has
size (Nx/gisze)*(Ny/gsize)*Nz. It represents one 3d data block, swapped between two nodes of a cluster
(through one non-blocking MPI_Isend and one MPI_Ireceive operation), containing (Nx/gsize)*(Ny/gsize)
1d rods of contiguousNzdata. These rods themselves need to be transposedwithin the transposedblock as
well. This means that two levels of transpositions need to be performed. At a single block level, rods have
to be transposed (as indicated in upper left corner of Fig. 1(a) for sending index type and in Fig. 1(b) for
receiving index type). Second level is transposition of blocks between different nodes, which is depicted
by blue arrows connecting different blocks in Fig. 1.

The above described transposition is applied whenever needed in the functions calclux and calcmuen,
which require calculations to be done on the whole range of data in X-dimension. When performing
renormalization of the wavefunction or calculation of its norm, root-mean-square radius, chemical
potential, and energy, collective operations MPI_Gather and MPI_Bcast are also used.

Figs. 3 and 4 show the scalability results obtained for hybrid versions of programs for small and large
grid sizes as a function of number of MPI nodes used. The baseline for calculation of speedups in the
execution time for small grid sizes is previous, purely OpenMP programs, while for large grid sizes, which
cannot fit onto a single node, the baseline is hybrid programswithminimal configuration runs on 8 nodes.
The figures also show efficacies, defined as percentages ofmeasured speedups compared to the ideal ones.
We see that an excellent scalability (larger than 80% compared to the ideal one) can be obtained for up
to 32 nodes. The tests have been performed on a cluster with nodes containing 2 × 8-core Sandy Bridge
Xeon 2.6 GHz processors with 32 GB of RAM and Infiniband QDR (Quad Data Rate, 40 Gbps) interconnect.
We stress that the scalability depends greatly on the ratio between the calculation and communication
time per iteration, and has to be studied for a particular type of processors and interconnect
technology.

Additional comments: This package consists of 2 programs, see Program title above. Both are hybrid,
threaded and distributed (OpenMP/MPI parallelized). For the particular purpose of each program, see
descriptions below.



414 B. Satarić et al. / Computer Physics Communications 200 (2016) 411–417

Fig. 2. Creation of a user-definedMPI datatype indextypewith the functionMPI_Type_indexed. Here, count represents
the number of blocks, blocklengths array contains lengths of each block, and displacements array contains the
displacement of each block from the beginning of the corresponding data structure. For example, if an array of double
precision numbers (designated as buffer in the figure) is sent by MPI_Send with the datatype set to indextype, it is
interpreted as a block-distributed data structure, as specified when indextype was created.

Fig. 3. Speedup in the execution time and efficacy curves of imagtime3d-hyb and realtime3d-hyb programs as a
function of the number of MPI nodes used for small grid sizes. The results are obtained on a cluster with nodes
containing 2 × 8-core Sandy Bridge Xeon 2.6 GHz processors with 32 GB of RAM and Infiniband QDR interconnect:
(a) speedup of imagtime3d-hyb on a 240× 200× 160 grid; (b) efficacy of imagtime3d-hyb on a 240× 200× 160 grid;
(c) speedup of realtime3d-hyb on a 200 × 160 × 120 grid; (d) efficacy of realtime3d-hyb on a 200 × 160 × 120 grid.
Shaded areas in graphs (b) and (d) represent high-efficacy regions, where speedup is at least 80% of the ideal one.

Running time: All running times given in descriptions below refer to programs compiled with
OpenMPI/GCC compiler and executed on 8–32 nodes with 2 × 8-core Sandy Bridge Xeon 2.6 GHz
processors with 32 GB of RAM and Infiniband QDR interconnect. With the supplied input files for small
grid sizes, running wallclock times of several minutes are required on 8–10 MPI nodes.
Special features: (1) Since the condensate wavefunction data are distributed among the MPI nodes, when
writing wavefunction output files each MPI process saves its data into a separate file, to avoid I/O issues.
Concatenating the corresponding files from all MPI processes will create the complete wavefunction file.
(2) Due to a known bug in OpenMPI up to version 1.8.4, allocation of memory for indexed datatype on a
single node for large grids (such as 800 × 640 × 480) may fail. The fix for this bug is already in 3c489ea
branch and is fixed in OpenMPI as of version 1.8.5.
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Fig. 4. Speedup in the execution time and efficacy curves of imagtime3d-hyb and realtime3d-hyb programs as a
function of thenumber ofMPI nodes used for large grid sizes. The results are obtainedon a clusterwithnodes containing
2 × 8-core Sandy Bridge Xeon 2.6 GHz processors with 32 GB of RAM and Infiniband QDR interconnect: (a) speedup
of imagtime3d-hyb on a 1920 × 1600 × 1280 grid; (b) efficacy of imagtime3d-hyb on a 1920 × 1600 × 1280 grid;
(c) speedup of realtime3d-hyb on a 1600 × 1280 × 960 grid; (d) efficacy of realtime3d-hyb on a 1600 × 1280 × 960
grid. Shaded areas in graphs (b) and (d) represent high-efficacy regions, where speedup is at least 80% of the ideal one.

Program summary (i)
Program title: imagtime3d-hyb.
Title of electronic files: imagtime3d-hyb.c, imagtime3d-hyb.h.
Computer: Any modern computer with C language, OpenMP- and MPI-capable compiler installed.
RAM memory requirements: 300 MBytes of RAM for a small grid size 240 × 200 × 160, and scales with
Nx*Ny*Nz. This is total amount of memory needed, and is distributed over MPI nodes used for execution.
Programming language used: C/OpenMP/MPI.
Typical running time: Few minutes with the supplied input files for a small grid size 240 × 200 × 160 on
8 nodes. Up to one hour for a large grid size 1920 × 1600 × 1280 on 32 nodes (1000 iterations).
Nature of physical problem: This program is designed to solve the time-dependent GP nonlinear partial
differential equation in three space dimensions with an anisotropic trap. The GP equation describes the
properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields solutions of stationary problems.
Program summary (ii)
Program title: realtime3d-hyb.
Title of electronic files: realtime3d-hyb.c, realtime3d-hyb.h.
Computer: Any modern computer with C language, OpenMP- and MPI-capable compiler installed.
RAM memory requirements: 410 MBytes of RAM for a small grid size 200 × 160 × 120, and scales with
Nx*Ny*Nz. This is total amount of memory needed, and is distributed over MPI nodes used for execution.
Programming language used: C/OpenMP/MPI.
Typical running time: 10–15 min with the supplied input files for a small grid size 200× 160× 120 on 10
nodes. Up to one hour for a large grid size 1600 × 1280 × 960 on 32 nodes (1000 iterations).
Nature of physical problem: This program is designed to solve the time-dependent GP nonlinear partial
differential equation in three space dimensions with an anisotropic trap. The GP equation describes the
properties of a dilute trapped Bose–Einstein condensate.
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Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields solutions of stationary and non-stationary problems.
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