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a b s t r a c t

We present OpenMP versions of FORTRAN programs for solving the Gross–Pitaevskii equation for a
harmonically trapped three-component spin-1 spinor Bose–Einstein condensate (BEC) in one (1D) and
two (2D) spatial dimensions with or without spin–orbit (SO) and Rabi couplings. Several different forms
of SO coupling are included in the programs. We use the split-step Crank–Nicolson discretization for
imaginary- and real-time propagation to calculate stationary states and BEC dynamics, respectively.
The imaginary-time propagation programs calculate the lowest-energy stationary state. The real-
time propagation programs can be used to study the dynamics. The simulation input parameters are
provided at the beginning of each program. The programs propagate the condensate wave function
and calculate several relevant physical quantities. Outputs of the programs include the wave function,
energy, root-mean-square sizes, different density profiles (linear density for the 1D program, linear
and surface densities for the 2D program). The imaginary- or real-time propagation can start with an
analytic wave function or a pre-calculated numerical wave function. The imaginary-time propagation
usually starts with an analytic wave function, while the real-time propagation is often initiated with
the previously calculated converged imaginary-time wave function.
Program summary
Program title: BEC-GP-SPINOR, consisting of: BEC-GP-SPINOR-OMP package, containing programs spin-
SO-imre1d-omp.f90 and spin-SO-imre2d-omp.f90, with util.f90.
CPC Library link to program files: https://doi.org/10.17632/j3wr4wn946.1
Licensing provisions: Apache License 2.0
Programming language: OpenMP FORTRAN. The FORTRAN programs are tested with the GNU, Intel, PGI,
and Oracle compiler.
Nature of problem: The present Open Multi-Processing (OpenMP) FORTRAN programs solve the
time-dependent nonlinear partial differential Gross–Pitaevskii (GP) equation for a trapped spinor
Bose–Einstein condensate, with or without spin–orbit coupling, in one and two spatial dimensions.
Solution method: We employ the split-step Crank–Nicolson rule to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.
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1. Introduction

Previously published FORTRAN [1] and C [2] programs are now popular tools for studying the properties of a Bose–Einstein
ondensate (BEC) by solving the Gross–Pitaevskii (GP) equation and are enjoying widespread use. These programs have later been
xtended to the more complex scenario of dipolar atoms [3] and of rotating BECs [4]. The OpenMP [5,6] and CUDA [7–9] version of
hese programs, designed to make these faster and more efficient in multi-core computers, are also available.

There has been great interest in the studies of spinor BECs using the GP equation after the experimental observation of the
ame [10,11]. Later, it has been possible to introduce an artificial synthetic spin–orbit (SO) coupling by Raman lasers that coherently
ouple the spin-component states in a pseudo spin-1/2 [12,13] and spin-1 [14] spinor BEC. In this paper, we present new OpenMP
ORTRAN programs to solve the GP equation for a three-component spin-1 spinor quasi-one-dimensional (quasi-1D) and quasi-two-
imensional (quasi-2D) BECs [15] with [16,17] or without [18,19] SO and associated Rabi couplings, based on our earlier programs [5,6].
he GP equation for an SO-coupled three-component spin-1 trapped BEC is conveniently solved by the imaginary- and real-time
ropagation methods. We provide combined imaginary- and real-time programs in one and two spatial dimensions. The present
maginary-time programs already involve complex variables and are hence combined together with the real-time programs, requiring
omplex algebra. The choice of the type of propagation (imaginary- or real-time) is made through an input parameter. The imaginary-
ime approach should be used to solve the GP equation for stationary states. A subsequent study of the non-stationary dynamics of the
EC should be done using the real-time propagation using the imaginary-time wave function as the initial state. We use the split-step
rank–Nicolson scheme for solving the GP equation, as in Refs. [1,2].
In Section 2 we present the GP equation for a spin-1 spinor BEC in a trap. The mean-field model and a general scheme for its

umerical solution are considered for both quasi-1D and quasi-2D traps. The details about the computer programs, and their input
arameters, output files, etc. are given in Section 3. The numerical method and results are given in Section 4, where we illustrate the
esults for density and energy by employing the imaginary-time propagation for different interaction strengths (nonlinearities). The
tability of the density profiles is demonstrated in real-time propagation using the corresponding converged solution obtained by the
maginary time propagation as the initial state. Finally, a brief summary is given in Section 5. Technical and mathematical details of
his investigation are presented in two Appendices. A novel numerical procedure applied in this study is given in Appendix A. Useful
nalytic variational and Thomas–Fermi (TF) approximations are developed in the Supplementary material.

. The Gross–Pitaevskii equation for a spin-1 condensate

In the mean-field approximation a quasi-1D or quasi-2D SO and Rabi coupled spin-1 (F = 1) BEC is described by the following set
f three coupled GP equations, for N atoms of mass m̃ each, in dimensionless form, for the spin components Fz = ±1, 0 [18–20]

i∂tψ±1(r) =

[
−

1
2
∇

2
+ V (r) + c0ρ + c2 (ρ±1 − ρ∓1 + ρ0)

]
ψ±1(r) +

{
c2ψ2

0 (r)ψ
∗

∓1(r)
}

+
Ω
√
2
ψ0(r) + γ f±1 , (1)

i∂tψ0(r) =

[
−

1
2
∇

2
+ V (r) + c0ρ + c2 (ρ+1 + ρ−1)

]
ψ0(r) +

{
2c2ψ+1(r)ψ−1(r)ψ∗

0 (r)
}

+
Ω
√
2

∑
j=+1,−1

ψj(r) + γ g , (2)

here ρj = |ψj|
2 are the densities of components j = ±1, 0, and ρ(r) =

∑
ρj(r) is the total density, V (r) is the confining trap, ∂t

(∂r ≡ {∂x, ∂y, ∂z}) is the partial time (space) derivative, and Ω (γ ) is the strength of Rabi (SO) coupling. The SO coupling is a space
derivative coupling described by the functions f and g , the details of which are given below. For brevity, the time dependence of the
wave functions is not explicitly shown in Eqs. (1) and (2). In 1D, r = x,∇2

= ∂2x = ∂2/∂x2, in 2D, r = {x, y},∇2
= ∂2x + ∂2y , and in

D, r = {x, y, z},∇2
= ∂2x + ∂2y + ∂2z . In 3D, distances are expressed in units of the harmonic oscillator length l ≡

√
h̄/m̃ω, density ρj

n units of l−3 and time in units of ω−1, where ω = ωx is the x-axis trapping frequency. The potential is V (r) = (x2 + κ2y2 + β2z2)/2,
here the trap aspect ratios are κ = ωy/ω and β = ωz/ω. The dimensionless nonlinearities are ci = 4πNAi, i = 0, 2, where
0 = (a0 + 2a2)/3l,A2 = (a2 − a0)/3l, with a0 and a2 being the scattering lengths in the total spin channels 0 and 2, respectively.
or a pancake-shaped trap, with the strong trapping in z direction (β ≫ 1, κ), a set of quasi-2D [15] equations can be obtained with
i = 2

√
2πβNAi, with V (r) = (x2 +κ2y2)/2. For a cigar-shaped trap, with the strong trapping in y and z directions (β, κ ≫ 1), a set of

uasi-1D [15] equations can be obtained with ci = 2
√
κβNAi, where V (r) = x2/2. In the following we will take κ = 1 and V (r) = r2/2

in both 1D and 2D. In the programs the parameter κ in the potential is set to unity, but a different value can be introduced easily if
needed.

In the presence of the SO coupling [16,17], we consider below the SO-coupling contributions γ f±1 and γ g of Eqs. (1) and (2) in
different cases. In 1D we consider three possible SO couplings in the Hamiltonian: γ pxΣx, γ pxΣy, and γ pxΣz , where px = −i∂x is the
momentum operator and Σx, Σy and Σz are the irreducible representations of the x, y and z components of the spin-1 matrix Σ , with
components

Σx =
1

√
2

( 0 1 0
1 0 1
0 1 0

)
, Σy =

i
√
2

( 0 −1 0
1 0 −1
0 1 0

)
, Σz =

( 1 0 0
0 0 0
0 0 −1

)
. (3)

or the SO coupling γ pxΣx [21,22] in 1D, the SO coupling terms in Eqs. (1), (2) are γ f±1 = −ĩγ ∂xψ0(r) and γ g = −ĩγ
[
∂xψ+1(r) +

xψ−1(r)
]
, respectively, where γ̃ = γ /

√
2. For the SO coupling γ pxΣy they are γ f±1 = ∓ĩγ ∂xψ0(r) and γ g = ĩγ

[
∂xψ+1(r)− ∂xψ−1(r)

]
,

espectively. For the SO coupling γ pxΣz they are [22] γ f±1 = ∓iγ ∂xψ±1(r) and γ g = 0, respectively.
In 2D we consider the general SO coupling term in the form γ (ηpyΣx − pxΣy), where η = 1,−1 and 0 for Rashba [23],

resselhaus [24] and an equal mixture of Rashba and Dresselhaus SO couplings. In Eqs. (1), (2), the Rashba, Dresselhaus and an equal
2



R. Ravisankar, D. Vudragović, P. Muruganandam et al. Computer Physics Communications 259 (2021) 107657

η

C
t
m
p
[
m
t

mixture of Rashba and Dresselhaus coupling terms in 2D are γ f±1 = −ĩγ
[
η∂yψ0(r)± i∂xψ0(r)

]
and γ g = −ĩγ

[
−i∂xψ+1(r)+ i∂xψ−1(r)+

∂yψ+1(r) + η∂yψ−1(r)
]
.

The normalization and magnetization (m) conditions are given by∫
ρ(r) dr = 1 , and

∫ [
ρ+1(r) − ρ−1(r)

]
dr = m . (4)

ondition (4) is useful to solve the problem for a fixed normalization when magnetization m along z direction is conserved, e.g., when
he Hamiltonian commutes with spin-matrix Σz . However, in the presence of an SO coupling, that does not commute with Σz ,
agnetization is not conserved due to spin mixing dynamics involving spin-up and down states. In that case, time propagation is
erformed by imposing only the condition of conservation of normalization without fixing the magnetization during time propagation
25] and it leads to the result for the dynamically stable stationary state with a magnetization determined by the parameters of the
odel, which could often be zero. In this context, it should be noted that in experiments it is not possible to fix a preassigned value

o magnetization, which is not a constant of motion.
The energy functional of the system is [18,19]

E =
1
2

∫
dr

{∑
j

|∇rψj|
2
+ 2V (r)ρ + c0ρ2

+ c2
[
ρ2

+1 + ρ2
−1 + 2

(
ρ+1ρ0 + ρ−1ρ0 − ρ+1ρ−1 + ψ∗

−1ψ
2
0ψ

∗

+1 + ψ−1ψ
∗

0
2
ψ+1

)]
+ 2

Ω
√
2

[
(ψ∗

+1 + ψ∗

−1)ψ0 + ψ∗

0 (ψ+1 + ψ−1)
]

+ 2γ
[
ψ∗

+1f+1 + ψ∗

−1f−1 + ψ∗

0 g
]}
. (5)

3. Details about the programs

We use the split time step Crank–Nicolson discretization rule for solving the GP equations (1) and (2), including the appropriate SO
and Rabi couplings with strengths γ andΩ , respectively. This approach has been elaborated in detail in Ref. [1]. An initial (known) wave
function at time t is used to calculate the wave function at time t +∆, after a small time step ∆. The advantage of this approach lies in
the fact that different terms on the right-hand-side of Eqs. (1) and (2) can be treated successively. For example, the spatial derivative
term involving ∇r can be treated independently of the nonlinear interaction terms and also of the SO and Rabi coupling terms. The
terms in the square brackets of Eqs. (1) and (2) can be treated in a routined way elaborated in Ref. [1]. The terms in the curly brackets
and those proportional to Ω in Eqs. (1) and (2) need special attention and are treated as in Appendix A. Finally, the γ -dependent SO
coupling terms only involve first order space derivatives and are treated in a routined fashion.

The presented programs are straightforward modifications of the basic programs published in Refs. [1,2]. The three components
of the wave function are accommodated by introducing a new index ‘‘L’’ in addition to the space indices in the corresponding arrays,
i.e., the wave-function components are represented by CP(L,I,J) in 2D and CP(L,I) in 1D, where L = 1, 2, 3 stands for the spin components
j = +1, 0, and −1, respectively, and I and J denote discretized space points. The time propagation with respect to different terms in
Eqs. (1) and (2) are dealt with in different subroutines. The kinetic energy term (∇2/2) is treated using the Crank–Nicolson discretization
in subroutines COEF, LUX, and LUY in 2D, and in 1D in subroutines COEF and LU, as in Refs. [1,2]. The potential term and the diagonal
part of the nonlinear terms in square brackets, proportional to c0 and c2, are treated in the subroutine CALCNU. The off-diagonal part
of the nonlinear terms in curly brackets in Eqs. (1) and (2), explicitly considered in Eq. (A.1), is treated in the subroutine HERM,
while the different SO coupling terms are treated in the subroutine SO. The conservation of the normalization and magnetization,
as defined by Eqs. (A.6) and (A.7), is implemented in the subroutine RENORM. The energies are calculated in the subroutine ENERGY
and expectation values of the condensate’s cloud sizes are calculated in the subroutine RADIUS in 2D and LENGTH in 1D. The different
modules (Subroutines and Functions) of the programs in 1D and 2D and their respective usage are presented in Table 1.

A description of the input parameters together with the output files with description is given in Table 2. Most of the parameters have
the same meaning as in our previously published programs and the reader can refer to Ref. [6] for details. For an efficient performance
on computers with multiple CPU cores, the programs have been parallelized using the OpenMP library. The number of threads (CPU
cores) to be used is declared by the parameter NTHREADS, which should be equal to or less than the total number of available threads.
If NTHREADS is set to zero, then all available CPU cores will be used. The parameters NSTP, NPAS, and NRUN denote different numbers
of time iterations, the total number of iterations being the sum of these. If NSTP is different from zero, then the program starts the
time propagation using an analytic initial function defined in the subroutine INITIALIZE. If NSTP is zero, the program reads an initial
wave function for the calculation from input files, i.e., from the previously calculated files named <code>-wave-fun-fin.txt. In
this way one can perform the imaginary- or real-time propagation with a pre-calculated wave function. The supplied programs use
the pre-defined value NSTP = 10 and use an analytic wave function as the initial state. When using a pre-calculated wave function by
setting NSTP to zero, the number of space grid points N (1D) and NX, NY (2D) employed previously should match exactly the number
of points used in the current program. The supplied programs assume equal numbers of space step points in both imaginary- and
real-time propagation. The parameter OPT_SO selects the type of SO coupling. In 1D, OPT_SO = 1, 2, 3 uses the SO couplings γ pxΣx,
γ pxΣy, and γ pxΣz , respectively. In 2D, OPT_SO = 1, 2, 3 uses Rashba, Dresselhaus, and an equal mixture of Rashba and Dresselhaus
SO couplings, respectively. The choice OPT_SO = 0 corresponds to no SO coupling. The parameters MAG_0, GAM0 (GAMMA0 in 1D)
and OMEGA0 denote magnetization, the strength of SO coupling γ and that of Rabi coupling Ω , respectively. The parameter OPT_PROP
selects the type of time propagation: imaginary-time (1) and real-time (2). All input data are conveniently placed at the beginning of
each program, as before [5]. After changing the input data in a program a recompilation is required. The output files are conveniently
named such that their contents can be easily identified, following the naming convention introduced in Ref. [5]. For example, a file
named <code>-out.txt, where <code> denotes imaginary- (im) or real-time (re) propagation, represents the general output file
3
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Table 1
Different modules of the 1D and 2D programs and their usage.

Module name Type Usage

1D

IMRE1D MAIN Main program
INITIALIZE Subroutine Calculates or reads the initial function
CALC_TRAP Subroutine Calculates the confining trap
COEF Subroutine Calculates the coefficients of the Crank–Nicolson method
SO Subroutine Propagates the spin–orbit coupling term in time
LU Subroutine Crank–Nicolson time propagation
HERM Subroutine Propagates the off-diagonal terms of the GP equation

and the Rabi coupling term in time
CALCNU Subroutine Propagates the diagonal parts of the GP equation in time
LENGTH Subroutine Calculates the length of the condensate
RENORM Subroutine Fixes the normalization and magnetization
ENERGY Subroutine Calculates the energy of the condensate
SIMP Function Performs integration by Simpson’s rule

2D

IMRE2D MAIN Main program
INITIALIZE Subroutine Calculates or reads the initial function
CALC_TRAP Subroutine Calculates the confining trap
COEF Subroutine Calculates the coefficients of the Crank–Nicolson method
SO Subroutine Propagates the spin–orbit coupling term in time
LUX Subroutine Crank–Nicolson time propagation in x variable
LUY Subroutine Crank–Nicolson time propagation in y variable
HERM Subroutine Propagates the off-diagonal terms of the GP equation

and the Rabi coupling term in time
CALCNU Subroutine Propagates the diagonal parts of the GP equation in time
INTEGRATE Function Performs double integration in x and y
RADIUS Subroutine Calculates the radius of the condensate
RENORM Subroutine Fixes the normalization and magnetization
ENERGY Subroutine Calculates the energy of the condensate
SIMP Function Performs integration by Simpson’s rule

Table 2
Name and description of input parameters and output files.

Name Description

Input

NSTP, NPAS, NRUN Number of time iterations,
NSTP = 0 reads initial function,
NSTP > 0 calculates initial function

N, NX, NY Number of space integration points
NTHREADS Number of threads used

NTHREADS = 0 uses all threads
C_0, C_2 Nonlinear input parameters (c0, c2)
OPT_SO Selects the type of SO coupling
DX, DY Space discretization steps
OPT_PROP Selects the type of time propagation

imaginary-time (=1) or real-time (=2)
OPT_ST Selects initial function in 2D
MAG_0 Magnetization (m)
GAM0 Strength of SO coupling (γ )
OMEGA0 Strength of Rabi coupling (Ω)

Output

im-out.txt Input parameters, energy and size
im-den-<desc>.txt <desc>=ini initial & =fin final density
im-phase.txt phase of a 2D wave function
im-wave-fun-<desc>.txt <desc>=ini initial & =fin final wave function
im-den-rad-<desc>.txt <desc>=ini initial & =fin final radial density (2D)

containing input data, space and time steps DX, DY and DT, nonlinearity c0 and c2, energy, size, etc. The files <code>-den-ini.txt
and <code>-den-fin.txt contain the initial and final components and total densities in different columns. In 1D (2D) these densities
are functions of one (two) space point(s) placed in the first (and second) column(s) of the respective files. The densities ρ+1, ρ0, ρ−1,
nd ρ can be found in the successive columns. The file <code>-den-rad-fin.txt stores the final linear radial densities ρ+1, ρ0, ρ−1,
nd ρ for the 2D GP equation in different columns, while the space points are saved in the first column. The file <code>-wave-fun-
in/ini.txt contains the final/initial complex wave functions. For a 2D BEC, the file <code>-phase.txt contains the phases of the
omponent wave functions in different columns, since the phase is important for the study of angular momentum of the respective
tates. The printing of some of these files, such as the initial density and wave function, is commented out in the programs, so that the
upplied programs do not print these.
We provide below the beginning of the 1D program where the parameters are defined so that the reader can easily identify the

ifferent statements there. The 2D program is quite similar.

Begin selection of input parameters
ODULE COMM_DATA
SELECT # OF SPACE POINTS N AND # OF TIME ITERATIONS NSTP, NPAS & NRUN
USE NSTP = 0 TO READ WAVE FUNCTION FILE FROM STDIN: < im-wave-fun-fin.txt
4
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INTEGER, PARAMETER :: N = 640, NX = N-1, NX2 = N/2
INTEGER, PARAMETER :: NSTP = 10, NPAS = 1000000, NRUN = 100000
INTEGER, PARAMETER :: NSTP = 0, NPAS = 1000000, NRUN = 100000
Number of OpenMP threads, less than or equal to the maximum available cores.
INTEGER, PARAMETER :: NTHREADS = 0 ! NTHREADS = 0 uses all available cores
REAL (8), PARAMETER :: Pi = 3.14159265358979D0

END MODULE COMM_DATA
******************************************************************
ODULE SPIN_PARS
USE COMM_DATA, ONLY : PI
******* SELECT POLAR (C_2 > 0) OR FERROMAGNETIC (C_2 < 0) BEC ******
REAL (8), PARAMETER :: C_0 = 241.d0, C_2 = 7.5d0 ! Anti-ferromagnetic
REAL (8), PARAMETER :: C_0 = 885.d0, C_2 = -4.1d0 ! Ferromagnetic
ND MODULE SPIN_PARS
******************************************************************
ODULE GPE_DATA
USE COMM_DATA, ONLY : N, Pi
USE SPIN_PARS, ONLY : C_0, C_2
***************************************************************************************
*** SELECT OPTION FOR SO COUPLING AND STRENGTH GAMMA
INTEGER,PARAMETER :: OPT_SO = 0; REAL (8), PARAMETER :: GAMMA0 = .00D0 ! No SO coupl.
INTEGER,PARAMETER :: OPT_SO = 1; REAL (8), PARAMETER :: GAMMA0 = .500D0 ! Sigma_x p_x
INTEGER,PARAMETER :: OPT_SO = 2; REAL (8), PARAMETER :: GAMMA0 = .500D0 ! Sigma_y p_x
INTEGER,PARAMETER :: OPT_SO = 3; REAL (8), PARAMETER :: GAMMA0 = .500D0 ! Sigma_z p_x
***************************************************************************************
REAL (8), PARAMETER :: DX = 0.05D0 ! SELECT SPACE STEP DX
!SELECT OPTION FOR PROPAGATION: IMAGINARY-TIME or REAL-TIME
INTEGER, PARAMETER :: OPT_PROP = 1; REAL (8), PARAMETER :: DT = DX*DX*0.10D0 ! IMAG
INTEGER, PARAMETER :: OPT_PROP = 2; REAL (8), PARAMETER :: DT = DX*DX*0.05D0 ! REAL
!SELECT PARAMETERS OF MODEL
REAL (8), PARAMETER :: MAG_0 = .400000D0, ACCUR=1.D-6 ! Magnetization
REAL (8), PARAMETER :: OMEGA0 = .000D0 ! Rabi and SO coupling
***************************************************************************************
End selection of input parameters

Below we provide a sample output file re-out.txt for the 2D program for the readers to familiarize.

REAL-TIME PROPAGATION
# of threads = 16

RASHBA SO coupling, GAMMA = 0.500000000000000
RABI coupling Omega = 0.000000000000000E+000
Nonlinearity C_0 = 482.000000, C_2 = 15.000000
OPT_ST = 0.750000000000000

Space and time steps: DX = 0.10000, DY = 0.10000, DT = 0.2500E-03
# of space steps: NX = 161, NY = 161
# of time steps: NSTP = 0, NPAS = 80000, NRUN = 10000

---------------------------------------------
RAD(1) RAD(2) RAD(3) Energy MAG

---------------------------------------------
NSTP iter.: 3.469 2.194 3.469 8.1969 0.0000
NPAS iter.: 3.468 2.193 3.468 8.1969 -0.0000
NRUN iter.: 3.469 2.195 3.469 8.1969 -0.0000

---------------------------------------------

Clock Time: 129 seconds
CPU Time: 2048 seconds

Another crucial aspect for the execution of imaginary-time propagation to find the lowest-energy ground state is a proper choice of
initial state with right symmetry property as the final state. Different types of states can be obtained for different sets of parameters.
Without SO coupling, the solution is of the Gaussian type and a Gaussian function should be chosen as the initial state. For small
Rashba or Dresselhaus SO-coupling strength γ (γ ⪅ 0.75), the lowest-energy circularly-symmetric state of the three components
f a quasi-2D SO-coupled anti-ferromagnetic (polar) spin-1 BEC is of the (−1, 0,+1) or (+1, 0,−1) type, where the numbers in the
arenthesis represent the angular momentum of the vortices in the center of the components j = +1, 0,−1, respectively, with the
5
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Fig. 1. Speedup of execution on a 20-core machine with two Intel Xeon E5-2650 processors (2 × 10 CPU cores) versus the number of threads used, for a quasi-1D
nd quasi-2D BEC for a typical run. The size of the space grid in 1D is 1000 and in 2D it is 200×200. The programs were compiled using the Intel Fortran compiler
. 19.0.4.243.

egative sign representing an anti-vortex. For a ferromagnetic spin-1 quasi-2D BEC these states are of the type (0,±1,±2) for Rashba
nd Dresselhaus SO-couplings, respectively, in agreement with the consideration of Ref. [26]. For an equal mixture of Rashba and
resselhaus SO couplings, for small γ , the lowest-energy ferromagnetic BEC states are of the Gaussian type without any vortices; the
nti-ferromagnetic BEC states are of the stripe type with periodic 1D modulation in density. For an efficient computation, the vortices
r anti-vortices are introduced in the initial wave functions when required. The vortex of angular momentum L is imprinted by taking
he initial state as a Gaussian multiplied by the factor (x+ iy)L, and an anti-vortex by the factor (x− iy)L. For large SO-coupling strength
(γ ⪆ 0.75), the density of the lowest-energy ground state of the three components of an SO-coupled spinor BEC exhibits different

atterns (not considered in this paper). The initial states in the 2D program have to be chosen accordingly. A stripe pattern is generated
y multiplying an initial Gaussian state by sin(γ x) and cos(γ x). The user can change the initial state for a SO-coupled BEC by choosing
he value of the parameter OPT_ST. For γ < OPT_ST the states of type (∓1, 0,±1) and (0,±1,±2) are chosen in anti-ferromagnetic
nd ferromagnetic phases, the upper (lower) sign corresponds to Rashba (Dresselhaus) SO coupling. In the anti-ferromagnetic phase,
or γ > OPT_ST, the stripe states are chosen as the initial state. However, to reproduce the results reported in this paper there is no
eed to change the parameter OPT_ST. For an equal mixture of Rashba and Dresselhaus SO couplings Gaussian-type initial states are
ppropriate for the ferromagnetic phase and stripe states for the anti-ferromagnetic phase.
If the imaginary-time propagation is performed, the programs run either by using an initial analytic input function (if NSTP is

ot set to zero), or by employing a pre-calculated wave function (if NSTP is set to zero). The real-time propagation can successfully
ork only if initialized with a meaningful wave function, usually assuming that NSTP = 0 is set, and that the program will read a
re-calculated wave function by the earlier performed imaginary-time propagation. The calculation is essentially done within the NPAS
ime iteration loop. Another NSTP time iteration is accommodated to verify if the results converged by comparing the energies and sizes
fter NPAS and NSTP iterations. The source programs spin-SO-imre1d-omp.f90 (1D) and spin-SO-imre2d-omp.f90 (2D) are located in
he directory src within the corresponding package directory BEC-GP-SPINOR-OMP. A README.md file, included in the corresponding
oot directory, explains the procedure to compile and run the programs in more detail using a makefile. In the beginning of each
rogram the compilation commands are given for GNU, Intel, PGI, and Oracle (former Sun) Fortran compilers. They can be compiled by
he make command using the provided makefile in the corresponding package root directory. Otherwise, they can be compiled by the
ommands given at the beginning of the programs using Intel, GNU, PGI, and Oracle FORTRAN compilers. The examples of produced
utput files can be found in the directory output, although some large density files are omitted, to reduce the software package size.
We conclude this section demonstrating the efficiency of our OpenMP parallelization scheme using the Intel compiler on a machine

ith 2×10 CPU cores in Fig. 1, where we plot the speedup versus number of threads. The speedup for n threads is defined as the ratio
f clock time for a single thread to that for n threads. From Fig. 1 we find the clock time reduces with the increase of the number of
hreads, thus making the execution more efficient in a multi-core machine.

. Numerical results

All calculations reported below were performed with the predefined space and time steps DX and DT in the programs: in 1D DX
0.05, DT = DX*DX*0.1 (imaginary time) and DT = DX*DX*0.05 (real time); in 2D DX = 0.1, DT = DX*DX*0.1 (imaginary time) and

T = DX*DX*0.025 (real time). To increase the accuracy of calculation, the space step(s) DX and DY should be reduced and the total
umber of space discretization points N, NX, and NY increased proportionally.
The parameters of the GP equation c0 and c2 are taken from the following realistic experimental situations. For the ferromagnetic

EC the quasi-1D trap parameters are l = 2.41927 µm, lyz = 0.54 µm and we use the following parameters of 87Rb atoms:
= 10, 000, a0 = 101.8aB, a2 = 100.4aB, where aB is the Bohr radius. Consequently, c0 ≡ 2N(a0 + 2a2)l/3l2yz ≈ 885 and

2 ≡ 2N(a2 − a0)l/3l2yz ≈ −4.1. For the quasi-1D anti-ferromagnetic BEC we use the trap parameters l = 4.7 µm, lyz = 1.05 µm
following parameters of 23Na atoms: N = 10, 000, a0 = 50.00aB, a2 = 55.01aB. Consequently, c0 ≈ 241 and c2 ≈ 7.5. For the quasi-2D
ferromagnetic BEC we use the following parameters of 87Rb atoms: N = 100,000, a0 = 101.8aB, a2 = 100.4aB, [27]lz = 2.0157 µm.
Consequently, c0 ≡ 2N

√
2π (a0 + 2a2)/3lz ≈ 1327.5 and c2 ≡ 2N

√
2π (a2 − a0)/3lz ≈ −6.15. For the quasi-2D anti-ferromagnetic

BEC we use the following parameters of 23Na atoms: N = 100,000, a0 = 50.00aB, a2 = 55.01aB, [28] lz = 2.9369 µm. Consequently,
c0 ≈ 482 and c2 ≈ 15.

Although we will calculate the lowest-energy ground state by imaginary-time propagation, it is possible that in some cases for larger
values of SO coupling strength γ (not considered in this paper) the imaginary-time approach may converge to a nearby excited state
instead of the lowest-energy ground state for certain initial states. The symmetry, such as parity, of the initial state plays a vital role.
6
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Table 3
Convergence of energies of harmonically trapped 1D and 2D spin-1 ferromagnetic (ferro) and anti-ferromagnetic (polar) BECs with change of space steps DX and
DY. The parameters in 1D: c0 = 885, c2 = −4.1 (ferro) and c0 = 241, c2 = 7.5 (polar). The parameters in 2D: c0 = 1327.5, c2 = −6.15 (ferro), c0 = 482, c2 = 15
(polar). The SO-coupled results in 1D refer to the coupling γ pxΣx with γ = 0.5 and those in 2D correspond to the Rashba coupling with γ = 0.5. The parameters
onsidered here are appropriate for a Rb and Na BEC with trap parameters of Ref. [25].
DX (=DY) 1D (ferro)

energy
1D (ferro)
% error

1D (polar)
energy

1D (polar)
% error

2D (ferro)
energy

2D (ferro)
% error

2D (polar)
energy

2D (polar)
% error

0.4 36.01167 0.00058 15.12364 0.00066 13.59737 0.00176 8.19636 0.00660
0.2 36.01146 0 15.12354 0 13.59759 0.00015 8.19687 0.00037
0.1 36.01146 0 15.12354 0 13.59761 0 8.19690 0
< 0.05 36.01146 0 15.12354 0 13.59761 0 8.19690 0

Table 4
Energies of harmonically-trapped spin-1 anti-ferromagnetic (polar) and ferromagnetic (ferro) quasi-1D and quasi-2D BECs for different values of
magnetization m. In the quasi-2D case we consider only the circularly-symmetric states. The parameters in 1D: c0 = 241, c2 = 7.5 (polar) and
c0 = 885, c2 = −4.1 (ferro), space step DX = 0.05, time step DT = 0.00025. The parameters in 2D: c0 = 482, c2 = 15 (polar) and c0 = 1327.5,
c2 = −6.15 (ferro), space steps DX = DY = 0.1, time step DT = 0.0005. The SO-coupled (SO-cpld) results in 1D refer to the coupling γ pxΣx with
γ = 0.5 and those in 2D correspond to the Rashba or Dresselhaus coupling with γ = 0.5. For systems with large nonlinearities the numerically
obtained energy Enum lies between the TF [29] and variational (var) limit: ETF < Enum < Evar . The parameters considered here are appropriate for a
Rb and Na BEC with trap parameters of Ref. [25].

m 1D 1D 1D 1D 1D 2D 2D 2D 2D

spinor spinor spinor spinor SO-cpld spinor spinor spinor SO-cpld
[25] var TF γ = 0.5 var TF γ = 0.5

Polar

0 15.2485 15.2485 15.7522 15.2239 15.1235 8.3605 8.8155 8.2577 8.1969
0.1 15.2514 15.2514 8.3617
0.2 15.2599 15.2599 8.3652
0.3 15.2743 15.2743 8.3710
0.4 15.2945 15.2945 8.3793
0.5 15.3209 15.3209 8.3900
0.6 15.3537 15.3537 8.4033

Ferro

0 36.1365 36.1365 37.3574 36.1243 36.0115 13.7420 14.5364 13.6723
0.0468 36.1365 13.7420 13.5976
0.1 36.1365 36.1365 13.7420
0.2 36.1365 36.1365 13.7420
0.3 36.1365 36.1365 13.7420
0.4 36.1365 36.1365 13.7420
0.5 36.1365 36.1365 13.7420
0.6 36.1365 36.1365 13.7420

An even-parity (odd-parity) initial state will find the lowest-energy state with even (odd) parity. For small γ there are only a few
ossibilities of symmetry and this problem does not appear for the results reported in this paper. But for larger γ , and especially in
he quasi-2D case, there are states with many possibilities of symmetry and it may not be easy to know, a priori, the symmetry of
he lowest-energy state. Hence, for large γ , it is advised to repeat the calculation with different initial states, so as to be sure that the
converged state is indeed the lowest-energy ground state. In fact, any numerically computed final wave function, obtained with the
same number of space points, can be used as the initial state for a new calculation.

Before we illustrate our results, we now study in Table 3 the convergence of our calculational scheme in 1D and 2D for SO-coupled
ferromagnetic and polar BECs employing the above-mentioned parameters in 1D and 2D upon the reduction of space steps DX and (=
DY) from 0.4 to 0.05. In this Table we display the energies, viz. Eq. (5), and the respective percentage numerical errors for four different
sets of parameters in 1D and 2D. We see that upon a reduction of space step the energy value rapidly converges. The result for energy
with space step 0.4 is already very accurate and the result remains unchanged to five significant figures after the decimal point for

Fig. 2. Numerically calculated component density ρj(x) (lines) and energy E of a quasi-1D harmonically trapped SO-coupled ferromagnetic BEC with nonlinearities
0 = 885, c2 = −4.1 and (a) γ = 0.5 and (b) m = 0.4, γ = 0, compared with the analytic TF result (chain of symbols). The same for an anti-ferromagnetic BEC
ith nonlinearities c0 = 241, c2 = 7.5 and (c) γ = 0.5 and (d) m = 0.4, γ = 0. The SO-coupling is γ pxΣx with γ = 0.5 in all cases. All densities are calculated by

maginary-time propagation employing Gaussian input functions. All results reported in this paper are in dimensionless units, as outlined in Section 2.
7
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Fig. 3. Contour plots of numerically calculated component densities ρj(x, y) for (a) j = +1, (b) j = 0, and (c) j = −1 of a quasi-2D harmonically trapped Rashba or
Dresselhaus SO-coupled ferromagnetic BEC with nonlinearities c0 = 1327.5, c2 = −6.15, the SO-coupling strength γ = 0.5. (d)-(f) A Rashba or Dresselhaus SO-coupled
nti-ferromagnetic BEC with nonlinearities c0 = 482, c2 = 15, and γ = 0.5. (g)-(i) A ferromagnetic BEC with c0 = 1327.5, c2 = −6.15, γ = 0.5 for an equal mixture
f Rashba and Dresselhaus SO couplings. (j)-(l) An anti-ferromagnetic BEC with c0 = 482, c2 = 15, γ = 0.5 for an equal mixture of Rashba and Dresselhaus SO
ouplings. The numerical energies are displayed in plots (a), (d), (g), and (j).

pace steps 0.1 and 0.05 both in 1D and 2D. In the following we will present results of our study with space steps 0.05 and 0.1 in 1D
nd 2D, respectively. The accuracy increases as the space-step is reduced, but a reduced value of space step requires a larger number
f time iterations for convergence. Hence, it is computationally more economic to use a large space step.
In Table 4 we show the energy, viz. Eq. (1), of an anti-ferromagnetic and a ferromagnetic BEC in quasi-1D and quasi-2D traps for

ifferent values of magnetization m. For the quasi-2D trap, we consider only the circularly-symmetric states. In 2D the energies are
he same for both Rashba and Dresselhaus SO couplings, although the underlying wave functions are different. The analytic TF and
ariational energies are also displayed, for comparison, as well as those from Ref. [25]. In the case of a ferromagnetic BEC without SO
oupling, the energies are independent of m values, whereas in the anti-ferromagnetic case the dependence on m exists, as can be
een. In both cases the analytic TF and variational energies are independent of m. For condensates with large densities as in Table 4,
here the TF results are reliable, the actual energies are larger than the corresponding TF values [29]. On the other hand, the variational
nergies are always larger than the actual energies. Hence for large nonlinearities, as we see in Table 4, the variational and TF energies
efine the two bounds for the actual, numerically calculated energy. In Table 4 we also present the numerically calculated energies for
he SO-coupled BECs in 1D and 2D for γ = 0.5.

We show the numerically calculated and the TF component densities ρj(x) of a quasi-1D harmonically trapped ferromagnetic SO-
oupled BEC for c = 885 and c = −4.1, with γ = 0.5 in Fig. 2(a) and m = 0.4, γ = 0 in Fig. 2(b), along with the corresponding
0 2

8
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Fig. 4. (a) Numerically calculated component densities of the quasi-1D SO-coupled ferromagnetic BEC of Fig. 2(a) with c0 = 885, c2 = −4.1, γ = 0.5 during the
real-time evolution at times t = 50, 100, 150, 200 (full lines), using the imaginary-time wave function as the initial state, compared with the converged imaginary-time
densities shown in Fig. 2(a) (chain of symbols). The parameter c0 was changed from 885 to 920 at t = 0. (b) Numerically calculated radial component densities of the
quasi-2D anti-ferromagnetic Dresselhaus SO-coupled BEC of Fig. 3(d)–(f) with c0 = 482, c2 = 15, γ = 0.5 during the real-time evolution at times t = 50, 100, 150, 200
(full lines), using the imaginary-time wave function as the initial state, compared with the converged imaginary time densities (chain of symbols). The parameter c0
was changed from 482 to 500 at t = 0.

energy values given by Eq. (5). All the states reported here are the lowest-energy ground states for a given set of parameters, obtained
by imaginary-time propagation. The same quantities are shown for an anti-ferromagnetic BEC with c0 = 241 and c2 = 7.5, with
γ = 0.5 in Fig. 2(c) and with m = 0.4, γ = 0 in Fig. 2(d). The SO coupling in both cases is of type γ pxΣx with γ = 0.5. These nonlinear
parameters c0 and c2 were considered previously in Ref. [25]. These states are calculated with the analytic initial functions, included
by setting NSTP ̸= 0.

We now exhibit the density of a Rashba SO-coupled quasi-2D spinor BEC for γ = 0.5. The BEC components develop distinct angular
momentum structure in this case. To illustrate this, we display in Fig. 3(a)–(c) the contour plots of densities of a ferromagnetic Rashba or
Dresselhaus SO-coupled BEC. In Fig. 3(d)–(f) the corresponding contour plots of an anti-ferromagnetic Rashba or Dresselhaus SO-coupled
BEC are shown, while Fig. 3(g)–(i) displays the same for a ferromagnetic BEC for an equal mixture of Rashba and Dresselhaus couplings.
In Fig. 3(j)–(l) the plots are shown for an anti-ferromagnetic BEC, also for an equal mixture of Rashba and Dresselhaus couplings. In
all cases the nonlinearities c0 and c2 are the same as in Table 3. The components j = +1, 0 and −1 in Fig. 3(a)–(c) have angular
momentum 0,±1,±2, respectively, for Rashba and Dresselhaus SO couplings. On the other hand, the components in Fig. 3(d)–(f) have
angular momentum ∓1, 0,±1, respectively, for Rashba and Dresselhaus SO couplings. The angular momenta of the spinor components
were found from the contour plot of the phases of the corresponding wave functions (not explicitly considered in this paper).

Finally, we demonstrate the dynamical stability of the imaginary-time results using the real-time propagation for a large interval
of time. Using the converged imaginary-time wave function as the initial state, the real-time calculation is initiated after introducing a
small perturbation, by changing the value of c0 at t = 0 by a small amount. First we consider the quasi-1D SO-coupled ferromagnetic
spinor BEC of Fig. 2(a) and perform a real-time simulation for 200 units of time by changing c0 from 885 to 920. The component densities
at times t = 50, 100, 150, and 200 are plotted in Fig. 4(a). The imaginary-time converged results (chain of symbols) are also shown,
for comparison. Next we consider a quasi-2D anti-ferromagnetic Rashba SO-coupled spinor BEC with c0 = 482, c2 = 15, γ = 0.5,
viz. Fig. 3(d)–(f), which is taken as initial state and a real-time propagation is performed for 200 units of time upon changing c0 from
482 to 500 at t = 0. The radial component densities are plotted at times t = 50, 100, 150, and 200 in Fig. 4(b) together with the
converged imaginary-time density (chain of symbols). The fact that all component densities in Fig. 4(a) and (b) for a quasi-1D and
a quasi-2D BEC over a large interval of time are stable during the real-time propagation demonstrates the dynamical stability of the
condensate.

5. Summary

We have presented efficient OpenMP FORTRAN programs for solving the GP equation for a three-component spin-1 spinor BEC and
used these to calculate the densities and energies for various values of system parameters. Different SO and Rabi coupling terms can
be included in the programs. We provide two sets of programs: one for a quasi-1D BEC and the other for a quasi-2D BEC. Each of these
programs is capable of executing both the imaginary- and the real-time propagation. The imaginary-time propagation programs yield
appropriate results in agreement with variational approximation in all cases [21,30]. We use the split-step Crank-Nicolson discretization
to implement time propagation, relying on our earlier OpenMP FORTRAN programs of Ref. [6]. The GP equation can be solved by
imaginary- or real-time propagation with an analytic wave function or a pre-calculated numerical wave function as the initial state.
We stress that the convergence with one initial state could be much faster than with another initial state, and tailoring the input wave
function using an analytic or a previously calculated numerical wave function is always an advantage. We have also presented the
results for density and energy of different states and compared these with analytic variational and TF approximate results.
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Appendix A. Detailed numerical procedure

All terms in Eqs. (1) and (2), except the last terms containing explicit complex conjugation, have the form of a conventional diagonal
P equation for a three-component BEC, whose solution procedure employing the split-step method is well known. The last non-
iagonal terms in Eqs. (1) and (2), as well as the Rabi coupling terms proportional to Ω̃ require special attention. In explicit matrix
otation, the split-step equation that takes into account the last terms of Eqs. (1) and (2), together with the Rabi coupling terms
roportional to Ω̃ , can be written as

i∂t

⎛⎝ψ+1(r, t)
ψ0(r, t)
ψ−1(r, t)

⎞⎠ = A

⎛⎝ψ+1(r, t)
ψ0(r, t)
ψ−1(r, t)

⎞⎠ , where A =

( 0 a 0
a∗ 0 b
0 b∗ 0

)
, (A.1)

and a = c2ψ∗
−
ψ0 + Ω̃ , b = c2ψ∗

0ψ+ + Ω̃ . The real eigenvalues of the Hermitian matrix A are λ1 = C =

√
|a|2 + |b|2, λ2 = 0, and

3 = −C , while the corresponding eigenvectors are v1 = (v11, v12, v13)T = (a, C, b∗)T , v2 = (v21, v22, v23)T = (b, 0, −a∗)T , and
v3 = (v31, v32, v33)T = (a, −C, b∗)T , respectively. For a sufficiently small time step ∆, the solution of Eq. (A.1) is given by⎛⎝ψ+1(r, t +∆)

ψ0(r, t +∆)
ψ−1(r, t +∆)

⎞⎠ = V

⎛⎝e−i∆λ1 0 0
0 e−i∆λ2 0
0 0 e−i∆λ3

⎞⎠V−1

⎛⎝ψ+1(r, t)
ψ0(r, t)
ψ−1(r, t)

⎞⎠ , (A.2)

where

V ≡

(
v11 v21 v31
v12 v22 v32
v13 v23 v33

)
=

( a b a
C 0 −C
b∗

−a∗ b∗

)
, V−1

=
1

2C2

( a∗ C b
2b∗ 0 −2a
a∗

−C b

)
. (A.3)

n Eq. (A.2) the right-hand-side is considered known, since it is expressed in terms of the wave-function values at time t , and thus the
ave function is easily propagated to time t + ∆. In case of larger spins, if the matrix A of larger dimension cannot be analytically
iagonalized, it can be diagonalized numerically by one of the many available subroutine packages.
When we consider the SO coupling terms proportional to γ̃ , they can be also evaluated at time t using the known wave-function

alues, and the corresponding split-step equations can be solved to propagate the wave functions to time t +∆. For example, in case
f the γ pxΣx coupling in 1D, these are performed via

ψ±1(r, t +∆) = ψ±1(r, t) −∆γ̃ ∂xψ0(r, t) , (A.4)

ψ0(r, t +∆) = ψ0(r, t) −∆γ̃

[
∂xψ+1(r, t) + ∂xψ−1(r, t)

]
. (A.5)

In Eqs. (A.4) and (A.5) the right-hand-side at time t is known and hence the wave-function values at time t +∆ can be obtained from
those at time t . All SO coupling terms are treated in the same fashion.

The simultaneous maintenance of the normalization and magnetization m, viz. Eq. (4), during the time propagation, given by Eqs. (4),
s done following the procedure of Ref. [31], by rescaling the wave-function components after each time step ∆ according to ψj → djψj,
where

d0 =

√
1 − m2√

N0 +

√
4(1 − m2)N+1N−1 + m2N2

0

, d1 =

√
1 + m − d20N0

√
2N+1

, d−1 =

√
1 − m − d20N0

√
2N−1

, (A.6)

and Nj =
∫
dr ρj(r, t). However, when the SO coupling does not commute with Σz , we do not impose the condition of conservation of

magnetization and the rescaling is done according to

d0 = d+1 = d−1 =
1

√
N0 + N+1 + N−1

. (A.7)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cpc.2020.107657. It contains analytic
variational and Thomas-Fermi approximations developed for the calculations presented in this paper.
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Supplementary Material: Spin-1 spin-orbit- and Rabi-coupled Bose-Einstein
condensate solver

1. Variational and Thomas-Fermi approximations

The Gross-Pitaevskii equations (1) and (2) can be derived from the energy functional [1, 2]

E[ψ] =
1
2

∫
dr

{∑
j

|∇rψ j|
2 + 2V(r)ρ + c0ρ

2

+ c2

[
ρ2

+1 + ρ2
−1 + 2

(
ρ+1ρ0 + ρ−1ρ0 − ρ+1ρ−1 + ψ∗−1ψ

2
0ψ
∗
+1 + ψ−1ψ

∗
0

2ψ+1

)]
+

Ω
√

2

[
(ψ∗+1 + ψ∗−1)ψ0 + ψ∗0(ψ+1 + ψ−1)

]
+ γψ∗+1 f+1(∂rψ j) + ψ∗−1 f−1(∂rψ j) + ψ∗0g(∂rψ j)

}
. (1)

We describe now two approximation schemes for the solution of the spinor GP equations, i.e., the variational
approximation and the TF approximation [3, 4]. For a ferromagnetic BEC (c2 < 0) without SO coupling, the ground-
state densities are essentially proportional to each other, such that

ψ j(r) = α jψ̃(r) , j = ±1, 0 , (2)

where α j are complex numbers and the function ψ̃(r) is to be determined. If we substitute Eq. (2) into Eqs. (1) and
(2), we obtain three equations for the unknown function ψ̃(r). For these equations to be consistent, one must have [3]

µψ̃(r) =

[
−

1
2
∇2 + V(r) + gρ̃(r)

]
ψ̃(r) , ρ̃(r) = |ψ̃(r)|2 , (3)

with g = (c0 + c2) and subject to
∫
ρ̃(r) dr = 1, with µ the chemical potential and |α±1| = (1 ± m)/2 , |α0| =√

(1 − m2)/2 . For the ground state of an anti-ferromagnetic BEC (c2 > 0), the j = 0 component is absent, ψ0 = 0. In
this case Eq. (2) holds only for m = 0, with |α±1| = 1/

√
2, α0 = 0, while Eq. (3) is again valid with g = c0.

1.1. Variational approximation

Equation (3) can be derived by a minimization of the energy functional

E =
1
2

∫
dr

[ ∣∣∣∇ψ̃(r)
∣∣∣2 + r2

∣∣∣ψ̃(r)
∣∣∣2 + g

∣∣∣ψ̃(r)
∣∣∣4 ]

. (4)

We consider the variational ansatz ψ̃(r) =
[
w
√
π
]−d/2

exp
(
− r2

2w2

)
where d = 1 in 1D and d = 2 in 2D, and w is a

variational parameter. With this ansatz the energy functional becomes

E =
d

4w2 +
dw2

4
+

g

2
(
w
√

2π
)d . (5)

The parameter w is obtained by a minimization of this energy.



1.2. Thomas-Fermi approximation

In absence of SO coupling (γ = 0), for an anti-ferromagnetic (c2 > 0) spin-1 BEC with zero magnetization
and for a ferromagnetic (c2 < 0) spin-1 BEC, there are simple analytic solutions based on a decoupled mode TF
approximation and we quote the results here. The density of the three components are given by [3]

ρ j(r) = |α j|
2ρTF(r) = |α j|

2 L2
d − r2

2g
(6)

where L1 = [3g/2]1/3 in 1D and L2 = [4g/π]1/4 in 2D. In 1D this density is the linear density, while in 2D it is the
radial density. The TF energy can be evaluated and yield ETF = 3[3g/2]2/3/10 in 1D, and ETF = 2

√
g/π/3 in 2D.

Some useful analytic results can be obtained for a ferromagnetic BEC in 1D in the absence of magnetization
(m = 0) for non-zero SO (γ , 0) and Rabi (Ω , 0) coupling strengths. The ansatz for the wave function components
is taken to be α±1 = eiγx/2, α0 = −eiγx/

√
2 in Eq. (2), viz. Eq. (22) of Ref. [5]. For the SO coupling of the form γpxΣx,

the total energy for small values of γ , 0 can be now evaluated to yield ẼTF = ETF −
γ2

2 −Ω , where ETF are the above
calculated expressions in 1D or 2D. In this case the TF profile for the density remains unchanged for small γ and Ω.
However, the energy gets modified due to the SO and Rabi couplings.

Additional useful analytic results can be obtained for an anti-ferromagnetic BEC in 1D in the absence of magne-
tization (m = 0) for a non-zero SO coupling strength (γ , 0). The ansatz for the wave function components in this
case is taken to be α±1 = i sin(γx)/

√
2, α0 = − cos(γx) in Eq. (2), viz. Eq. (18) of Ref. [5]. For the SO coupling of the

form γpxΣx, the total TF energy for small values of γ , 0 and Ω , 0 can be now evaluated: ẼTF = ETF −
γ2

2 . The TF
profile for the density remains unchanged for small γ, but the energy gets modified due to the SO coupling.
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