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dynamics of a rotating BEC using the imaginary-time stationary wave function as the initial state.

We also study the efficiency of parallelization of the present OpenMP C and Fortran programs with

different compilers.
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Licensing provisions: Apache License 2.0
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Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Previously published Fortran [1] and C [2] programs, and their
OpenMP extensions [3,4] are now popular tools for solving the
Gross-Pitaevskii (GP) equation and are enjoying widespread use.
These programs have been later extended to the more com-
plex scenario of dipolar atoms [5]. The C programs have been
adapted to run even faster on modern multi-core computers
using general-purpose graphic processing units with Nvidia CUDA
and computer clusters using Message Passing Interface (MPI) [6].
In this paper, we present new OpenMP C and Fortran programs
to solve the GP equation for a rotating trapped Bose-Einstein
condensate (BEC) and to generate a vortex lattice, based on our
earlier work [3,4]. This is a problem of general interest for both
theoreticians [7,8] and experimentalists [9].

The GP equation for a rotating trapped BEC can be conve-
niently solved by the imaginary- [10-12] and real-time evolu-
tion [13] methods. The solution algorithms rely on transforming
the GP equation to the rotating frame, where the rotating BEC
with vortices becomes a stationary state [7] and the standard
imaginary-time approach can be applied [10]. In the real-time
approach [13], a dissipation has to be included in the GP equa-
tion to generate the vortices. The imaginary-time approach [10]
does not require any dissipation, is simpler to implement and is
found to converge faster and lead to accurate results. Here we
provide combined imaginary- and real-time programs in two (2D)
and three (3D) spatial dimensions without any dissipation [10].
The present imaginary-time program already involves complex
variables and is hence combined together with the real-time
program. The choice of the type of propagation is made through
an input parameter. The imaginary-time approach should be used
to solve the GP equation for the rotating BEC and to generate
the stationary vortex lattice. A subsequent study of the non-
stationary dynamics of the rotating BEC should be done using the
real-time propagation. Here we provide C and Fortran programs
for the solution of the GP equation for a rotating BEC in a fully
anisotropic 3D trap by imaginary- and real-time propagation. We
also present C and Fortran programs for the reduced GP equation
in 2D, appropriate for a disk-shaped BEC under a tight axial
(z-direction) trapping. We use the split-step Crank-Nicolson
scheme for solving the GP equation, as in Refs. [1,2].

The imaginary-time algorithm employs a time iteration loop
of an initial state until the convergence is reached [1]. The usual
initial states are analytic wave functions, generally with one
vortex at the center of the trap. However, such an analytic initial
function may exhibit slow convergence and often may lead to
an inappropriate final vortex lattice structure. We will use an
analytic initial function modulated by a random phase at different
space points and show that this procedure is essential in address-
ing the convergence issues, as well as in obtaining the correct
vortex lattice structure for a given set of system parameters.
Moreover, the GP equation of a rapidly rotating BEC with a very
large number of vortices, viz. Figs. 2(c) and (d) with 37 and 61
vortices, faces a convergence difficulty even after random phase
modulation. In this latter case, when a pre-calculated converged
wave function of the rotating BEC with a smaller number of vor-
tices is used as the initial state, the convergence of the algorithm

is vastly improved, resulting in the reduction of more than 90%
in execution time.

In Section 2 we present the GP equation for a rotating BEC
in an anisotropic trap. We present the mean-field model and
a general scheme for its numerical solution. The reduced 2D
GP equation appropriate for a disk-shaped rotating BEC is also
presented there. The details about the computer programs, and
their input/output files, etc. are given in Section 3. The numerical
method and results are given in Section 4, where we illustrate
the generation of vortex lattices by employing the imaginary-time
propagation in rapidly rotating trapped BECs with different an-
gular frequencies and interaction strengths (nonlinearities). The
stability of these vortex lattices is demonstrated in real-time
propagation using the corresponding converged solution obtained
by the imaginary-time propagation as initial states. The effi-
ciency of parallelization of the present OpenMP programs in
multi-core computers using the GNU and Intel compilers is also
demonstrated there. Finally, a brief summary is given in Section 5.

2. The Gross-Pitaevskii equation for a rotating condensate

A non-rotating BEC made up of N atoms, each of mass m, can
be described by the following mean-field GP equation for a wave
function ¢(r, t) at the space point r at time ¢t [8]

. 0g(r, t) P T I I
— |- - A
= [2m‘+2mw(y"+ver Z)
4 h?aN
+ ”|¢(r,r)|2}¢(r,r), i= 1, (1)

where r = (p,z) = (x,y,z), a is the atomic s-wave scattering
length, and w is the reference trapping frequency, with y, v, A
representing the trap anisotropies along the x,y,z directions,
respectively. The normalization condition is fdr|¢(r, O = 1.
This equation can be derived from the energy functional [8]
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The formation of a vortex lattice in a rapidly rotating BEC
can be conveniently calculated in the rotating frame, where the
generated vortex lattice forms a stationary state, which can be
obtained by the imaginary-time propagation method. Such a dy-
namical equation in the rotating frame can be written if we note
that the Hamiltonian in the rotating frame is given by H =
Hy — £2L, [14], where Hy is the laboratory frame Hamiltonian,
£2 is the angular frequency of rotation around the z axis, and
L, = ih(yd/ox — xd/dy) is the z component of the angular
momentum. Consequently, the GP equation in the rotating frame
has the explicit form [8,10,11,13,15,16]

., 0g(r, £) L B AT A NP
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Using the transformations v = r/l, | = /h/(mw),d = a/l,
t = owt, ¢ =173%p, Q' = 2/w, and L, = L,/h, we obtain the
following convenient dimensionless form of the above equation:

ap(r, t 1 1
¢gt )= |:—Vr2+2(y2x2—|—v2y2+)»222)

i
2

+ galp(r, 1)]> — L | p(r, t), gsp = 4mNa, (4)

where we have dropped the primes from the transformed dimen-
sionless variables. We note that Eq. (4) can also be derived from
the dimensionless energy functional [8]

E[¢] = / dr BIquﬁIZ R o i

1
+ 5g39|¢|4 - ¢*9Lz¢] (5)

obtained using the same transformations and expressing the en-
ergy in units of hw. All derivations and results presented in the
following are using these dimensionless variables.

A convenient equation for a quasi-2D disk-shaped BEC under
a strong harmonic confinement in the z direction (A > y, v) can
be derived using the following ansatz for the wave function [17]:

1 z2 1
o(r, t) =¥(p, t) x WGXP (—ng>, d, Z\/;, (6)

where we assume that because of the strong confinement the
dynamics in the z direction will be frozen to a time-independent
Gaussian of width d,, and that the relevant dynamics will evolve
only in the x-y plane. If we substitute the ansatz (6) to Eq. (4),
we can integrate out the z variable and obtain the corresponding
dynamical equation in 2D, valid for a quasi-2D rotating BEC in a
disk-shaped trap [1,17]:

0y (p, t) 1 1
0D 2924 07 ) + gl (6, O
t 2 2
A7aN/n
— QL1Y(p,t), gp= ﬁ7 (7)

with the normalization condition [ dp|y(p, t)|* = 1. The energy
functional corresponding to Eq. (7) is

1 1
E[y] = /dp [2|pr|2+ 5(y2x2+v2y2)|w|2

1
+ 5§2D|W|4 - W*S?Lz\ﬁ] : (8)

We use the split-step Crank-Nicolson algorithm for the so-
lution of the GP equations (4) and (7). This approach has been
elaborated in detail in Ref. [1]. In the following we describe the
necessary modifications for the 2D equation (7). We follow the
identical prescription in 3D. Noting that L, = ih(yd/dx — xd/dy),
we split the Hamiltonian into three parts:

H = Hy + H; + Hs, (9)

Hy = S0 + )+ gl (10)

Hy= 19 gy 0 (11)
2 0x2 ox’

Hy= 2 0 iaxl (12)
2 0y? ay

In this approach we perform the time propagation over infinites-
imally small time step first over only the part Hy, and then over
the part H, and finally over the part H; of the Hamiltonian.
Essentially, we split Eq. (7) into

oy oy 0y

7=H , 7=H . 7=H N ]3
Yot W igp =ty g =Hy (13)

and perform the time propagation over these three sub-equations
successively and independently of each other, in the given order.

We first solve the first of Egs. (13) starting from an initial state
v(p, tp) at t = tp to obtain the first intermediate solution after
an infinitesimal time step A. Then this intermediate solution is
used as an initial value to solve the second of Eqgs. (13), yielding
the second intermediate solution at the time t = ty + A, which is
then used to propagate the third of Egs. (13) over the infinitesimal
time A to yield the final solution at t = to+ A, after one full time
iteration of Eq. (7). This procedure is repeated n times to get the
final solution at time tgny = to + nA.

The first equation of (13) with H; has the analytic solution [1],
which we denote by y*+1/3 when propagating between the time
steps k and k + 1. Similarly, we denote by %+ the wave
function after the time propagation with respect to H,, and finally
by w*+1 after additional propagation with respect to Hs, i.e., after
one full time iteration. Following Ref. [1] and using notations
therein, we discretize the second equation of (13) for H, alone
as

k+2/3 k+1/3
N A I K23y 23
A T |V T

n wi1<_+]2/3) n (wﬁ1/3 _ 21pik+1/3 + Wﬁ—?”) }

i2y;
_ L”ljx’;{(wili:m _ Ipik:r]z/a) n (wil:r]m _ wik+11/3>}, (14)
where W,'t = ¥ (x;,y;, t) refers to the wave function value at the
spatial grid point determined by x = x; = —Nyhy/2 + ihy, y; =
—Nyh,/2 + jhy, i = 0,1,2,...,Ny,and j = 0,1,2,...,N,.
Here hy, h, are the space steps along the x and y directions,
respectively, and t = k + 1/3 or k + 2/3 refers to the time
iteration [1], connecting the present (k + 1/3) to the future (k +
2/3) in propagation with respect to H;.

The above procedure results in a set of tridiagonal equations
(14) in 1//!:32/3, I/Jik+2/3, and 1/1}‘:2/3 at time ty4,3, which are solved
using the proper boundary conditions [1]. The tridiagonal equa-
tions are written explicitly as A;” 1//1-":“12/ } +A? wik 283 Af 1//,.1::2 P =
bi, where

iA
b; = = (W,-lflm _ 2¢il<+1/3 + W,-kj]m)
4h2
AR2y;
_ Vi (wil:rllﬁ _wikjll/3> +¢ik+1/37 (15)
4h,
A =1+ 4 AT = i4 (1 i2y;
P o T T\ )
ia (1
Al =——|(—+i2y ). 16
i an, <hx + yj) (16)

The discretization for Hs is performed similarly. The tridiagonal
set of equations above is very similar to Eqs. (34) and (35) of
Ref. [1], and the real-time propagation routine is programmed
and solved in identical fashion after a straightforward modifi-
cation to include the extra terms due to a non-zero value of
£2 in these equations. The imaginary-time propagation routine
corresponds to a transformation t — —it or A — —iA [1] and
hence can be obtained by replacing iA — A in Egs. (15) and
(16) in the real-rime routine, which is performed in our combined
real- and imaginary-time programs by the selection parameter
OPTION_RE_TIM.

Instead of evaluating the real energies from Eqs. (5) and (8) in
3D and 2D involving complex algebra over complex wave func-
tions, it is convenient to write a real expression for the energy.
To calculate the energy and the chemical potential, we write the
two coupled nonlinear equations for the real and imaginary parts
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of the wave function (¥ = v + i), viz. Eqs. (2.1) of Ref. [15].
The equation satisfied by the real part is

L OYR(x, 5 t) 1, 1 55 55
RS A N VAN
i o 5 + 2(y X° 4+ vy)
, 3 3
+ Zal¥(x,y: OF | vr(x,y: 1) + 2 Yax %3y Yi(x, y; t).

(17)

In this equation  is not normalized to unity. Using Eq. (17), the
energy and the chemical potential can be expressed in 2D as

1
/dp [—;(pr)z + 1(yzx2 + vy )p

[ dxdy y2 2
d 0
+ agp(VE + vl + 2y (y& —x@) wz} : (18)

where the value « = 1 corresponds to the chemical potential
u, and the value @ = 1/2 to the energy E per atom. A similar
expression for energy and chemical potential in 3D is

1
[ dr¢?

0 0
+ agp(dp + ) )pg + 2¢x <ya - X@) ¢1] . (19)

1 1
/dl' [—E(Vr@e)z + 5()/2X2 + 2% +222%);

Eqs.(18) and (19) are equivalent to Egs. (5) and (8) and in-
volve algebra of real functions. Hence these equations lead to
far more accurate numerical results than the previous set of
expressions. Specifically, the calculation of the rotational energy
and the kinetic energy term involving derivatives and gradients
of a complex wave function in Eqs. (5) and (8) can be numerically
problematic.

The initial wave function in the imaginary-time programs is
taken to be one containing a single vortex at the center, aligned
with the z axis. Explicitly, for the 2D and 3D programs, we take,

respectively
X +iy x> +y? .
Vinitial (X, ¥) = p <— 5 —H2miR(x,y) |,
nd2, 2dy,
1 z?
Ginitial(X, ¥, Z) = Wimtial(X,Y)W exp @) (20)

where d,, and d, are width parameters in the x-y plane and in
the z direction, and R(x,y) is a random number. In numerical
calculation, the random phase ensures that the number of vor-
tices changes by units of one, as parameters, e.g., nonlinearity and
angular frequency, are changed. Without the random phase, the
number of vortices changes by units of two or multiples of two.
In fact, any localized normalizable initial function modulated by a
random phase at different space points, e.g., a Gaussian function
without any vortices, obtained by setting (x +iy) = 1 in Eq. (20),
will lead to the same vortex lattice as the initial function (20) with
one vortex. Without the random phase these functions usually
will lead to different results [16].

3. Details about the programs

All input data (number of atoms, scattering length, harmonic
oscillator trap length, trap anisotropy, etc.) are conveniently
placed at the beginning of each Fortran program, as before [3].
Hence after changing the input data in a Fortran program a
recompilation is required. The C programs use external input
files that contain all parameters, and their adjustment does not
require a recompilation. The source programs are located in the
directory src within the corresponding package directory (BEC—
GP-ROT-0MP-C for the C programs and BEC-GP-ROT-0MP-F for

the Fortran ones). They can be compiled by the make command
using the makefile in the corresponding package root directory.
The examples of produced output files can be found in the
directory output, although some large density files are omitted,
to save space. The programs use an initial state with repeatable
random phase. A different random phase can be generated by
changing the variable SEED in the subroutine Initialize for the
Fortran programs, or in the corresponding input file for the C
programs. The provided Fortran output files are calculated with
SEED = 13 using the one-vortex initial function (20). The change
of the variable SEED implies a different initial function, thus
changing the output files. In the Fortran programs, the random
phase is included by the integer parameter RANDOM: the value 0
excludes the random phase and 1 includes it. The integer parame-
ter FUNCTION permits the selection of a Gaussian or a one-vortex
initial function: the value O selects a Gaussian function and 1
selects the one-vortex function (20). For the C programs, the input
files contain variables providing the same functionality, which
is explained there. After running a program and obtaining the
results, one can use the file fig*.gnu in the directory output
to visualize the density profiles, relying on a popular software
package gnuplot. These files are used by invoking the command
gnuplot fig*.gnu to obtain an eps figure of the generated
vortex lattice. Depending on the density file to be plotted, one has
to adjust the corresponding line in the fig*. gnu file. Currently it
is set to use the density file provided as an example and already
present in the BEC-GP-ROT-0MP distribution.

The output files are conveniently named such that their
contents can be easily identified, following the naming conven-
tion introduced in Ref. [3]. For example, a file named <code>-
out.txt, where <code> is a name of the individual program,
represents the general output file containing input data, time
and space steps, nonlinearity, energy, and chemical potential.
A file named <code>-den2d.txt is the output file with the
reduced (integrated) 2D condensate density. There are output
files for reduced (integrated) 1D densities for different programs.
Typically, a user first solves the stationary problem using the
imaginary-time programs, and then uses the real-time programs
to read the pre-calculated stationary wave function and to study
the dynamics. To read the pre-calculated wave function the pa-
rameter NSTP should be set to zero. In this way one can also run
the imaginary time program with a pre-calculated wave function.
The supplied programs have the pre-defined value NSTP = 1 and
use the analytic wave function (20) as the initial state. In each
program the selection for imaginary- or real-time propagation
is done by setting the parameter OPTION_RE_IM to 1 or 2,
respectively. If the imaginary-time propagation is thus selected,
the programs run either by using an initial analytic input function
(if NSTP is not set to zero) or by employing a pre-calculated wave
function (if NSTP is set to zero). The real-time propagation can
successfully work only with a meaningful initial wave function,
usually assuming that NSTP = 0 is set, and that the program
will read a pre-calculated wave function by the earlier performed
imaginary-time propagation. The reader is advised to consult
our previous publication where a complete description of the
output files is given [4]. The calculation is essentially done in the
NPAS time loop, which are in the Fortran programs conveniently
divided into 10 equal intervals (NPAS/10). The output files for
the reduced 2D densities at the end of each of these intervals are
saved as files <code>*-den-j.txt, where j=1,...,10. If neces-
sary, one can further customize this by changing and recompiling
the Fortran programs. In the C programs the selection of output
files is done through the input file, when one can set the desired
frequency of saving the output densities, as well as the types
of density profiles to be saved. A README.md file, included in
the corresponding root directory for C and Fortran, explains the
procedure to compile and run the programs in more detail.
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The supplied 2D programs are preset to run the imaginary-
time propagation using the space steps DX=DY =0.05, numbers
of space points NX=NY=256, g,p = 100,82 = 0.8, the trap
parameters y = v = 1. The 3D programs use DX=DY =0.05,
DZ=0.025, NX=NY=256, NZ=32, y = v = 1,A = 100,g,p =
100, g3p = gap+/27 /A = 25.0662827. The large trap parameter A
ensures a disk-shaped BEC, which enables a comparison of the 3D
results for the integrated density over the z coordinate with the
2D density profile. This also reduces a transversal instability of the
3D vortex lines. The time steps used are A = 0.00025 (imaginary
time) and 0.0001 (real time), numbers of time iterations are
NPAS=3,000,000 and NSTP=1 (imaginary time) and NSTP=0 (to
run real- or imaginary-time propagation with a pre-calculated
wave function as an input). To achieve the convergence in some
cases (large nonlinearity g»p, g3p and $£2), one may need to in-
crease the values of NX, NY, NPAS, and reduce the space and time
steps DX, DY, DZ and DT accordingly. Note that the actual spatial
grid used contains (NX+1)x(NY+1) or (NX+1)x(NY+1)x(NZ+1)
points, since in each dimension the grid index takes the values
from 0 to NX, etc. Therefore, the produced output files also
contain the data for such grid sizes.

The function (20) always leads to a converged solution after
a large number of time iterations in imaginary-time propagation.
A Gaussian wave function given as an input in imaginary-time
propagation would sometimes face a convergence difficulty and
should not be used. Therefore the programs by default use a
better initial state, containing one vortex at the center. Once a
stationary vortex lattice is obtained for a specific nonlinearity and
angular frequency by imaginary-time propagation, the final wave
function so obtained should be used as the initial state for the
generation of vortex lattices by imaginary-time propagation with
larger nonlinearities and/or angular frequencies. For example,
to generate closed hexagonal vortex lattices of 19, 37, and 61
vortices in the panels (b), (¢) and (d) of Figs. 2 and 5 in the
next section, respectively, we have used the previously calculated
initial states of 7, 19, and 37 vortices in the corresponding panels
(a), (b), and (c), respectively. Such a choice of dynamically gen-
erated multi-vortex initial state with a proper phase distribution
enhances the convergence of the numerical scheme enormously
compared to the propagation starting from a single-vortex initial
state. The reduction in the execution time for the calculation done
in this fashion could be as much as 99%. The size of the conden-
sate increases as the nonlinearity and/or the angular frequency £2
are increased. To accommodate a larger condensate, the number
of space points NX, NY, etc. should be appropriately increased.
To read a pre-calculated wave function by setting NSTP to zero,
the grid size in the used wave function file should match exactly
the number of points used in the current program. The supplied
programs assume equal numbers of space step points in both
imaginary- and real-time propagation, and in C programs this
is configurable through the input files. If the grid sizes in the
two calculations are different, the user can customize the pro-
grams to accommodate this. For instance, in Fortran programs the
READ statement in the subroutine INITIALIZE should be changed,
for instance, from I=0,NX to I= NX2-NX0OLD2,NX2+NX0LD2,1,
where NXOLD2 is the NX2 value of the previous calculation with
a smaller number of grid points.

4. Numerical results

To test the programs and to demonstrate their usage, we
have generated vortex-lattice structures using the imaginary-
time programs and then ran the real-time programs starting
from the previously obtained imaginary-time wave functions as
inputs. First, we numerically calculate the critical angular fre-
quency £2, for the generation of a single vortex, using the initial

0.4 ! ! !

0.2 T T T
100 200 300 400 500

92p

Fig. 1. Critical angular frequency $2. for the generation of a single vortex using
function (20) with random phase versus nonlinearity g,p for a rotating BEC in
2D. For £2 < £2, no vortex is generated.

function (20), for a rotating BEC in 2D for different nonlinearities
gop. Without the random phase in the initial wave function this
threshold cannot be calculated, as, then, a single vortex continues
to exist for £2 < £2.. The result is displayed in Fig. 1. The displayed
result is the average over several runs.

We next numerically study the 2D vortex lattice in a rotating
BEC using the imaginary-time propagation. The imaginary-time
propagation with the supplied 2D program bec-gp-rot-2d-th uses
the wave function (20) as the initial state and the parameters
gp = 100 and 2 = 0.8. The generated vortex lattice with
seven vortices arranged in a triangular lattice in the shape of
a closed hexagon is exhibited in Fig. 2(a) through the contour
density plot. In Fig. 2(b) we illustrate the 2D vortex lattice with
19 vortices arranged in a triangular lattice in the shape of a closed
hexagonal form obtained with parameters g,p = 100, £2 = 0.95.
To illustrate the convergence of the imaginary-time propagation
we show in Figs. 3(a)-(d) the 2D density profiles at different
times, using the analytic wave function (20) as the initial state
and employing the parameters gop = 100, 2 = 0.95, the same
as in Fig. 2(b). This scheme shows a slow convergence and the
vortex lattice structure practically remains the same from the
panel 3(a) for 2 x 10° time steps to the panel 3(c) for 8 x 10°
time steps with 19 vortices, before converging to the desired
solution in the panel 3(d) after 12 x 10° time steps, containing
19 vortices. The convergence can be highly enhanced if we use
the final converged state with a smaller number of vortices as
the initial state of a calculation where a larger number of vortices
is expected, either because the parameters g,p or §2 or both are
larger. In Fig. 3(e)-(h) we demonstrate this and show the vortex
lattice evolution of the rotating BEC for the same parameters
gp = 100, 2 = 0.95 as in the panels 3(a)-(d), but starting
from the initial state with seven vortices, obtained in Fig. 2(a)
for g;p = 100, 2 = 0.8. In Fig. 3 we see that the convergence
in this case is achieved much faster. In practical terms, in panels
3(c) after 20,000 time steps or 3(d) after 30,000 time steps of the
imaginary-time propagation the convergence is already reached.
The reduction in execution time in the later scheme resulting in
Figs. 3(e)-(h) compared to the former resulting in Figs. 3(a)-(d)
could be very large, viz. 12 x 10° time iterations and 30,000 time
iterations in the two schemes.

In Figs. 2(b)-(d) we illustrate 2D vortex lattices with 19, 37,
and 61 vortices, respectively, arranged in triangular lattices in
the shape of a closed hexagonal form obtained with parameters
gp = 100, 2 = 0.95 in 2(b), gop = 500, 2 = 0.92 in 2(c),
and gop = 500, £2 = 0.978 in 2(d). As already suggested above,
the vortex lattices of Figs. 2(b), (¢), and (d) were obtained using
the final wave functions of Fig. 2(a), (b), and (c), respectively, as
the initial states, to speed up the convergence. We demonstrate
the stability of the obtained vortex lattices using the real-time
propagation for 500 time units in Figs. 2(e)-(h).
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Fig. 2. Contour plots of the density |y/(x,y)|* for the generated vortex lattices by the 2D imaginary-time propagation of Eq. (7) for (a) g,p = 100, £ = 0.8, (b)
gp = 100, 2 = 0.95, (c) gop = 500, £2 = 0.92, and (d) gop = 500, 2 = 0.978. Panels (e), (f), (g), and (h) display these vortex lattices, respectively, after the
additional real-time propagation for 500 units of time using the corresponding imaginary-time wave function as input. The employed trap parameters are v =y =1,
the space steps are DX=DY=0.05, and the time steps are 0.00025 in imaginary time and 0.0001 in real time. The size of the condensate increases as §2 increases
from (a) to (b) and from (c) to (d), and as gyp increases from (b) to (c). The space grids used are (a) 257 x 257, (b) 321 x 321, (c) 401 x 401, and (d) 441 x 441.
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Fig. 3. The convergence of calculation from snapshots at different time steps during the imaginary-time propagation of the 2D equation (7) to generate a vortex
lattice for parameters g,p = 100, £2 = 0.95. Numerical simulation used the initial state (20), and the panels correspond to (a) 2 x 10°, (b) 4 x 10°, (c) 8 x 10°, and
(d) 12 x 10° time steps. For the same parameters, a much faster convergence is obtained in a simulation using as the initial function the converged wave function
from Fig. 2(a), obtained for g;p = 100, £2 = 0.8. The panels correspond to (e) 5000, (f) 10,000, (g) 20,000, and (h) 30,000 time steps. The employed time step is
0.00025, the space steps DX=DY=0.05, and the grid size used is 321 x 321 in all panels.

In Figs. 4 we show the increase of the number of vortices
with the increase of the angular frequency 2 for a fixed gop =
100 as obtained with the one-vortex initial function and the
Gaussian initial function, both modulated by a random phase at
different space points. The number of vortices and their orien-
tation in space are identical with both functions, although the
energy varies a little from one initial function to another. If the
random-phase modulation is removed, these two functions lead
to different number of vortices, whereas with the random-phase
modulation these functions usually lead to the same number of
vortices, viz. Fig. 4.

In Figs. 5 we present the z-integrated reduced 2D density
fdz |¢(x, v, 2)]?, calculated from the 3D imaginary-time runs,
with 7, 19, 37, and 61 vortices for the parameters: (a) g.p = 100,
2 = 0.8, (b) gop = 100, 2 = 0.95, (c) gop = 500, 2 = 0.92,
and (d) g2p = 500, £2 = 0.978. The vortex lattices of Figs. 5(b)-
(d) were generated, as before, by the imaginary-time propagation
of Eq. (4) until the convergence using the final wave function
of Figs. 5(a)-(c) as the initial states, respectively. Figs. 5(e)-(h)

illustrate the same reduced densities obtained from the 3D real-
time runs after 100 time units using as inputs the final converged
imaginary-time wave function of Figs. 5(a)-(d), respectively. The
agreement between the imaginary- and the real-time densities
demonstrates the stability of the vortex-lattice structures and the
employed algorithm. The 2D densities of Figs. 5 are quite similar
to those in Fig. 2 with the same 2D nonlinearity and the same
angular frequency. To the best of our knowledge, such a clean
61-vortex lattice, viz. Fig. 5(d), is obtained for the first time here
in the simulation of the 3D GP equation (4).

In Table 1 we show the energy and the chemical potential of
the BECs of Figs. 2(a) and 5(a) calculated starting from the analytic
function (20) as the initial state. We also give the energy and
the chemical potential of the BECs of Figs. 2(b)-(d) and 5(b)-(d),
calculated with the converged wave functions of Figs. 2(a)-(c) and
5(a)-(c), respectively, as the initial states. The 2D energy values
E = 3.190 and 2.209 shown in Table 1 for g;p = 100 and 2 = 0.8
and 0.95, respectively, are in good agreement with the energies
E = 3.1904 and 2.2106 reported in Fig. 6 of Ref. [15]. The authors
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Fig. 4. Contour plots of the density |y(x, y)I? for the generated vortex lattices by the 2D imaginary-time propagation of Eq. (7) for gop = 100, and (a) £2 = 0.65,
(b) 2 = 0.74, (c) 2 = 0.76, and (d) 2 = 0.78 obtained with the one-vortex initial state (20). Panels (e), (f), (g), and (h) display these vortex lattices, respectively,
obtained with the Gaussian initial state. The employed trap parameters are v = y = 1, the space steps are DX=DY=0.05, the time step is 0.00025 and the space grid

is 257 x 257.
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Fig. 5. Contour plots of the density profiles for the generated vortex lattices by the 3D imaginary-time propagation of Eq. (4) for (a) g2p = 100, g3p = gp/27 /A =
25.0662827, £2 = 0.8, (b) g2p = 100, g3p = 25.0662827, 22 = 0.95, () g2p = 500, g3p = 125.33141, £2 = 0.92, and (d) g;p = 500, g5p = 125.33141, £2 = 0.978. Panels
(e), (f), (g), and (h) display these vortex lattices, respectively, after the additional real-time propagation for 100 units of time using the corresponding imaginary-time
wave function as input. The employed trap parameters are v = y = 1, A = 100, the space steps are DX=DY=0.05, DZ=0.025, and the time steps are 0.00025 in
imaginary time and 0.0001 in real time. The space grids used are (a) 257 x 257 x 33, (b) 321 x 321 x 33, (c) 401 x 401 x 33, and (d) 451 x 451 x 33.

Table 1

Energy E and chemical potential u for the rotating BECs in 2D and 3D shown in
Figs. 2 and 5, respectively. For parameters gp = 100, £2 = 0.8 the calculation is
performed with the initial state (20). For the BECs from panels (b), (c), and (d)
in Figs. 2 and 5 the calculation is performed with the converged wave functions
of the corresponding panels (a), (b), and (c) as the initial states.

gop = 100 gp = 100 &p = 500 &p = 500
2 =038 £ =0.95 2 =0.92 2 =0.978
14 (2D) 4351 2871 6.257 4198
E (2D) 3.190 2.209 4424 2951
1 (3D) 54.32 52.85 56.20 54.17
E (3D) 53.17 52.19 54.40 52.94

of Ref. [16] also calculated the 2D energy and the chemical poten-
tial and we verified using the same parameters that the present
energies and chemical potentials are in qualitative agreement
with their calculations.

We have tested the performance and scalability of our pro-
grams on a modern 8-core Intel Xeon E5-2670 CPUs with 32 GB of
RAM. The nodes used for testing contain two CPUs, which allowed
us to study the performance of our programs on up to 16 CPU

cores. The testing was done at the PARADOX supercomputing
facility of the Institute of Physics Belgrade.

For both the C and the Fortran programs the execution time
in the beginning reduces rapidly as the number of threads (used
CPU cores) is increased. But eventually the gain in the execution
time saturates. This is illustrated in Fig. 6, where we plot the
execution time versus the number of threads for both the C and
the Fortran programs using GNU 7.2.0 and Intel 17.0.4 compilers,
respectively. For both compilers, for a large number of threads
the C programs are faster. For a small number of threads (four or
less), the Fortran programs compiled with the GNU compiler are
faster, whereas for the Intel compiler all programs have similar
performance, with the C programs being slightly faster.

For a quantitative estimate of the performance we now study
the speedup and the efficiency of the programs using different
compilers for a calculation: GNU GCC 7.2.0, Intel C 17.0.4, GNU
Fortran 7.2.0, and Intel Fortran 17.0.4. The speedup is defined as
the ratio T(1)/T(n) where T(n) is the execution time of a run with
n threads. The efficiency is the ratio T(1)/[nT(n)], indicating how
many of the threads the computer is effectively utilizing. These
are illustrated in Fig. 7 for GNU GCC, Intel GCC, GNU Fortran,
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Intel compiler, as functions of the number of OpenMP threads. The execution times given here are for one iteration, calculated as averages using runs with 1000
iterations (in milliseconds, excluding initialization and input/output operations, as reported by each program) and with the grid size 257 x 257 x 33.
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single-threaded run and a run with n threads, and the scaling efficiency is calculated as a fraction of the obtained speedup compared to a theoretical maximum n.

Grid size used for testing is 257 x 257 x 33.

and Intel Fortran compilers, respectively. For a large number of
threads, the C programs, viz. plots 7(a)-(b), are more scalable,
with large speedup and efficiency compared to the Fortran pro-
grams, viz. plots 7(c)-(d). The programs in both programming
languages are quite efficient and optimized, but a user should use
the specific program and compiler with which he/she has more
experience and feels more comfortable.

5. Summary and conclusions

We have presented the efficient OpenMP C and Fortran pro-
grams for solving the GP equation for a rotating BEC and use them
to calculate the vortex lattices of a rotating BEC by solving the GP
equation in the rotating frame. We provide two sets of programs
— one for a 3D BEC and the other for a quasi-2D BEC. Each of
these programs is capable of executing both the imaginary- and
the real-time propagation. We use the split-step Crank-Nicolson
algorithm and the programs are based on our earlier OpenMP C
and Fortran programs of Ref. [4] for a non-rotating BEC. We solve
the GP equation by the imaginary-time propagation with the
analytic wave function (20) as the initial state to generate a vortex
lattice with a small number of vortices. To solve the GP equation

with a large number of vortices it is much more efficient to use a
converged wave function with a smaller number of vortices as the
initial state, rather than the analytic function (20). However, the
solution can be obtained with any initial state. Nevertheless, the
convergence with one initial state could be much faster than with
another initial state. For example, to solve the 2D GP equation (7)
with parameters g,p = 100 and §£2 = 0.95 by the imaginary-time
propagation using the initial function (20) and obtain the vortex
lattice with 19 vortices, one needs 12 x 10° time iterations, viz.
Fig. 3. For the same calculation using the pre-calculated vortex
lattice with 7 vortices it is sufficient to use only 30,000 time
iterations. Although both the C and the Fortran programs produce
equivalent results, on a multi-core computer with more than 8
cores, the C programs compiled with both the GCC and the Intel
compiler yield a more efficient and faster performance.

The localized normalizable initial function (20) has a random
phase at each grid point (x,y) which is necessary to obtain a
converged vortex lattice with any number of vortices — even or
odd - independent of the initial function. If the random phase is
removed from the initial function, the one-vortex initial function
(20) leads to a vortex lattice with an odd number of vortices and
a Gaussian initial function leads to a vortex lattice with an even
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number of vortices. Any localized normalizable initial function
with random phase as in Eq. (20), e.g., a Gaussian function or a
function with one vortex, usually leads to the same vortex lat-
tice. Without the random phase these functions lead to different
vortex lattices.

Acknowledgments

V... and AB. acknowledge support by the Ministry of
Education, Science, and Technological Development of the Re-
public of Serbia under projects ON171017 and 11143007. P.M.
acknowledges support by the Council of Scientific and Industrial
Research (CSIR), Govt. of India under project No. 03(1422)/18/
EMR-II. R.K.K. acknowledges support by the FAPESP (Brazil) grant
2014/01668-8. S.K.A. acknowledges support by the CNPq (Brazil)
grant 303280/2014-0, by the FAPESP (Brazil) grant 2012/00451-
0, and by the ICTP-SAIFR-FAPESP (Brazil) grant 2016/01343-7.
Numerical tests were partially carried out on the PARADOX su-
percomputing facility at the Scientific Computing Laboratory of
the Institute of Physics Belgrade.

References

[1] P. Muruganandam, S.K. Adhikari, Comput. Phys. Comm. 180 (2009) 1888.

[2] D. Vudragovié, 1. Vidanovié¢, A. Balaz, P. Muruganandam, S.K. Adhikari,
Comput. Phys. Comm. 183 (2012) 2021.

[3] LE. Young-S., D. Vudragovié¢, P. Muruganandam, S.K. Adhikari, A. Balaz,
Comput. Phys. Comm. 204 (2016) 209.

[4] LE. Young-S., P. Muruganandam, S.K. Adhikari, V. Loncar, D. Vudragovi¢,
Antun BalaZ, Comput. Phys. Comm. 220 (2017) 503.

[5]

(6]

[7]
(8]
191

[10]

[11]

[12]

(13]

(14]

[15]
[16]
[17]

R. Kishor Kumar, L.E. Young-S., D. Vudragovi¢, A. Balaz, P. Muruganandam,
S.K. Adhikari, Comput. Phys. Comm. 195 (2015) 117.

V. Lonéar, A. BalaZ, A. Bogojevi¢, S. Skrbi¢, P. Muruganandam, S.K. Adhikari,
Comput. Phys. Comm. 200 (2016) 406;

V. Lon¢ar, L.E. Young-S., S. Skrbi¢, P. Muruganandam, S.K. Adhikari, A. Bala,
Comput. Phys. Comm. 209 (2016) 190;

B. Satari¢, V. Slavni¢, A. Beli¢, A. Balaz, P. Muruganandam, S.K. Adhikari,
Comput. Phys. Comm. 200 (2016) 411.

A.L. Fetter, Rev. Modern Phys. 81 (2009) 647.

A.L. Fetter, J. Low Temp. Phys. 161 (2010) 445.

J.R. Abo-Shaeer, C. Raman, ].M. Vogels, W. Ketterle, Science 292 (2001)
476;

V. Schweikhard, 1. Coddington, P. Engels, S. Tung, E.A. Cornell, Phys. Rev.
Lett. 93 (2004) 210403;

J.R. Abo-Shaeer, C. Raman, W. Ketterle, Phys. Rev. Lett. 88 (2002) 070409.
D.L. Feder, CW. Clark, B.I. Schneider, Phys. Rev. Lett. 82 (1999) 4956;
D.L. Feder, C.W. Clark, B.I. Schneider, Phys. Rev. a 61 (1999) 011601(R).
R. Zeng, Y.-Z. Zhang, Comput. Phys. Comm. 180 (2009) 854;

A. Aftalion, Q. Du, Phys. Rev. a 64 (2001) 063603;

A. Aftalion, L. Danaila, Phys. Rev. A 68 (2003) 023603.

I. Danaila, F. Hecht, J. Comput. Phys. 229 (2010) 6946;

G. Vergez, 1. Danaila, S. Auliac, F. Hecht, Comput. Phys. Comm. 209 (2016)
144;

T. Mizushima, Y. Kawaguchi, K. Machida, T. Ohmi, T. Isoshima, M.M.
Salomaa, Phys. Rev. Lett. 92 (2004) 060407.

A.A. Penckwitt, RJ. Ballagh, CW. Gardiner, Phys. Rev. Lett. 89 (2002)
260402;

M. Tsubota, K. Kasamatsu, M. Ueda, Phys. Rev. a 65 (2002) 023603;

C. Lobo, A. Sinatra, Y. Castin, Phys. Rev. Lett. 92 (2004) 020403.

L.D. Landau, E.M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1960,
Section 39.

B.-W. Jeng, Y.-S. Wang, C.-S. Chien, Comput. Phys. Comm. 184 (2013) 493.
W. Bao, H. Wang, P.A. Markowich, Commun. Math. Sci. 3 (2005) 57.

L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65 (2002) 043614.


http://refhub.elsevier.com/S0010-4655(19)30082-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb5
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb5
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb5
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb15
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb16
http://refhub.elsevier.com/S0010-4655(19)30082-7/sb17

	C and Fortran OpenMP programs for rotating Bose–Einstein condensates
	Introduction
	The Gross–Pitaevskii equation for a rotating condensate
	Details about the programs
	Numerical results
	Summary and conclusions
	Acknowledgments
	References


