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Quantum criticality in photorefractive optics: Vortices in laser beams and antiferromagnets
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We study vortex patterns in a prototype nonlinear optical system: counterpropagating laser beams in a
photorefractive crystal, with or without the background photonic lattice. The vortices are effectively planar and
have two “flavors” because there are two opposite directions of beam propagation. In a certain parameter range,
the vortices form stable equilibrium configurations which we study using the methods of statistical field theory and
generalize the Berezinsky-Kosterlitz-Thouless transition of the XY model to the “two-flavor” case. In addition to
the familiar conductor and insulator phases, we also have the perfect conductor (vortex proliferation in both beams
or “flavors”) and the frustrated insulator (energy costs of vortex proliferation and vortex annihilation balance each
other). In the presence of disorder in the background lattice, a phase appears which shows long-range correlations
and absence of long-range order, thus being analogous to glasses. An important benefit of this approach is that
qualitative behavior of patterns can be known without intensive numerical work over large areas of the parameter
space. The observed phases are analogous to those in magnetic systems, and make (classical) photorefractive
optics a fruitful testing ground for (quantum) condensed matter systems. As an example, we map our system to
a doped O(3) antiferromagnet with Z2 defects, which has the same structure of the phase diagram.
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I. INTRODUCTION

Nonlinear and pattern-forming systems [1–3] have numer-
ous analogies with strongly correlated systems encountered
in condensed matter physics [4,5], and on the methodological
level they are both united through the language of field theory,
which has become the standard language to describe strongly
correlated electrons [6,7] as well as nonlinear dynamical
systems [8]. In the field of pattern formation, some connections
to condensed matter systems have been observed; see, e.g.,
Ref. [4]. More recently, extensive field-theoretical studies of
laser systems were performed, e.g., Refs. [9–12], and also
compared to experiment [13]. However, this topic is far from
exhausted and we feel many analogies between quantum
many-body systems and pattern-formation dynamics remain
unexplored and unexploited. In particular, nonlinear optical
systems and photonic lattices are flexible and relatively cheap
to build [3] and they can be used to “simulate” a broad spectrum
of phenomena concerning band structure, spin ordering, and
conduction in strongly correlated electron systems; some of
the work in this direction can be found in Refs. [14,15].

Our goal is to broaden the connections between the strongly
correlated systems and nonlinear optics and to put to work
the mighty apparatus of field theory to study the patterns in a
nonlinear optical system from the viewpoint of phase transition
theory: Pattern dynamics in certain cases shows critical
behavior which is analogous to phenomena seen in magnetic
systems. To that end, we use the formalism of perturbative field
theory and renormalization group analysis but we also perform
numerical simulations from the first principles, i.e., directly
integrating the equations of motion to provide an independent
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check of our main conclusions. We also establish a connection
to an O(3) antiferromagnetic model which is encountered in
the study of strongly correlated electron systems. The analogy
is not just qualitative: We construct the phase diagrams of both
systems and find they have the same structure. Introducing
disorder into the system further enriches the physics, and it
is physically motivated: In optics, disorder is rooted in the
imperfections of the photonic lattice, and in magnetic systems
it comes from the quenched spin impurities which are regularly
found in realistic samples. It turns out that in both cases a glassy
phase arises. This is another important research topic and it is
again appealing to realize glasses in photonic lattice systems,
where the parameters are easy to tune.

A. On topology and vortices

The key phenomenon which governs the phenomenology of
the systems studied is the existence of topologically nontrivial
solutions or topological solitons [16]: These are the solutions
which map the physical boundary of the system to the whole
configuration space of the field, so one explores all field
configurations by “going around the system.” For example,
in a two-dimensional system (in the x-y plane) with U(1)
phase symmetry, the configuration space is a circle (the phase
lies between 0 and 2π ) and the boundary of the physical
space (i.e., the two-dimensional plane) is again a circle, the
“boundary” of the plane at infinity. The topological soliton is a
pattern of the U (1) field which spans the whole phase circle (its
phase goes from 0 to 2π ), as one moves around the far-away
circle in the x-y plane. Of course, this is the vortex—the most
famous and best studied topological configuration. Similar
logic leads to the classification of topological defects of other,
more complicated symmetry groups. A potential source of
confusion is that in nonlinear dynamics and theory of partial
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differential equations, the “integrable” solutions, i.e., linearly
(often also nonlinearly) stable solutions which can be obtained
by inverse scattering or similar methods and which propagate
through each other without interacting, are also called solitons,
or more precisely dynamical solitons. In optics, they are often
called spatial solitons. Dynamical solitons in nonlinear optics
are a celebrated and well-studied topic [17–22]; they show an
amazing variety of patterns and phenomena like localization,
Floquet states [14], etc. But in general they do not have a
topological charge. In contrast, topological solitons carry a
topological charge (winding number for vortices) and their
stability is rooted in topological protection (conservation of
topological charge).

The phenomenon of vortices is perhaps best known in
three spatial dimensions. The phase of the wave function can
wind, forming a vortex line. These vortices are stable when
the phase symmetry is broken by magnetic field. Famously,
vortices may coexist with the superconducting order (U (1)
symmetry breaking) in type-II superconductors or exist only
in the normal phase, upon destroying the superconductivity
(type I). The primary example in two spatial dimensions is the
vortex unbinding phase transition of infinite order found by
Berezinsky et al. for the planar XY model [23]. The formal
difference between the two- and three-dimensional vortices is
that the latter gives rise to an emergent gauge field; this does not
happen in the XY -like system in two dimensions [24]. While
the nonlinear optical system we study is three-dimensional, its
geometry and relaxational dynamics make it natural to treat it
as a (2 + 1)-dimensional system (the x and y coordinates are
spatial dimensions, the z direction has the formal role of time,
and physical time t has the role of a parameter). We therefore
have a similar situation to the XY model: pointlike vortices in
the plane (and no gauge field).

Vortex matter is known to emerge in liquid helium [25],
Bose-Einstein condensates [26], and magnetic systems [27].
The basic mechanisms of vortex dynamics are thus well
known. However, unusual physics can arise if the system has
multiple components and each of them can form vortices which
mutually interact. This is precisely our situation: We have a
system of two laser beams propagating in opposite directions,
and we will compare it to a two-component antiferromagnet.
So far, such situations have been explored in multicomponent
superconductors [28] which have attracted some attention,
as they can be realized in magnesium diboride [29]. But
these are again bulk systems, not planar. Vortices in planar
multicomponent systems have not been very popular, an
important exception being the two-component Bose-Einstein
condensates of Ref. [30], which were found to exhibit complex
vortex dynamics; in these systems, contrary to our case, the
two components have an explicit attractive interaction, unlike
our case where they interact indirectly, by coupling to the total
light intensity (of both components).

B. The object of our study

In this paper, we study phases and critical behavior of topo-
logical configurations (vortices and vortex lattices) in a specific
and experimentally realizable nonlinear optical system: laser
beams counterpropagating (CP) through a photorefractive
(PR) crystal. This means we have an elongated PR crystal

(with one longitudinal and two transverse dimensions) and
two laser beams shone onto each end. We thus effectively
have two fields, one forward propagating and one backward
propagating. The optical response of the crystal depends
nonlinearly on the total intensity of both beams, which means
the beams effectively interact with each other. This system
has been thoroughly investigated for phenomena such as
dynamical solitons [17,31,32], vortex stability on the photonic
lattice [18–20,33–36], and global rotation [37]. We will see
that the CP beams are an analog of the two-component planar
antiferromagnet, which can further be related to some realistic
strongly correlated materials [38–40]. The two beams are now
equivalent to two sublattices which interact through a lattice
deformation or external field. The PR crystal is elongated and
the axial propagation direction has the formal role of time,
which has a finite span, the length of the crystal. For the
antiferromagnet, the third axis is the usual imaginary time
compactified to the radius 1/T , i.e., inverse temperature. Both
systems contain vortices as topological defects, i.e., solutions
with integer topological charge. In the PR optical system,
vortices arise as a consequence of the U(1) symmetry of the
electromagnetic field. In the antiferromagnets we consider, the
O(3) symmetry of the antiferromagnet gives rise toZ2-charged
defects, which exhibit the same interactions as the vortices.
The optical system is not subject to noise (i.e., it lives at
zero temperature), and thus the criticality we talk about is
obviously not the same as thermodynamic phase transitions.
Phase transitions happen upon varying the parameters, not
temperature, so they may be described as quantum critical
phenomena in the broad sense taken in Ref. [38]—any
critical behavior controlled not by thermal fluctuations but
by parameter dependence.

In the PR counterpropagating beam system, our focus
are the vortices but in order to study them we need to
do some preparational work. We first recast the system
in Lagrangian and then in Hamiltonian form so it can be
studied as a field theory, which depends parametrically on
the time t . Then we consider the time dynamics of the
system and show that in a broad parameter range the patterns
relax to a static configuration which can be studied within
equilibrium field theory. Along the way, we also study the
stability of topologically trivial (vortex-free) configurations
and then consider the phases of the static vortex configurations.
The analytical insight we obtain also allows us to avoid
overextensive numerics—analytical construction of the phase
diagram tells us which patterns can in principle be expected in
different corners of the parameter space. By “blind” numerical
approach, this result could only be found through many runs
of the numerics.

In the antiferromagnetic spin system, the nontopological
excitations are simple: They are spin waves, perturbed away
from the noninteracting solution by the quartic terms in the
potential. There are no dynamical solitons. But we will see
that topological excitations lead to a phase diagram which,
after reasonable approximations, can be exactly mapped to
the phase diagram of the photorefractive crystal. The reason
is that both can be reduced to an effective Hamiltonian
for a two-component vortex system; i.e., every vortex has
two charges or two “flavors.” In the photorefractive crystal
it happens naturally, as there are two beams, forward and
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backward propagating. In the Heisenberg antiferromagnet it
is less obvious and is a crucial consequence of the collinearity
of the spin pattern. We will focus on common properties of the
two systems and map the phase diagrams onto each other. In
the antiferromagnetic system, different phases are separated
by quantum phase transitions—phase transitions driven by the
quantum fluctuations instead of temperature.

On disorder

It is known that impurities pin the vortices and stabilize
them. This leads to frozen dynamics even though no symmetry
is broken, the phenomenon usually associated with glasses. In
simple systems such as the Ising model with disorder, one
generically has two phases: The disordered (paramagnetic)
phase remains and the ordered (magnetic) phase is replaced
by a regime with algebraic correlations and no true order. In
many cases, such phases are called glasses. The exact definition
of a glass is lacking; normally, they show (i) long-range
correlations, (ii) absence of long-range order, i.e., of a nonzero
macroscopic order parameter, and (iii) “frozen dynamics,”
i.e., free energy landscape with numerous local minima in
which the system can spend a long time [41,42]. While the
most popular example are probably spin glasses in Ising-
like models such as Sherington-Kirkpatrick and Edwards-
Anderson models, glasses are also known to appear in the XY

model with disorder in two dimensions, the Cardy-Ostlund
model, which postulates both random couplings and a random
magnetic field [43–45]. Our model is essentially a two-flavor
generalization of the XY model, although in order to solve it
we need to simplify it. According to Refs. [43–45], the details
differ depending on how the disorder is implemented, but the
two-phase system (paramagnetic, i.e., disordered, and glass) is
ubiquitous. In the two-component version, the phase diagram
becomes richer, and on top of the glassy phase and the insulator
(disordered) phase we find a few other phases. In nonlinear
optics, the topic of random lasers has attracted considerable
attention [9–12,46]. Here one has a complex version of the XY

model, with the additional complication that not only phase but
also amplitude is free to vary, but only with random couplings
(no random field). On top of the glassy and the disordered
phase, one or two additional phases appear.

In the presence of disorder, the relation to magnetic systems
in condensed matter physics is very inspiring, since a number
of complex materials show different ordering mechanisms
(spin and charge density waves, superconductivity, etc.) in
parallel with significant influence of disorder. Just as in the
disorder-free case, we are particularly interested in possible
spin-glass phenomena in doped insulating O(3) antiferromag-
nets [39,40,47–49] and in the last section we will discuss also
the spin-glass phase in such systems.

C. The plan of the paper

The structure of the paper is as follows. In the next section,
we describe the dynamical system which lies at the core of
this paper: counterpropagating laser beams in a photorefractive
crystal. We give the equations of motion and repackage them in
the Lagrangian form. In Sec. III, we study the vortex dynamics:
We construct the vortex Hamiltonian and classify the order
parameters. Then we study the renormalization group (RG)

flow and obtain the phase diagram. Finally, we discuss the
important question of how to recognize the various phases in
experiment: What do the light intensity patterns look like and
how do they depend on the tunable parameters? Section IV
brings the same study for the system with disorder. After
describing the disordered system, we perform the replica trick
for the disordered vortex Hamiltonian and solve the saddle-
point equations to identify the phases and order parameters,
again refining the results with RG calculations. The fifth
section takes a look at a doped collinear antiferromagnet, a
model encountered in the description of many strongly coupled
materials, and shows how the dynamics of topological solitons
is again described by a two-flavor vortex Hamiltonian. We
discuss the relation between the phase diagrams of the two
systems and the possibilities of modeling the condensed matter
systems experimentally by the means of photorefractive optics.
The last section sums up the conclusions. In Appendix A, we
describe the numerical algorithm we use to check the analytical
results for the phase diagram. In Appendix B, we show in detail
that the CP beams are capable of reaching equilibrium (i.e.,
stop changing in time)—if they would not, the application of
equilibrium field theory would not be justified. Appendix C
discusses the stability of nonvortex configurations—although
somewhat peripheral to the main topic of the paper, it is useful
to better understand the geometry of patterns. In Appendix D,
we give the (routine) algebra that yields the vortex interaction
Hamiltonian from the microscopic equations. Appendix E
contains an improved mean-field theory for the clean system,
which we do not use much throughout the paper but we
include it for completeness (we prefer either the simplest
single-vortex mean-field reasoning or the full RG analysis,
which are described in the main text). Appendix F discusses
an important technicality concerning the CP geometry, i.e., the
specific boundary conditions of the CP beam system where the
boundary conditions for one beam are given at the front face
and for the other at the back face of the crystal. Appendix G
contains some details on mean-field and RG calculations of
the phase diagram for the dirty system: The dirty case includes
some tedious algebra we feel appropriate to leave out from the
main text.

II. THE MODEL OF COUNTERPROPAGATING BEAMS IN
THE PHOTOREFRACTIVE CRYSTAL

We consider a photorefractive crystal of length L irradiated
by two laser beams. The beams are paraxial and propagate
head on from the opposite faces of the crystal in the z direction.
Photorefractive crystals induce self-focusing of the beams—
the vacuum (linear) wave equation is modified by the addition
of a frictionlike term, so the diffusion of the light intensity (the
broadening of the beam) is balanced out by the convergence
of the beam onto an “attractor region.” The net result is the
balance between the dissipative and scattering effects, allowing
for stable patterns to form. The physical ground for this is the
redistribution of the charges in the crystal due to the Kerr
effect. The nonlinearity, i.e., the response of the crystal to the
laser light, is contained in the change of the refraction index
which is determined by the local charge density. A sketch of
the system is given in Fig. 1. Before entering the crystal, the
laser beams can be given any desirable pattern of both intensity
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FIG. 1. Sketch of the experimental setup for the study of the CP
beams in the PR crystal. The crystal has the shape of a parallelepiped,
and the beams propagate along the longitudinal, z axis: the forward
(F ) beam from z = 0 to z = L, and the backward (B) beam the other
way round. The intensity patterns are observed at the transverse faces
of the crystal, at z = 0 and z = L.

and phase. In particular, one can create vortices (winding of
the phase) making use of the phase masks [3] or other, more
modern ways.

Assuming the electromagnetic field of the form E =
eiωt+iq·r(Feikz + Be−ikz), we can write equations for the
so-called envelopes F and B of the forward- and backward-
propagating beams along the z axis (the frequency, transverse,
and longitudinal momentum are denoted respectively by
ω,q,k). The wave equations for F and B are now

±i∂z�±(z; x,y; t) + ��±(z; x,y; t)

= �E(z; x,y; t)�±(z; x,y; t), (1)

where the plus and minus signs on the left-hand side stand
for the forward- and backward-propagating component of the
beam amplitude doublet � ≡ (�+,�−) ≡ (F,B), and � is the
dimensionless PR coupling constant. The two beams (flavors
of the field �) will from now on be denoted either by F/B or
more often by �±. We will use α as the general flavor index for
summation, e.g., �1α�2α = �1+�2+ + �1−�2−. The charge
field E on the right-hand side of the equation is the electric
field sourced by the charges in the crystal (i.e., it does not
include the external electric field of the beams). Its evolution
is well represented by a relaxation-type equation [17]:

τ

1 + I (z; x,y; t)
∂tE(z; x,y; t) + E(z; x,y; t)

= − I (z; x,y; t)

1 + I (z; x,y; t)
. (2)

Here, I ≡ I� + Ix is the total light intensity at a given point,
I� ≡ |F |2 + |B|2 is the beam intensity, and Ix the intensity
of the fixed background. The meaning of Ix is that the
crystal is all the time irradiated by some constant light source,
independent of the counterpropagating beams with envelopes
F,B. We will usually take a periodic lattice as the background,
allowing also for the defects (missing cells) in the lattice when
studying the effects of disorder. The relaxation time is τ . The
time derivative ∂tE is divided by 1 + I , meaning that the
polarizability of the crystal depends on the total light intensity:
Strongly irradiated regions react faster. In the numerical
calculations, we solve Eqs. (1) and (2) with no further as-
sumptions, as explained in Appendix A. For analytical results,
we will need to transform them further, assuming a vortex
pattern.

The equation for the charge field has no microscopic basis; it
is completely phenomenological, but it excellently represents

the experimental results [3]. Notice that the derivative ∂tE

in (2) is strictly negative (since intensity is non-negative): It
thus has the form of a relaxation equation, and one expects
that a class of solutions exists where ∂tE(t → ∞) → 0, i.e.,
the system relaxes to a time-independent configuration. We
show this in Appendix B; in the main text we will not discuss
this issue but will simply take the findings of Appendix B for
granted. Notice that there are also parameter values for which
no equilibrium is reached [37,50,51].

For slow time evolution (in the absence of pulses), we can
Laplace transform the equation (2) in time [E(t) �→ E(u) =∫∞

0 dte−utE(t)] to get the algebraic relation

E(z; x,y; u) = − �†� + Ix − τE0

1 + τu + Ix + �†�

= −1 + 1 + τu + τE0

1 + τu + Ix + �†�
. (3)

The original system (1) can now be described by the La-
grangian:

L = i�†σ3∂z� − |∇�|2 + ��†�

−�(1 + τE0 + τu)ln(1 + τu + Ix + �†�), (4)

where σ3 is the Pauli matrix σ3 = diag(1,−1). One can
introduce the effective potential

Veff(�
†,�) = −�ln

e�†�

(1 + τu + Ix + �†�)1+τ (E0+u)
, (5)

so we can write the Lagrangian as L = i�†σ3∂z� − |∇�|2 −
Veff(�†,�). This is the Lagrangian of a nonrelativistic field
theory (a nonlinear Schrödinger field equation) in 2 + 1
dimensions (x,y; z), where the role of time is played by the
longitudinal distance z and the physical time t (or u upon the
Laplace transform) is a parameter. The span of the z coordi-
nate 0 < z < L will influence the behavior of the system, while
the dimensions of the transverse plane are not important for
the effects we consider.

Our main story is now the nature and interactions of the
topologically nontrivial excitations in the system (4). A task
which is in a sense more basic, the analysis of the topologically
trivial vacua of (4) and perturbative calculation of their
stability, is not of our primary interest now, in part because this
was largely accomplished by other methods in Refs. [31,32].
We nevertheless give a quick account in Appendix C; first,
because some conclusions about the geometry of the pat-
terns can be carried over to vortices, and second, to give
another example of applying the field-theoretical formalism
whose power we wish to demonstrate and popularize in this
paper.

III. VORTICES AND MEAN FIELD THEORY
OF VORTEX INTERACTIONS

A. The classification of topological solutions and the vortex
Hamiltonian

Now we discuss the possible topological solitons in our
system. Remember once again that they differ from dynamical
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solitons such as those studied in Ref. [17] and references
therein. In order to classify the topologically nontrivial
solutions, consider first the symmetries of the Lagrangian
(4). It describes a doublet of two-dimensional (2D) complex
fields which interact solely through the phase-invariant total
intensity I = �†� (and the spatial derivative term |∇�|2),
while in the kinetic term �†σ3∂z� the two components have
opposite signs of the “time” derivative, so this term cannot be
reduced to a functional of I . The intensity I has the symmetry
group SU(2) (the isometry group of the three-dimensional
sphere in Euclidean space) and the kinetic term has the group
SU(1,1) (the transformations which leave the combination
|F |2 − |B|2 invariant, i.e., the isometry of the hyperboloid).
The intersection of these two is the product U (1)F ⊗ U (1)B :
The forward- and backward-propagating doublet (F,B) has
phases θF,B which can be transformed independently, as
θF,B �→ θF,B + δθF,B .

The classification of possible topological solitons is
straightforward from the above discussion [52]. They can
be characterized in terms of homotopy groups. We remind
readers that the homotopy group πn of the group G is the
group of transformations which map the group manifold of G

onto the n-dimensional sphere Sn. In D-dimensional space,
the group πD−1 therefore classifies what a field configuration
looks like from far away (from infinity): It classifies the
mappings from the manifold of the internal symmetry group
of the system to the spherical “boundary shell” in physical
space at infinity. Since the beams in our PR crystal effectively
see a two-dimensional space (we regard z as time), we
need the first homotopy group π1 to classify the topological
solitons. Since π1(U (1)) = π1(S1) = Z and π1(G ⊗ G) =
π1(G) ⊗ π1(G) for any group G, the topological solutions
are flavored vortices, and the topological charge is the pair of
integers {QF ,QB}.

Let us now derive the effective interaction Hamiltonian for
the vortices and study the phase diagram. In principle, this story
is well known: For a vortex at r0, in the polar coordinates (r,φ),
we write �(r) = ψ exp (iθ (r)) for |r − r0|/|r0| � 1, and a
vortex of charge Q has θ (φ) = Qφ/2π . In general the phase
has a regular and a singular part, ∇� = ψ(∇δθ + ∇ × ζez),
where finally ζ = Q ln |r − r0|. The difference in the CP beam
system lies in the existence of two beam fields (flavors)
and the nonconstant amplitude field ψ±(r), so the vortex
looks like

�0±(r) = ψ0±(r)eiδθ±(φ)+iθ0±(φ). (6)

When we insert this solution into the equations of motion (or,
equivalently, the Lagrangian), it is just a matter of algebra to
obtain the vortex Hamiltonian, analogous to the well-known
one but with two components (flavors) and their interaction.
We refer the reader to the Appendix D for the full derivation.
The outcome is perhaps expected: We get the straightforward
generalization of the familiar Coulomb gas picture for the XY

model where all interactions of different flavors, F -F , B-B,
and F -B, are allowed. In order to write the Hamiltonian (and
further manipulations with it) in a concise way, it is handy
to introduce shorthand notation 	Q ≡ (Q+,Q−), 	Q1 · 	Q2 ≡
Q1+Q2+ + Q1−Q2−, and 	Q1 × 	Q2 ≡ Q1+Q2− + Q1−Q2+.
For the self-interaction within a vortex 	Q1, we have 	Q1 · 	Q1 =

Q2
1+ + Q2

1− but 	Q1 × 	Q1 ≡ Q1+Q1− (i.e., there is a factor of
2 mismatch with the case of two different vortices). Now for
vortices at locations ri ,i = 1, . . . ,N with charges {Qi+,Qi−}
we get

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑

i

(g0 	Qi · 	Qi + g1 	Qi × 	Qi). (7)

The meaning of the Hamiltonian (7) is obvious. The first
term is the Coulomb interaction of vortices; notice that only
like-flavored charges interact through this term (because the
kinetic term |∇�|2 is homogenous quadratic). The second term
is the forward-backward interaction, also with Coulomb-like
(logarithmic) radial dependence. This interaction comes from
the mixing of the F and B modes in the fourth term in Eq. (D2),
and it is generated, as we commented in Appendix D, when
the amplitude fluctuations δψα(r), which couple linearly to
the phase fluctuations, are integrated out. In a system without
amplitude fluctuations, i.e., classical spin system, this term
would not be generated. The third and fourth terms constitute
the energy of the vortex core. The self-interaction constants
g0,g1 are of course dependent on the vortex core size and
behave roughly as g ln a/ε,g′ ln a/ε, where ε is the UV cutoff.
The final results will not depend on ε, as expected, since g0,g1

can be absorbed in the fugacity y (see the next subsection).
Expressions for the coupling constants in terms of original
parameters are given in (D11).

In three space dimensions, vortices necessitate the introduc-
tion of a gauge field [24] which, in multicomponent systems,
also acquires the additional flavor index [28,53]. In our case,
there is no emergent gauge field and the whole calculation is
a rather basic exercise at the textbook level but the results
are still interesting in the context of nonlinear optics and
analogies to magnetic systems: They imply that the phase
structure (vortex dynamics) can be spotted by looking at the
intensity patterns (light intensity I or local magnetization M;
see the penultimate section).

B. The phase diagram

1. The mean-field theory for vortices

The phases of the system can be classified at the mean field
level, following, e.g., Refs. [24,41]. In order to do that, one
should construct the partition function, assuming that well-
defined time-independent configuration space exists. We have
already mentioned the question of equilibration and address
it in detail in Appendix B. Knowing that the system reaches
equilibrium (in some part of the parameter space), we can
count the ways in which a system of vortices can be placed in
the crystal—this is by definition the partition function Z . First,
the number of vortices N can be anything from 0 to infinity;
second, the vortex charges can be arbitrary; and finally, the
number of ways to place each vortex in the crystal is simply
the total surface section of the crystal divided by the size of the
vortex. Then, each vortex carries a Gibbs weight proportional
to the energy, i.e., the vortex Hamiltonian (7) for a single
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vortex.1 Let us focus first on a single vortex. If the vortex
core has linear dimension a and the crystal cross section linear
dimension �, the vortex can be placed in any of the (�/a)2

cells (and in the mean-field approach we suppose the vortex
survives all the way along the crystal, from z = 0 to z = L,
so there is no additional freedom of placing it along some
subinterval of z). This gives

Z =
∑

Q+,Q−

(
�

a

)2

e−LH1 =
∑

Q+,Q−

e2 ln �
a
−L(g 	Q· 	Q+g′ 	Q× 	Q) ln �

a .

(8)

Remember that H is energy density along the z axis, so it
appears multiplied by L. The factor ln(�/a) in the second term
of the exponent comes from the Coulomb potential of a single
vortex (in a plane of size �). The exponent can be written as
−LF (1), with F (1) = H1 − (1/L)S1, recovering the relation
between the free energy F (1) and entropy S(1) of a single
vortex. The entropy comes from the number of ways to place a
vortex of core size a in the plane of size � � a: S ∼ ln(�/a)2.
Suppose for now that elementary excitations have |Q±| � 1,
as higher values increase the energy but not the entropy, so they
are unlikely (when only a single vortex is present). Now we
can consider the case of single-charge vortices with possible
charges (1,0),(−1,0),(0,1),(0,−1), and the case of two-charge
vortices where F and B charge may be of the same sign or
opposite signs, (1,1),(−1,−1),(1,−1),(−1,1):

F (1)
0 =

(
g − 2

L

)
ln

�

a
, 	Q = (±1,0) or 	Q = (0,±1), (9)

F (1)
1 =

(
2g − g′ − 2

L

)
ln

�

a
, (Q+,Q−) = (±1,∓1),

(10)

F (1)
2 =

(
2g + g′ − 2

L

)
ln

�

a
, (Q+,Q−) = (±1,±1).

(11)

Now we identify four regimes, assuming that g,g′ > 0:2

(1) For L > 2/g, a vortex always has positive free energy
so vortices are unstable like in the low-temperature phase of
the textbook Berezinsky-Kosterlitz-Thouless (BKT) system.
This is the vortex-free phase where the phase U (1)F ⊗ U (1)B
does not wind. This phase we logically call vortex insulator in
analogy with the single-flavor case.

(2) For 2/g > L > 1/(g − g′/2), a double-flavor vortex
always has positive free energy but single-flavor vortices are
stable; in other words, there is proliferation of vortices of
the form 	Q = (Q+,0) or 	Q = (0,Q−). This phase is like the
conductor phase in a single-component XY model, and the

1Again, this is not generally true for out-of-equilibrium configura-
tions but if the system reaches equilibrium, i.e., stable fixed point,
this follows by usual statistical mechanics reasoning.

2One specificity of multicomponent vortices is that the coupling
constants may be negative, as can be seen from (D11). In that case,
the ordering of the four regimes (how they follow each other upon
dialing L) changes but the overall structure remains.

topological excitations exist for the reduced symmetry group,
i.e., for a single U (1). We thus call it vortex conductor; it is
populated mainly by single-flavor vortices (Q,0), (0,Q).

(3) For 1/(g − g′/2) > L > 1/(g + g′/2), double-vortex
formation is only optimal if the vortex has Q+ + Q− = 0,
which corresponds to the topological excitations of the diago-
nal U(1)d symmetry subgroup, the reduction of the total phase
symmetry to the special case (θF ,θB) �→ (θF + δθ,θB − δθ ).
In other words, vortices of the form (Q+,−Q+) proliferate.
Here, higher charge vortices may be more energetically favor-
able than unit-charge ones, contrary to the initial simplistic
assumption, the reason being that the vortex core energy
proportional to gQ2

+ may be more than balanced out by the
intravortex interaction proportional to −g′Q2

+ (depending on
the ratio of g and g′). This further means that there may be
multiple ground states of equal energy (frustration). We thus
call this case frustrated vortex insulator (FI); it is populated
primarily with vortices of charge (Q,−Q).

(4) For 1/(g + g′/2) > L vortex formation always reduces
the free energy, no matter what the relation between Q+ and
Q− is, and each phase can wind separately: (θF ,θB) �→ (θF +
δθF ,θB + δθB). Vortices of both flavors proliferate freely
at no energy cost and for that reason we call this phase
vortex perfect conductor (PC). We deliberately avoid the term
superconductor to avoid the (wrong) association of this phase
with the vortex lines and type I or type II superconductors
familiar from the three-dimensional (3D) vortex systems:
Remember there is no emergent gauge field for the vortices in
two spatial dimensions, and we only have perfect conductivity
in the sense of zero resistance for transporting the (topological)
charge, but no superconductivity in the sense of breaking a
gauge symmetry.

A more systematic mean-field calculation will give the
phase diagram also for an arbitrary number of vortices. This
is not so interesting as it already does not require much less
work than the RG analysis, which is more rigorous and more
accurate for this problem. For completeness, we give the
multivortex mean-field calculation in Appendix E.

One might worry that the our whole approach approach
misses the CP geometry of the problem, i.e., the fact that the
�+ field has a source at z = 0 and the �− field at z = L.
In Appendix F, we show that nothing is missed at the level
of approximations taken in this paper, i.e., mean-field theory
in this subsubsection and the lowest-order perturbative RG in
the next one. Roughly speaking, it is because the sources are
irrelevant in the RG sense—the bulk configuration dominates
over the boundary terms. The appendix states this in much
more precise language.

2. RG analysis

We have classified the symmetries and thus the phases of
our system at the mean-field level. To describe quantitatively
the borders between the phases and the phase diagram, we
will perform the renormalization group (RG) analysis. Here
we follow closely the calculation for conventional vortex
systems [24]. We consider the fluctuation of the partition
function δZ upon the formation of a virtual vortex pair at
positions r1,r2 with charges 	q,−	q (with r1 + r2 = 2r and
r1 − r2 = r12), in the background of a vortex pair at positions
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R1,R2 (with R1 + R2 = 2R and R1 − R2 = R12) with charges
	Q1, 	Q2. This is a straightforward but lengthy calculation and

we state just the main steps. First, it is easy to show that
the creation of single-charge vortices is irrelevant for the
RG flow so we disregard it. Also, we can replace the core
self-interaction constants g0,1 with the fugacity parameter
defined as y ≡ exp [−β(g0 + g1) ln ε]. Here we introduce the
notation β ≡ L in analogy with the inverse temperature β

in standard statistical mechanics, in order to facilitate the
comparison with the literature on vortices in spin systems,
and also with antiferromagnetic systems in Sec. V.3

Now from the vortex Hamiltonian Hvort the fluctuation
equals (at the quadratic order in y and r)

δZ
Z = 1 + y4

4

∑
q±

∫
dr12r

3
12e

g	q·	q+g′ 	q×	q

×
[ ∫

drr2(g 	Q1 · 	q + g′ 	Q1 × 	q)

×∇ ln |R1 − r| + (g 	Q2 · 	q + g′ 	Q2 × 	q)

×∇ ln |R2 − r|
]2

. (12)

Notice that ∇ is taken with respect to r. The above result
is obtained by expanding the Coulomb potential in r12 (the
separation between the virtual vortices being small because
of their mutual interaction) and then expanding the whole
partition function (i.e., the exponent in it) in y around the
equilibrium value Z . The term depending on the separation
r12 is the mutual interaction energy of the virtual charges, and
the subsequent term proportional to r2 is the interaction of the
virtual vortices with the external ones (the term linear in r

cancels out due to isotropy). Then by partial integration and
summation over q± ∈ {1,−1} we find

δZ
Z = 1 + y4[8πg2 	Q1 · 	Q2 + 8π (g′)2 	Q1 · 	Q2

+ 16πgg′ 	Q1 × 	Q2]I3 ln R12

+ y4[4πg(g + g′)( 	Q1 × 	Q1 + 	Q2 × 	Q2)

× I1 + 8(g′)2I1] ln ε, (13)

with In = ∫ �a

εa
drrn+g+g′

. Now, by taking into account the def-
inition of the fugacity y, rescaling � �→ �(1 + �), performing
the spatial integrals, and expanding over �, we can equate the
bare quantities g,g′,y in (7) with their corrected values in
Z + δZ to obtain the RG flow equations:

∂g

∂�
= −16π (g2 + g′2)y4,

∂g′

∂�
= −2πgg′y4,

∂y

∂�
= 2π (1 − g − g′)y. (14)

3Of course, the physical meaning of β in our system is very different:
We have no thermodynamic temperature or thermal noise, and the
third law of thermodynamics is not satisfied for the “temperature”
1/β = 1/L. We merely use the β notation to emphasize the similarity
between free energies of different systems, not as a complete physical
analogy.

Now let us consider the fixed points of the flow equations. If
one puts g′ = 0, they look very much like the textbook XY

model RG flow, except that the fugacity enters as y4 instead
of y2 (simply because every vortex contributes two charges).
They yield the same phases as the mean-field approach as
it has to be, but now we can numerically integrate the flow
equations to find exact phase borders. The fugacity y can
flow to zero (meaning that the vortex creation is suppressed
and the vortices tend to bind) or to infinity, meaning that
vortices can exist at finite density. At y = 0, there is a fixed
line g + g′ = 1. This line is attracting for the half-plane
g + g′ > 1; otherwise, it is repelling. There are three more
attraction regions when g + g′ < 1. First, there is the point
y → ∞,g = g′ = 0 which has no analog in single-component
vortex systems. Then, there are two regions when g → ∞
and g′ → ±∞ (and again y → ∞). Of course, the large
g,g′ regime is strongly interacting and the perturbation theory
eventually breaks down, so in reality the coupling constants
grow to some finite values g∗,g′

∗ and g∗∗,g′
∗∗ rather than to

infinities. The situation is now the following:
(1) The attraction region of the fixed line is the vortex

insulator phase: The creation rate of the vortices is suppressed
to zero.

(2) The zero-coupling fixed point attracts the trajectories in
the vortex perfect conductor phase: Only the fugacity controls
the vortices and arbitrary charge configurations can form.
Numerical integration shows that this point also has a finite
extent in the parameter space.

(3) In the attraction region of the fixed point with g∗ < 0
and g′

∗ > 0 (formally they flow to −∞ and +∞, respectively),
same-sign F and B charges attract each other and those with
the opposite sign which repel each other. This is the frustrated
insulator.

(4) The fixed point with g∗∗,g′
∗∗ < 0 (formally both flow

to −∞) corresponds to the conductor phase.
The RG flows in the g-g′ plane are given in Fig. 2. Full

RG calculation is given in Fig. 2(b); for comparison, we
include also the mean-field phase diagram (following from the
previous subsubsection and Appendix E) in Fig. 2(a). In the
half-plane g + g′ > 1 every point evolves toward a different,
finite point (g,g′) in the same half-plane. In the other half-plane
we see the regions of points moving toward the origin or
toward one of the two directions at infinity. The PC phase
(the attraction region of the point (0,0)) could not be obtained
from the mean field calculation (i.e., it corresponds to the
single point at the origin at the mean field level).

It may be surprising that the coupling constants can be
negative, with like charges repelling and opposite charges
attracting each other. However, this is perfectly allowed in our
system. In the usual XY model, the stiffness is proportional
to the kinetic energy coefficient and thus has to be positive.
Here, the coupling between the fluctuations of F and B

beams introduces other contributions to g,g′ and the resulting
expressions (D11) give bare values of g,g′ that can be negative,
and the stability analysis of the RG flow clearly shows that for
nonzero g′, the flow can go toward negative values even if
starting from a positive value in some parameter range. If
we fix g′ = 0, the flow equations reproduce the ones from
the single-component XY model, and the phase diagram is
reduced to just the g′ = 0 line. If we additionally suppose that
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FIG. 2. Phase diagram for the clean system in the g-g′ plane, at the mean-field level (a) and with RG flows (b). We show the flows for a
grid of initial points, denoted by black dots; red lines are the flows. Four phases exist, whose boundaries are delineated by black dashed lines.
In the mean-field calculation (a) all phase boundaries are analytical. In the RG calculation, the straight line g + g′ = 1 is obtained analytically
whereas the other phase boundaries can only be found by numerical integration of the flow equations (14). The flows going to infinity are the
artifacts of the perturbative RG; they probably correspond to finite values which are beyond the scope of our analytical approach. Notice how
the flows in the g + g′ > 1 phase all terminate at different values.

the bare value of g is non-negative, than we are on the positive
g′ = 0 semiaxis in the phase diagram—here we see only
two phases, insulator (no vortices, g → const.) and perfect
conductor (g → 0). However, for g′ fixed to zero (that is, with
a single flavor only), the perfect conductor reduces to the usual
conductor phase of the single-component XY model—in other
words, we reproduce the expected behavior.

Physically, it is preferable to give the phase diagram in
terms of the quantities �,τ,I,Ix,L that appear in the initial
equations of motion (1) and (2): The light intensities can be
directly measured and controlled, whereas the relaxation time
and the coupling cannot, but at least they have a clear physical
interpretation. The relations between these and the effective
Hamiltonian quantities y,g,g′ are found upon integrating out
the intensity fluctuations to obtain (7) and the explicit relations
are stated in (D11). Making use of these we can easily plot
the phase diagram in terms of the physical quantities for
comparison with experiment. However, for the qualitative
understanding we want to develop here, it is much more
convenient to use g,g′ as the phase structure is much simpler.

As an example, we plot the �-g′ diagram in Fig. 3 (we
have kept g′ to keep the picture more informative; the �-L
and �-I diagrams contain multiple disconnected regions for
each phase). The noninteracting fixed point g = g′ = 0 is now
mapped to � = 0. The tricritical point where the PC, the FI,
and the conductor phases meet is at R = 1. Therefore, the rule
of thumb is that low couplings � produce stable vortices with
conserved charges—the perfect vortex conductor. Increasing
the coupling pumps the instability up, and the kind of
instability (and the resulting phase) is determined by the
relative strength of the photonic lattice compared to the
propagating beams. Obviously, such considerations are only
a rule of thumb and detailed structure of the diagram is more
complex. This is one of the main motives of this study—blind
numerical search for patterns without the theoretical approach

adopted here would require many runs of the numerics for a
good understanding of different phases.

C. Geometry of patterns

Now we discuss what the intensity pattern I (r) looks
like in various phases, for various boundary conditions. This
is very important as this is the only thing which can be
easily measured in experiment—phases θα are not directly
observable, while the intensity distribution is the direct
outcome of the imaging of the crystal [31]. We shall consider
three situations. The first is a single Gaussian beam on zero

FIG. 3. Typical phase diagram for the system without disorder,
in the �-g′ plane. There are two discrete fixed points and the critical
line at � = 0, which corresponds to the critical line g + g′ = 1 in the
previous figure. We also see two discrete fixed points, corresponding
to g∗,∗∗,g′

∗,∗∗. The advantage of physical parameters is that the location
of these fixed points in the �-I plane can be calculated directly from
the numerics (or measured from the experiment).
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background (Ix = 0), with Gaussian initial intensity profile
|F (z = 0,r)|2 = |B(z = L,r)|2 = N exp(−r2/2s2) and pos-
sibly nonzero vortex charges: arg�±(r) ∼ exp (QF,Bφ), with
r = (r cos φ,r sin φ). The second case is a quadratic vortex
lattice of F and B beams, so the initial beam intensity is I0 =∑

i,j exp [−(x − xi)2/2s2
0 − (y − yi)/2s2

0 ], with xi+1 − xi =
yi+1 − yi ≡ b = const., the situation particularly relevant for
analogies with condensed matter systems. In the third case,
we have again a quadratic vortex lattice but now on top
of the background photonic square lattice, which is either
coincident or off phase (shifted for half a lattice spacing) with
the beam lattice. The background intensity is thus of the form
Ix = ∑

i,j exp [−(x − xi)2/2s2 − (y − yi)/2s2].
First of all, it is important to notice that there are two kinds

of instabilities that can arise in a vortex beam:4

(1) There is an instability which originates in the imbalance
between the diffusion and self-focusing (crystal response) in
favor of diffusion in high-gradient regions: If a pattern I (x,y)
has a large gradient ∇I , the kinetic term in the Lagrangian (4),
i.e., the diffusion term in (1) is large and the crystal charge
response is not fast enough to balance it as we travel along
the z axis, so the intensity rapidly dissipates and the pattern
changes. Obviously, the vortex core is a high-gradient region
so we expect it to be vulnerable to this kind of instability. This
is indeed the case: In the center of the vortex the intensity
diminishes, a dark region forms, and the intensity moves
toward the edges. We dub this the core or central instability
(CI), and in the effective theory it can be understood as the
decay of states with low fugacity y, i.e., high self-interaction
constants g0,g1. This instability prevents the formation of
vortices in the insulator phase, or limits it in the frustrated
insulator and conductor phases.

(2) There is an instability stemming from the dominance
of diffusion over self-focusing in low-intensity regions of
sufficient size and/or convenient geometry. At low intensity,
the charge response is nearly proportional to I [from Eq. (2)],
so if I is small diffusion wins and the intensity dissipates.
If there is sufficient inflow of intensity from more strongly
illuminated regions, it may eventually balance the diffusion,
but if the pattern has a long “boundary”, i.e., outer region of low
intensity, it will not happen and the pattern will dissipate out or
reshape itself to reduce the low-intensity region. We call this
case the edge instability (EI). For a vortex, it happens when
the positive and negative vortex charges tend to redistribute
due to Coulomb attraction and repulsion. In our field theory
Hamiltonian (7), this instability dominates in the conductor
and perfect conductor phases.

Let us first show how the CI and EI work for a single beam
with nonzero vortex charge. In Fig. 4, we show the intensity
patterns for a single vortex with charges (1,0) and (3,0) as the
x-y cross sections (transverse profiles) in the middle of the

4They are distinct from the bifurcations which happen also
in topologically trivial beam patterns and lead to the instability
which eventually destroys optical (nontopological) solitons. These
instabilities have been analyzed in Appendix C and in more detail in
Ref. [32], where the authors have found them to start from the edge
of the beam and result in the classical “walk through the dictionary
of patterns.”

(a) (b)

(d)( )c

Q=(1,0) Q=(3,0)

m
m4.2=L

m
m8.4=L

conductor

insulator

conductor

insulator

FIG. 4. Transverse profiles for a single Gaussian beam for two
different propagation distances, L = 2.4 mm (top) and L = 4.8 mm
(bottom), with vortex charges (1,0) [(a), (c)] and (3,0) [(b), (d)],
at the back face of the crystal (z = L). The regime on top [(a),
(b)] corresponds to the conductor phase, which has a single con-
served vortex charge QF . This vortex charge conservation prevents
significant instabilities; nevertheless, the multiquantum vortex (3,0)
shows the onset of CI; notice the reduced intensity and incoherent
distribution of the beam in the central region in the top right panel (the
CI is expected to grow roughly as Q2

+ + Q2
−). The insulator phase

only preserves the F − B invariance but not the vortex charge, and
in the absence of topological protection the vortices can annihilate
into the vacuum. Here we see the EI taking over for both charges;
four unstable regions appear near the boundary, violating the circular
symmetry and dissipating away the intensity of the vortex. Parameter
values: FWHM 40 μm, �I0 = 41, t = 10τ .

crystal, i.e., for z = L/2. The parameters chosen (�,I0,R,L)
correspond to the conductor phase (top) and the insulator phase
(bottom). In top panels, for Q2

+ + Q2
− = 1, the core energy is

not so large and CI is almost invisible. For Q2
+ + Q2

− = 9,
we see the incoherence and the dissipation in the core region,
signifying the CI. The conductor phase allows the proliferation
of vortices but only those with |Q±| � 1 are stable. In the
bottom panels, both vortices have almost dissipated away due
to EI, which starts from discrete poles near the boundary.5

Indeed, the insulator phase has no free vortices, no matter what
the charge. In Fig. 5, we see no instability even for a high-
charge vortex in the perfect conductor phase (top), whereas
the frustrated insulator phase (bottom) shows strong EI for the
like-charged vortex (3,3) since this fixed point has g′

∗ > 0, but
the (3,−3) vortex is stable. Notice that we could not expect

5As a rule, it follows the sequence (C9) found in Appendix C from
the pole structure of the propagator, though some of the steps can be
absent, e.g., for a single Gaussian vortex there is no C2 stage.
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FIG. 5. Transverse profiles for a single Gaussian beam for two
different coupling strengths, �I0 = 20 (top) and �I0 = 40 (bottom),
with vortex charges (3,−3) [(a), (c)] and (3,3) [(b), (d)] at the back
face of the crystal (z = L). The regime on top corresponds to the
perfect conductor phase, where the vortices of all charges freely
proliferate—both vortices are reasonably stable. The bottom case
is in the frustrated insulator phase—the forward-backward coupling
makes the (3,3) vortex unstable from EI while the (3,−3) vortex
survives. Parameter values: FWHM 40 μm, L = 2 mm, t = 10τ .

CI for this case since the sum Q2
+ + Q2

− = 9 is the same in
both cases—if for Q− = −Q+ the vortex has no CI, then for
Q− = Q+ it cannot have it either (since the value Q2

+ + Q2
−

is the same).
We have thus seen what patterns to expect from CI and

EI and also what kind of stable vortices to expect in different
phases: The perfect conductor phase allows free proliferation
of vortices of any charge, the conductor phase allows only
single-quantum vortices (or vortices with sufficiently low
Q2

+ + Q2
−) while others dissipate from CI, the frustrated

insulator supports the vortices with favorable charges (or
favorable charge distribution in multiple-vortex systems) while
others disintegrate from EI, and the insulator phase supports
no vortices—they all dissipate from CI or EI, whichever settles
first (depending on the vortex charges).

The case rich with analogies with condensed matter systems
is the square vortex lattice on the background photonic square
lattice, Fig. 6. Here we can also appreciate the transport
processes. The photonic lattice is coincident with the beam
lattice and equal in intensity, so �(I0 + Ix) = 2�I0. In the
perfect conductor phase [Fig. 6(a)], the vortices are stable
and coherent and keep the uniform lattice structure. In the
conductor phase [Fig. 6(b)], the CI is visible but the lattice
structure survives. The bottom panels show the nonconducting
phases: frustrated insulator [Fig. 6(c)] and insulator [Fig. 6(d)].
The insulator loses both lattice periodicity and the Gaussian
profile of the vortices but the frustrated insulator keeps
the regular structure: From EI the intensity is inverted and
the resulting lattice is dual to the original one [compare
Fig. 6(c) to Fig. 6(a)]. The phase patterns θF (x,y; z = L/2)

(a) ΓI=5 - perfect conductor (b) ΓI=15 - conductor

c) ΓI=20 - frustrated insulator( ΓI=60 - insulator(d)

FIG. 6. Vortex lattice with Gaussian profile for �I = 5 [PC, panel
(a)], �I = 15 [conductor, panel (b)], �I = 20 [FI, panel (c)], and
�I = 60 [insulator, panel (d)]. The perfect conductor phase has
a coherent vortex lattice and no instabilities. Conductor exhibits
a deformation of the vortex lattice and the reduction of the full
O(2) symmetry, starting from the center, whereas the FI exhibits
the reduction of symmetry and the inversion of the lattice due
to edge effects. Notice how both phases have reduced symmetry
compared to PC but retain coherence. Only the insulator phase loses
not only symmetry but also coherence; i.e., the intensity diffuses
and the pattern is smeared out. Transverse size of the lattice is
512 × 512 in computational space; same lattice size, FWHM, and
lattice spacing are used for all subsequent figures unless specified
otherwise. Parameter values: L = 4.8 mm, t = 10τ , FWHM 10 μm,
and lattice spacing equal to FWHM.

and θF (x,z; y = 320 μm) for the perfect conductor (top) and
the frustrated insulator phase (bottom) are shown in Fig. 7.
Here we see the vortex charge transport mechanism in a PC:
The vortices are connected in the sense that the phase θF is
coherently traveling from one vortex to the next. In the FI
phase, the phase is initially frozen along the z axis, until the
transport starts at some z ≈ L/2.

It may be instructive to take a closer look at the lattice
dynamics of the most interesting phase: the frustrated insulator.
In Fig. 8, we inspect square lattices on the photonic lattice
background for several charges of the form (Q+ = 3,Q−). The
first row shows how the vortices lose stability and develop CI as
the total square of the charge grows [from Fig. 8(a) to Fig. 8(c)].
Figures 8(d)–8(i) show how the g′ coupling favors the opposite
sign of Q+ and Q− and how the optimal configuration is
found for Q− = −3. This is easily seen by minimizing the free
energy over Q−: It leads to the conclusion that the forward-
backward coupling favors the “antiferromagnetic” ordering in
the sense that Q+ + Q− = 0.
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FIG. 7. Same system as in panels (a) and (c) from the previous
figure (PC and FI phases) but now we plot the phase θF , as
the transverse cross section θF (x,y; z = L/2) [(a), (b)] and as the
longitudinal section along the PR crystal θ (x,z; y = 320 μm) [(c),
(d)]. The perfect conductor phase has well-defined vortices in contact
which allows the transport of the vortex charge through the lattice
and shows as the periodical modulation of the phase along the z axis
(vortex lines). The frustrated insulator keeps well-defined vorticity
even though the intensity map undergoes inversion [Fig. 6(c)] with
frozen phase along the z axis, so there is no vorticity transport until
some z ≈ L/2 = 2.4 mm, when the phase stripes develop into vortex
lines. The unit on the x and y axis is 1 μm (1 in computational space)
and on the z axis 0.12 mm (120 in computational space).

Finally, it is interesting to see how the FI phase at high
intensities and coupling strengths contains a seed of translation
symmetry breaking which will become important in the
presence of disorder. In Figs. 9 and 10, we give intensity
and phase transverse profiles across the PC-FI transition and
deep into the FI phase at large couplings. The intensity maps
show the familiar inverse square lattice but the phase maps
show stripelike ordering, i.e., translation symmetry breaking
along one direction in Figs. 10(c) and 10(d)—horizontal
and vertical lines with a repeating constant value of the
phase θF on all lattice cells along the line. This is a new
instability, distinct from CI and EI. We cannot easily derive this
instability from the perturbation theory in Appendix C as it is a
collective phenomenon and cannot be understood from a single
beam.

IV. THE SYSTEM WITH DISORDER

Consider now the same system in the presence of quenched
disorder. This is a physically realistic situation: The disorder
corresponds to the holes in the photonic lattice which are
caused by the defects in the material. The defects are in
fixed positions, i.e., they are quenched, whereas the beam is
dynamical and can fluctuate. Now Ix(r) → Ix(r) + Ih(r); i.e.,

FIG. 8. Transverse profiles for vortex lattices with different
charges in the FI phase. In the first row [(a)–(c)], we see how the
CI gets stronger and stronger as the total vortex core energy grow
(with the square of the total charge). The second and third rows
show the growth of CI from (3,0) to (3,±3) (notice the increasingly
reduced intensity in the center and the strong ringlike structure of
the beams) but also the forward-backward interaction which favors
the configurations (3,−3),(3,−2),(3,−1) over (3,3),(3,2),(3,1). In
particular, the (3,−3) lattice is the optimal configuration of all (3,Q−)
configurations even though it has greater CI than say (3,0) (notice the
small dark regions in the center), because the

∑
ij gg′Qi+Qi− ln rij

term minimizes the EI—notice there is no “spilling” of intensity from
one vortex to the next. The parameters are �I = 20,L = 2.5 mm.

the quenched random part Ih(r) is superimposed to the regular
background (whose intensity is Ix). The disorder is given
by some probability distribution, assuming no correlations
between defects at different places. As in the disorder-free
case, the lattice is static and “hard”, i.e., does not backreact
due to the presence of the beams. One should, however,
bear in mind that the backreaction on the background lattice
can sometimes be important as disregarding it violates the
conservation of the angular momentum [37]. Disregarding
the backreaction becomes exact when Ix + Ih � |�|2, i.e.,
when the background irradiation is much stronger than the
propagating beams.

To treat the disorder, we use the well-known replica
formalism [54]. For vortex-free configurations, typical exper-
imental values of the parameters suggest that the influence of
disorder is small [31,33,35]. However, the influence of disorder
becomes dramatic when vortices are present. This is expected,
since holes in the lattice can change the topology of the phase
field θ± (the phase now must wind around the holes). Our
equations of motion are still given by the Lagrangian (4), but
with Ix �→ Ix + Ih. In our analytical calculations, we assume
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(a) ΓI=3 - perfect conductor (b) ΓI=9 - perfect conductor

c) ΓI=15 - frustrated insulator( ΓI=20 - frustrated insulator(d)

FIG. 9. Intensity maps for the quadratic vortex lattice with
charges (1,1), for increasing values of �I = �(I0 + Ix). The tran-
sition from the PC phase [(a), (b)] into the FI phase [(c), (d)]
happens at about �I ≈ 12. The edge instability sets in progressively,
in accordance with what we saw in the previous figure, leading
eventually to an inverse square lattice. Propagation length L = 5 mm.

that a defect in the photonic lattice changes the lattice intensity
from Ix to Ix + Ih, with Gaussian distribution of “holes” in Ih,
which translates to the approximately Gaussian distribution of
the couplings g,g′,g0,g1. In the numerics, however, we do a
further simplification and model the defects in a discrete way;
i.e., at a given spot either there is a lattice cell of intensity I1

(with probability h), or there is not (the intensity is zero, with
probability 1 − h). This corresponds to Ix = I1/2,Ih = ±I1/2
so the disorder is discrete. Due to the central limit theorem,
we expect that the Gaussian analytics should be applicable to
our numerics.

A. The replica formalism at the mean-field level

To study the system with quenched disorder in the photonic
lattice, we need to perform the replica calculation of the free
energy of the vortex Hamiltonian (7). We refer the reader
to the literature [41,42] for an in-depth explanation of the
replica trick. In short, one needs to average over the various
realizations of the disorder prior to calculating the partition
function, i.e., prior to averaging over the dynamical degrees
of freedom (vortices in our case). This means that we need
to perform the disorder average of the free energy, i.e., the
logarithm of the original partition function −lnZ , and not the
partition function Z itself. The final twist is the identity lnZ =
limn→0 (Zn − 1)/n: We study the Hamiltonian consisting of
n copies (replicas) of the original system and then carefully

(a) ΓI=3 - perfect conductor (b) ΓI=9 - perfect conductor

c) ΓI=15 - frustrated insulator( ΓI=20 - frustrated insulator(d)

FIG. 10. Transverse phase maps for the F beam for the same
cases as in Fig. 9. As the coupling strength �I grows toward very large
values (d), the violation of translation symmetry becomes obvious:
Notice the vertical and horizontal phase stripes. This instability gives
rise to the charge density wave ordering in the presence of disorder.

take the n → 0 limit.6 The partition function of the replicated
Hamiltonian reads

Z = lim
n→0

Tr exp

⎡
⎣−

n∑
μ=1

Hvort(Q
(μ))

⎤
⎦, (15)

where Q(μ) are the vortex charges in the μth replica of the
system. In the original Hamiltonian (7), the disorder turns
the interaction constants into quenched random quantities
gij ,g

′
ij ,g0;ij ,g1;ij , so we can compactly write our interaction

term as
Hvort =

∑
ij

∑
αβ

QiαJ
αβ

ij Qjβ (16)

with J++
ij = J−−

ij = gij (1 − δij )lnrij + g0δij , J+−
ij = J−+

ij =
g′

ij (1 − δij )lnrij + g1δij . Now we again make the mean-field
approximation for the long-ranged logarithmic interaction.
Similar to the clean case, for i �= j we approximate glnrij ∼
g′lnrij ∼ ln�, knowing that g,g′ ∼ 1 and assuming that
average intervortex distance is of the same order of magnitude
as the system size �, and for the core energy we likewise get
g0,g1 ∼ lna/ε ∼ −lnε ∼ ln�. The result is that all terms in
J

αβ

ij , both for i �= j and i = j , are on average of the order
ln� � 1, and the mean-field approach is justified. We will
sometimes denote the 2 × 2 matrices in the flavor space by
hats (e.g., Ĵ = J αβ).

6Care is needed as the n → 0 limit does not in general commute
with the thermodynamic limit.
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The final Hamiltonian (16) has the form of the random-
coupling and random-field Ising-like model: Random cou-
plings stem from the stochasticity of Jij values and random
field from the fact that 〈Jij 〉 �= 0 introduces terms linear in Qiα ,
i.e., an effective external field coupling to the “spins.” We have
arrived at this model through three steps of simplification: our
microscopic model is a type of the XY -glass model (Cardy-
Ostlund model [55]), a well-known toy model for disorder. At
this stage, our model is similar to the work of Refs. [9,10], only
with two components instead of one. Then we have written the
effective vortex Hamiltonian with Coulomb-like interaction,
disregarding the topologically trivial configurations. This is
a rather extreme approximation but a necessary one as it is
very complicated to consider the full model with vortices.
Finally, we have approximated the logarithmic potential with
a constant all-to-all vortex coupling. Such an approximation

(essentially the infinite dimension limit) is frequently taken
and lies at the heart of the solvable Sherington-Kirkpatrick
Ising random coupling model [41]. Our case differs from
the Sherington-Kirkpatrick model as it (i) has also a random
field, (ii) has two flavors, and (iii) has the Ising spins taking
arbitrary integer values. From the random XY model it differs
by (i) and (ii) above, and also by considering only vortices and
no nontopological spin configurations. The additional phases
we get in comparison to Refs. [9,10] and its generalization
in Refs. [11,12,46] come from the interactions between the
forward and backward flavors. But bearing in mind the drastic
approximations we take, we stress that we cannot aspire to
solve either the XY model or the resulting Ising-like model
in any rigorous way (certainly not at the level of rigor of
mathematical physics). We merely try to obtain a crude
understanding.

The Gaussian distribution of defects reads p(J αβ

ij ) = exp [−(J αβ

ij − J
αβ

0 )(σ̂−2)αβ(J αβ

ij − J
αβ

0 )], where the second moments are
contained in the matrix σαβ , with σ+− = σ−+. In this case, we get the replicated partition function

Z̄n =
∫

D
[
Q

(μ)
iα

] ∫
D
[
J

αβ

ij

]
exp

⎡
⎣−1

2

N∑
i,j=1

∑
α,β

(
J

αβ

ij − J
αβ

0

)
σ−2

αβ

(
J

αβ

ij − J
αβ

0

)
−

n∑
μ=1

N∑
i,j=1

∑
α,β

βJ
αβ

ij Q
(μ)
iα Q

(μ)
jβ

⎤
⎦. (17)

We can now integrate out the couplings J
αβ

ij in (17) and get

Z̄n = const.
∫

D
[
Q

(μ)
iα

]
exp

⎡
⎣1

2
β2

n∑
μ,ν=1

N∑
i,j=1

∑
α,β

Q
(μ)
iα Q

(ν)
iβ (σ̂ 2)αβQ

(μ)
jα Q

(ν)
jβ − β

n∑
μ=1

N∑
i,j=1

∑
α,β

J
αβ

0 Q
(μ)
iα Q

(μ)
jβ

⎤
⎦. (18)

Integrating out the disorder has generated the nonlocal quartic
term proportional to the elements of σ 2

αβ . The additional
scale given by the average disorder concentration means we
cannot scale out β = L anymore, and it becomes an additional
independent parameter. The partition function can be rewritten
in the following way, usual in the spin-glass literature [42,54].
We can introduce the nonlocal order parameter fields

p(μ)
α = 1

N

N∑
i=1

Q
(μ)
iα , q

(μν)
αβ = 1

N

N∑
i,j=1

Q
(μ)
iα Q

(ν)
jβ , (19)

which have the meaning of overlap between different
metastable states. The rest is just algebra, although rather
tedious: One rewrites the Hamiltonian in terms of new order
parameters, and then one can solve the saddle-point equations
for pα and qαβ , or do an RG analysis. The calculation is found
in Appendix G.

The mean-field analysis yields six phases:
(1) One phase violates both the replica symmetry and

the flavor symmetry, breaking it down to identity. We dub
this phase vortex charge density wave (CDW), as it implies
spatial modulation of the vortex charge, leading to nonzero
net charge density

∑
i Q

(μ)
iα in some parts of the system even if

the boundary conditions are electrically neutral (the total net
charge density must still be zero due to charge conservation).
Vortices take their charges from Z ⊗ Z.

(2) The second phase violates the replica symmetry in both
flavors and reduces the flavor symmetry but does not break it
down to identity. Instead, it reduces it to the diagonal subgroup

U (1)F ⊗ U (1)B → U (1)d , so it has nonzero density of the
vortex charge in a given replica

∑
i Q

(μ)
i+ = −∑

i Q
(μ)
i− . Again,

the charge density is locally nonzero but now with an additional
constraint resulting in frustration (multiple equivalent free
energy minima). This is thus the dirty equivalent of the
frustrated insulator phase and we dub it vortex glass, as
it has long-range correlations (because of the logarithmic
interactions between charged areas), does not break spatial
symmetry, and exhibits frustration; its charges are from
π1[U (1)d ] = Z.

(3) The remaining phases have no nonzero vortex charge
density fluctuation and are similar to the phases in the clean
system. Vortex perfect conductor violates the replica symmetry
of all three fields q++,q−−,q+− and allows free proliferation
of vortices with charges (Q+,Q−) ∈ Z ⊗ Z.

(4) Frustrated vortex insulator preserves the replica sym-
metry of q±± but has nonzero value, with broken replica
symmetry, of the mixed q+− field, which gives U (1)d vortices,
with charges Q+ = −Q− ∈ Z.

(5) Vortex conductor preserves the replica symmetry of the
mixed q+− order parameter but violates it in q±±, resulting in
the proliferation of single-flavor vortices with Z charge.

(6) Vortex insulator fully preserves the replica symmetry,
all order parameters are zero, and vortices cannot proliferate.
RG analysis will show that insulator surivives only at zero
disorder; otherwise it generically becomes CDW.

The phase diagram (given in Fig. 11 in the next sub-
section) now contains six phases (only five are visible for
the parameters chosen in the figure): CDW, insulator, FI,
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FIG. 11. Phase diagram for the system with lattice disorder in the g-g′ plane together with RG flows, with red lines denoting the flows
starting at the initial conditions denoted by black points. The dashed black lines are approximate phase boundaries from mean-field theory,
for σ 2 = 0.4 (a) and σ 2 = 1.2 (b). In panel (a), the area where g + g′ + β2σ 2 > 1 is inhabited by the flows toward nonuniversal values of
(g,g′) which belong to the CDW phase and the opposite region is divided between the attraction regions of (0,0), (g∗ → ∞,g′

∗ → ∞), and
(g∗∗ → ∞,g′

∗∗ → −∞)—the familiar PC, FI, and conductor phases. In panel (b), for σ 2 = 1.2, the disorder becomes relevant in the glass phase
(denoted by “GL”), whose RG flows end on the half-line of fixed points g + g′ + β2σ 2 = 1,g′ < 0. For our parameter values, this line happens
to pass almost through the origin; in general, this is not necessarily the case. The nondisordered phases (flowing to σ 2 = 0) FI, conductor, and
PC have survived. Propagating length is L = 3.0 mm.

conductor, PC, and the glassy phase. The insulator phase is
now of measure zero in the (g,g′,σ 2) plane, existing only for
the points at σ 2 = 0; for generic nonzero values we have a
CDW. For simplicity, we have plotted the phase diagram for
σ 2

++ = σ 2
−− = σ 2

+− ≡ σ 2.

B. RG analysis and the phase diagram

To study the RG flow, we can start from the replicated
partition function (18), inserting the definition of the couplings
J

αβ

ij and keeping the vortex charges Q
(μ)
iα as the degrees of

freedom (without introducing the quantities pμ
α ,q

(μν)
αβ ). The

basic idea is the same: We consider the fluctuation δ(Z̄n) upon
the creation of a vortex pair at r1,2 with charges 	q(μ)

1 ,−	q(μ)
2 ,

in the background of the vortices 	Q(ν)
1,2 at positions R1,2.

Likewise, we introduce the fugacity parameter y(μ) to account
for the vortex core energy. However, this problem is much
harder than the clean problem and one has to resort to many
approximations to perform the calculation. In its most general
form, the problem is still open, in the sense that all known
solutions suppose a certain form of replica symmetry breaking
or truncate the RG equations [42]. The RG analysis is thus
less useful in the disordered case but at least the numerical
integration of the flow equations is supposed to give a more
precise rendering of the phase diagram compared to the mean
field theory. We again describe the calculation in Appendix G
and jump to the results.

The fixed point of the flow equations lies either at infinite y

or at y = 0 like in the clean case. This is again controlled
by the the equation for ∂y/∂� but now depending on the
combination g + g′ + β2σ 2 instead of g + g′ in the clean case
(for simplicity, we consider the case where σ 2

αβ are all equal).
The following cases appear:

(1) When the fugacity flows toward infinity, we reproduce
the phases and the fixed point values (g,g′,σ 2) from the clean
case: The PC flows toward (0,0,0), the FI toward (g∗,g′

∗,0),
and the conductor toward (g∗,g′

∗∗,0) with g∗ → −∞,g′
∗ →

−∞,g′
∗∗ → ∞. Notice that all these phases flow to σ 2 = 0;

i.e., disorder is irrelevant.
(2) When the fixed point lies at y = 0, one possibility is

that all parameters (g,g′,σ 2) flow toward some nonuniversal
nonzero values. The attraction region of this point is the CDW
phase: The disorder term stays finite as well as the couplings.
In particular, the points on the half-plane g + g′ > 0,σ 2 = 0
stay at σ 2 = 0 (with constant coupling values) and this is the
insulator phase from the clean case. Notice that σ 2 > 0 now;
i.e., disorder is relevant. For σ 2 < 1, this are the only fixed
points when y = 0.

(3) However, for sufficiently strong disorder (σ 2 > 1),
there is a new line of fixed points at y = 0 with a finite
attraction region, corresponding to a new phase. For β > 1,
the right-hand side of the second RG equation in (G19) has
a zero at nonzero g′ and there are trajectories flowing toward
(y,g,g′,σ 2) = [0,g,g′(g),σ 2(g)] and not toward an arbitrary
nonuniversal value of σ 2. This is precisely the glass phase,
where disorder is again relevant. At the lowest order, the
relation between g,g′,σ 2 at the fixed point line is given by
the relation g + g′ + β2σ 2 = 1.

Now we have made contact between the mean-field classi-
fication of phases and the fixed points and regions of the RG
flow. The flows in the (g,g′) plane are given in Fig. 11. The
parameter space is four-dimensional so the phase structure is
different at different disorder concentrations σ 2. In Fig. 11(a)
for σ 2 = 0.4, the phase structure is similar to the clean case;
we see the same four phases except that insulator (no stable
vortices) is replaced by the CDW phase with localized vortices.
In Fig. 11(b) for σ 2 = 1.2, the CDW phase is replaced by
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(a) z=0.20 L (b) z=0.40 L

c) z=0.65 L( z=0.95 L(d)

FIG. 12. Transverse profile for the PC phase in a Gaussian
beam lattice on a background lattice, for four different propagation
distances. The vortex charge is (1,1), which is sufficiently low that the
CI does not destroy the vortices. We see some CI-induced symmetry
reduction from O(2) to C4 but the overall lattice structure is preserved.
Parameter values are σ 2 = 0.1,�I = 20,L = 2 mm, FWHM for the
CP beams is 9 μm and for the photonic lattice 6 μm.

another disordered phase, the glasslike regime. Importantly,
the glass phase does not cross the g′ = 0 axis, meaning that
a single-flavor system even with disorder could not support a
glass. We thus conjecture that the transition at σ 2 = 1 is of first
order, as the change is the structure of the (g,g′) phase diagram
is discontinuous, and we do not see how this could happen if
the first derivative ∂F/∂ρ± (the derivative of the free energy
with respect to vortex charge density) is continuous. However,
we have not checked the order of this transition by explicit
calculation. The phase structure is further seen in the σ 2 − g′
diagram, where we see the glass phase emerge at some value
of the disorder. This is discussed further in the next section,
where we study the equivalent antiferromagnetic system (with
the same structure of the phase diagram, Fig. 16).

C. Geometry of patterns

The two previously considered mechanisms of instability—
central instability and edge instability—remain active also in
the presence of disorder. However, in the presence of disorder
there is a third, inherently collective effect that we dub domain
instability (DI). It follows from the fact that the self-focusing
term �E grows with intensity I : More illuminated regions
react faster [Eqs. (1) and (2)]. In the presence of background
lattice, there will be regions of initially zero beam intensity
I0 where the regular lattice cells have some nonzero intensity
Ix . Approximating I = I0 + Ix ≈ Ix = const., our equations
in the vicinity of the defect (hole) in the background lattice

(a) z=0.20 L (b) z=0.40 L

c) z=0.65 L( z=0.95 L(d)

FIG. 13. Transverse profile for the FI phase, present in the same
system as in Fig. 12 but for �I = 40. Now both the CI [low-intensity
regions in the beam center in panels (a) and (b)] and the EI [lattice
inversion in panels (c) and (d)] are present. The net result is the lattice
inversion, and the vortex charge dissipates along the inverse lattice.

becomes the Schrödinger equation in a step potential (equal to
Ix in the regular parts of the photonic lattice, and equal to zero
where a hole is found), so the z-dependent part of the solution is
of the form

∑
k eiλkz and the eigenenergies along z are gapped

by the inverse length: λk > 1/L. For small eigenenergies, the
transmission coefficient is very low, whereas for large energies
it approaches unity. Thus for 1/L large (i.e., there are few λk’s
which are larger than 1/L), most of the intensity remains
confined by the borders of the defect and the intensity does
not spill but for small 1/L the beam profile is deformed by
the “spilling” into the hole regions. For vortices, there is an
additional Coulomb interaction in the x-y plane, meaning the
effective potential is not piecewise constant anymore (even
in the simplest approximation) but the qualitative conclusion
remains: Large L brings global reshaping of the intensity
profile.

The other phases are analogous to the ones in the clean
case, though with a general trend that the presence of disorder
decreases the stability of vortex patterns. The PC and FI phases
are shown in Figs. 12 and 13. In this section, we only look at the
lattices, as the notion of disorder is inapplicable for a single
beam. Consider first the patterns in the PC phase (Fig. 12).
Compared to the clean case [Fig. 6(a)], the symmetry is much
reduced, from O(2) to C4, but the vortices are conserved and the
original lattice structure (outside the holes) is clearly visible.
The FI (Fig. 13) shows mainly EI (and to a smaller extent CI),
which together lead to the lattice inversion. The rule of thumb
for differentiating the conductor and PC on one side from the
CDW and FI on the other side is precisely the presence of
the lattice inversion. The absence of the charge transport is
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FIG. 14. Transverse profiles for the charge density wave [panels
(a) and (c)] and the glass phase [panels (b) and (d)]: intensity maps
(top) and vortex charge density maps (down). The telltale difference is
that the CDW loses the regular lattice as the intensity “flows” between
the regular and the defect regions and we see the DI at work. Glass,
on the other hand, consists of domains with coherent (well-defined)
vortices though with reduced symmetry (C4) mostly due to EI. The
charge density forms a connected network in the glass phase and
transport is possible, whereas in a frustrated insulator the charge is
stuck in isolated points.

best appreciated in the phase images: The charge pins to the
defects and localizes toward the end of the crystal (i.e., for z

near L). Only near the edges we see high vorticity, somewhat
analogous to topological insulators, which only have nonzero
conductivity along the edges of the system.

The CDW versus the glass phase is given in Fig. 14. The
charge density wave [Figs. 14(a) and 14(c), L = 240 μm]
exhibits the diffusion of intensity due to DI, and the vortex
beams are in general asymmetric and not clearly delineated.
In Figs. 14(b) and 14(d), where L = 120 μm with all other
parameters the same, there is a clear border between defects
and the regular parts of the lattice and the intensity is
concentrated in the vortex cores. We give also the vortex charge
density map in Figs. 14(c) and 14(d) in addition to the intensity
maps in Figs. 14(a) and 14(b)] as the charge density shows
why the CDW is insulating: Even though individual beams
diffuse and smear out in intensity, the regions of nonzero vortex
charge are disjoint and no global conduction can occur. Glass
is divided into ordered domains in intensity but the vortex
charges form a connected network which supports transport.
This is analogous to the percolation transition in a disordered
Ising model [56,57] and we may expect that the CDW-glass
transition follows the same scaling laws near the critical point.
However, we have not checked this explicitly and we leave it
for further work.

V. THE CONDENSED MATTER ANALOGY: COLLINEAR
DOPED HEISENBERG ANTIFERROMAGNET

The two-beam photorefractive system can serve as a good
model for quantum magnetic systems. The most obvious
connection is to multicomponent XY antiferromagnets (i.e.,
two-dimensional Heisenberg model): Planar spins are nothing
but complex scalars, and the vortex Hamiltonian remains
identical (π1[SO(2)] = π1[U(1)] = Z). The nonlinearity in
the spin system is different and usually much simpler, but
that typically does not influence the phase diagram (the
symmetry structure remains the same). Such connection is so
obvious it does not require further explanations. Our point
is that the CP beams in a PR crystal can also describe
more general magnetic systems in the presence of topological
solutions described by homotopy groups different from Z.
In particular, we want to point out to a connection with a
two-sublattice antiferromagnetic system which has some time
ago enjoyed considerable popularity as a possible description
of magnetic ordering in numerous planar strongly coupled
electron systems, including cuprate high-Tc superconductors
[5,38,58]. This is the collinear doped antiferromagnet defined
on two sublattices. When coupled to a charge density wave
(speaking about the usual U(1) electromagnetic charge) and a
superconducting order parameter, it becomes a toy model of
cuprate materials (one variant is given in Ref. [58]). In the light
of what we know today, the ability of this model to realistically
describe the cuprate physics is quite questionable; but even so
it is an interesting magnetic system on its own, and it was
already found in Refs. [39,47] to exhibit a spin-glass phase,
though in a slightly different variant (in particular, with spiral
instead of collinear ordering).

Let us formulate the model. While the material is a lattice
on the microscopic level, here we are talking about an effective
field theory model. The order parameter is the staggered
magnetization

M(r) =
∑

α=1,2

Mα(r) cos(n · r), (20)

where α ∈ {1,2} is the sublattice “flavor” index (analogous to
the α index for the F and B beam in the previous sections)7

and each component Mα is a three-component spin, describing
the internal, i.e., spin degree of freedom (we label the spin
axes as X, Y , Z). The total spin is thus the sum of the spins
of the two components, and n is the modulation vector. The
modulation gives rows of alternating staggered magnetization
in opposite directions as in Fig. 15(a). This stands in contrast
with the spiral order, where the modulation vectors become
nα , i.e., differ for the two sublattices, and are themselves space
dependent [39]. The ordered phase of the collinear system has
the nonzero expectation value of the staggered magnetization
along one direction, which can be chosen as the Z axis (“easy
axis”), where the spin fluctuations about the easy axis remain
massless, and the symmetry is broken from O(3) to O(3)/O(2).
The spiral order, on the other hand, breaks the symmetry down
to identity, as the order parameter is a dreibein [39].

7Sometimes we will denote the sublattices by ± instead of 1,2 for
compactness of notation.
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FIG. 15. Numerical realization of the spin pattern (staggered magnetization M1) in the collinear O(3) antiferromagnet. Magnetization is
three dimensional and we give the projection in the XY plane, M1 · nXY ≡ M⊥. In panel (a), we show the characteristic collinear spin pattern
in absence of vortices. In panel (b), we plot M(vort)

1 , a Z2-charged point vortex defect with Q = 1. In panel (c), we give an enlargement of the
vortex from panel (b) shown as the difference M(vort)

1 − M1 to show more clearly the structure of the vortex—now the regular periodic pattern
is absent and we appreciate the pointlike structure of the vortex. The parameters are u = r = 1 and v = 0.5.

The symmetry conditions (isotropy in absence of external
magnetic field) determine the Hamiltonian up to fourth order,
as discussed in Ref. [58]:

Haf = 1

2gM

[(
1

cM

∂τ Mα

)2

+ |∇Mα|2 + r

2
|Mα|2

]

+ u0

2
|Mα|4 − v0(|M1|2 + |M2|2)2. (21)

The antiferromagnetic coupling is gM , the spin stiffness is cM ,
and the effective mass of spin wave excitations is r . The fourth-
order coupling u0 comes from the “soft” implementation of
the constraint |Mα| = 18 and v0 is the anisotropy between the
two sublattices, justified by the microscopic physics [5,58].
The Hamiltonian can be transformed by rescaling τ and x,y,
together with the couplings u0 �→ u and v �→ v0 to set gM =
cM = 1 so that the kinetic term becomes isotropic, giving

Haf = 1

2
(∂τM)2 + 1

2
|∇M|2 + r

2
|M|2 + u

2
(|M|2)2

− v|M1|2|M2|2, (22)

where we have also rewritten the quartic terms for convenience.
Without anisotropy, the energy of the system is a function of
|M1|2 + |M2|2 only and the symmetry group is the full O(6).
With v �= 0, the symmetry is reduced to O(3)1 ⊗ O(3)2: The
internal spin symmetry in each sublattice remains unbroken
but the spatial rotation symmetry between the layers is broken
down to just the discrete flip. Compare this to the U(1) ⊗ U(1)
symmetry in the PR system: There, it is the internal phase
symmetry that remains unbroken.

8One could also enforce the constraint exactly, through the nonlinear
σ model, as was done in Ref. [39]. While the leading term of
the “vortex” Hamiltonian would remain the same in that case, the
amplitude fluctuations have different dynamics which influences
some terms of the Hamiltonian and thus its RG flow (though probably
not the very existence of the glass phase).

A. Z2 vortices

Remember that topological solitons are classified by homo-
topy groups and that we work in a two-dimensional plane. The
relevant group is again the first homotopy group, π1[O(3)] =
Z2. For simplicity, we will call these excitations “vortices,”
bearing in mind that the only possible charges are Qα = ±1
and not all integers. A realization of the vortex with Q = 1
is shown in Fig. 15(b). Since the spins are three-dimensional
(the figure shows the projection in the XY plane), it becomes
clear that vortex charge is only defined modulo 2; i.e., it makes
no sense to talk about charges |Q| > 1. For example, winding
around twice in the XY plane can be done along a closed line
in the XYZ space which can be contracted to a point. That
could not happen for the two-dimensional phase U(1) precisely
because there is no extra dimension. In Fig. 15(b), the vortex is
superimposed onto the regular configuration: It is recognizable
as a contact point between two lines of alternating staggered
magnetization. In Fig. 15(c) we have subtracted the regular
part and only the vortexing spin pattern is shown: Here we see
the vortex interpolates between two opposite spin orientations
in two opposite directions in the plane.

Now let us derive the effective Hamiltonian of the vortices.
For the Z2 vortex, a loop in real space is mapped onto a π arc
in the internal space, so the vortex can be represented as

Mα(r,φ) =
∫

dφ′e
i
2 (φ′−φ)�̂3 mα, (23)

giving (the matrices �1,2,3 represent the so(3) algebra)

Mα =
⎛
⎝ cos φ ∓ sin φ 0

± sin φ cos φ 0
0 0 1

⎞
⎠
⎛
⎝ m1α

m2α

m3α

⎞
⎠, (24)

where mα is the magnetization amplitude, analogous to the
beam amplitude ψα in the optical system. The leading-order,
noninteracting term in (22) gives the following for the energy
of a single vortex of charge 	Q:

E1 = 2π (|mX × eZ|2 + |mY × eZ|2) ln �

= 2π |m⊥α|2 ln �, (25)

053824-17
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which is in fact independent of the sign of 	Q (as could be
expected, as it is in general proportional to 	Q · 	Q which is a
constant for parity vortices). The vortex singles out an easy
axis (Z axis) around which the staggered magnetization winds
(φ being the winding angle). This allows one to introduce
mα⊥ ≡ (mXα,mYα,0). A vortex pair with charges 	Qi and 	Qj

has the binding energy

E2 = 2π 	Qi · 	Qj (|m1 × eZ|2 + |m2 × eZ|2) ln rij

= 2π |m⊥α|2 	Qi · 	Qj ln rij . (26)

Now we should integrate out the amplitude fluctuations as
we did in Appendix D for the CP beams. This again leads
to the coupling between different flavors, giving a vortex
Hamiltonian analogous to (7):

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qi) ln rij +
∑

i

	μ · 	Qi.

(27)

Two obvious differences with respect to the optical system
are (i) the charges are now limited to the values ±1, and
(ii) there is a term linear in charge density, which acts as a
chemical potential. The latter arises from the coupling of the
three-dimensional spin waves (i.e., the topologically trivial
excitations of the amplitude mα) to the vortices. Remember
that in the CP system, the amplitude fluctuations also couple to
the vortices, but there is no third, Z axis of the order parameter
so no linear term appears. The microscopic expressions for the
effective parameters g,g′,μα read

g = m2
⊥ + 4r + 6um2

⊥(
2v + 3

2um2
⊥ + v

2 m2
⊥
)(

2r + 3
2um2

⊥ − v
2 m2

⊥
) ,
(28)

g′ = − 4vm2
⊥(

2v + 3
2um2

⊥ + v
2 m2

⊥
)(

2r + 3
2um2

⊥ − v
2 m2

⊥
) , (29)

μα = 1

2
m⊥mz, (30)

assuming m1⊥ = m2⊥ ≡ m⊥. Now the RG calculation is
similar to the optical case but the nonzero chemical potential
introduces two differences. First, there is obviously the
additional term proportional to the total charge of the virtual
pair of vortices, μα(q1α + q2α). Second, there is no charge
conservation as the expectation value of the total vortex charge
is now 〈 	Q〉 = ∂F/∂ 	μ �= 0. Thus we need to take into account
not only the fluctuations with zero net charge (virtual vortex
pairs with charges 	q1 ≡ 	q and 	q2 ≡ −	q) but also the situations
with arbitrary pairs 	q1,	q2.9 This modifies the variation of the

9In the CP beam system, the total vortex charge can be nonzero if the
boundary conditions at z = 0,L have nonzero total vorticity. But there
we had no bulk chemical potential so the total vorticity in the crystal
could not change during the propagation along z. Here, we have a
bulk term in the Hamiltonian which violates charge conservation.

partition function from (12) and (13) to

δZ
Z = 1 + y4

4

∑
	q1,2

∫
dr12r

3
12e

−g	q1·	q2−g′ 	q1×	q2−	μ·	q ′

×
[ ∫

drr2(g 	Q1 · 	q + g′ 	Q1 × 	q)∇ ln |δR1|

+ (g 	Q2 · 	q + g′ 	Q2 × 	q)∇ ln |δR2|
]2

+ y4

4

∑
	q1,2

∫
dr12r

3
12e

−g	q1·	q2−g′ 	q1×	q2−	μ·	q1

×
[ ∫

drr2(g 	Q1 · 	q0 + g′ 	Q1 × 	q0) ln |δR1|

+ (g 	Q2 · 	q0 + g′ 	Q2 × 	q0) ln |δR2|
]2

,

where we have introduced 2	q ≡ 	q1 − 	q2,	q0 ≡ 	q1 + 	q2 and
δR1,2 ≡ R1,2 − r. The mixed term which includes both 	q and
	q0 vanishes due to isotropy. By matching the terms in the
resulting expression with the original Hamiltonian, we find
the recursion relations:

∂g

∂�
= −16πy4(g2 + g′2),

∂g′

∂�
= −16πy4gg′,

∂ 	μ
∂�

= 0,
∂y

∂�
= (1 − g − g′ − μ+ − μ−)y. (31)

Crucially, the chemical potential does not run which could
be guessed from dimensional analysis (it couples to dimen-
sionless charge). This is the same system as (14) up to the
trivial rescaling of the coupling constants and the shift of
the critical line g + g′ = 1 in the PR system to the line
g + g′ + μ+ + μ− = 1. It becomes obvious that the phase
diagrams are equivalent and can be mapped onto each other.

B. Influence of disorder

The disorder in a doped antiferromagnet comes from
electrically neutral metallic grains quenched in the bipartite
lattice. Being metallic and neutral, they are naturally modeled
as magnetic dipoles X quenched in the bipartite lattice. This
picture stems from the microscopic considerations in Ref. [48].
We again assume the Gaussian distribution of the disorder as
p(X) ∝ exp(−|X|2/2σ 2

X). The disorder dipoles are one and
the same for both sublattices, so X has no flavor (sublattice)
index. The minimal coupling of the dipoles to the lattice spins
∂i �→ ∂i − i�̂iXi gives

Haf �→ Hdis = Haf + ∇Mα · (X × Mα) + M2X2. (32)

Now the replica calculation requires the multiplication of the
M field into n copies and performing the Gaussian integral
over the disorder. The initial distribution of the disorder p(X)
gives rise to two independent Gaussian distributions: for the
couplings J

αβ

ij with dispersion matrix σ 2
αβ and for the chemical

potential μα
i with the dispersion vector ξ 2

α . The resulting
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Hamiltonian is

Hdis =
n∑

μ=0

(
1

2

∣∣∂τ M(μ)
α

∣∣2 + 1

2

∣∣∇M(μ)
α

∣∣2

+ u

2

∣∣M(μ)
α

∣∣2 − v
∣∣M(μ)

1

∣∣2∣∣M(μ)
2

∣∣2)

+ σ 2

4

n∑
μ,ν=0

(∇M(μ)
α × M(μ)

α

) · (∇M(ν)
α × M(ν)

α

)
, (33)

where we have disregarded the subleading logarithmic term
(∼ln|M(μ)

α |). Now making use of the representation (23) and
plugging it in into (33) gives the disordered vortex Hamiltonian

βHvort =
n∑

μ,ν=1

N∑
i,j=1

[
β2

2
Q

(μ)
iα Q

(ν)
iβ Q

(μ)
jα Q

(ν)
jβ

− βQ
(μ)
iα J

αβ

0 Q
(μ)
jβ + β2Q

(μ)
iα ξ 2Q

(ν)
iα

]

−
n∑

μ=1

N∑
i=1

βξ 2μα
0 Q

(μ)
iα . (34)

Of course, we could have arrived at the same effective
action starting from the vortex Hamiltonian (27), taking the
infinite-range approximation and identifying J αα

ij = gij ln rij

and similarly for other components of J
αβ

ij as we demonstrated
for the PR system. The final result has to be same at leading
order.

The next step is to rewrite the Hamiltonian in terms of
the order parameters p(μ)

α ,q
(μν)
αβ defined in (19). Compared to

the effective action for the photonic lattice with disorder in
Eq. (G4), there are two extra terms in the resulting action Seff :
One is proportional to the dispersion ξ 2 and the other to the
mean chemical potential 	μ0. The former term just introduces
the shift J

αβ

0 �→ J
αβ

0 − σ 2/2β and the latter term, linear in
the vortex charges and proportional to the chemical potential,
introduces solutions with nonzero net vortex charge density.
Looking back at the results of the saddle-point calculation in
Eqs. (19) and (G14), this tells us that the relation between the
phase diagrams is the following. The phases with no net vortex
charge density—insulator, conductor, frustrated insulator, and
perfect conductor—remain the same as in the PR system, since
both the average coupling value J

αβ

0 (which gets shifted) and
the term proportional to the chemical potential μα couple only
to 	p(μ). For brevity, denote J±±

0 ≡ J±
0 and notice that J−+

0 =
J+−

0 . The structure of phases with nonzero 	p(μ) depends on
the zeros of the saddle-point equation

J±
0 p± +

(
J+−

0

β
− β

2
ξ±
)

p∓ + (p±)−1

− μ±
0 (σ±±)2 + μ∓

0 σ 2
+−

β
= 0, (35)

analogous to (G13), where the one-step replica symmetry
breaking implies p±

(μ) = (p±, . . . ,p±). Now the equation is
cubic and the structure of solutions is different from (G14).
We could not find the solution in the closed form but it
is clear that a pair of cubic equations will have either a

single solution (p+,p−) or nine combinations (p+,p−), not
necessarily all different. Numerical analysis of (35) reveals
only two inequivalent solutions, analogous to (G14), i.e., one
of them has a single free energy minimum and the other one
a pair of degenerate minima. Therefore, we again have two
disordered solutions, one of which is glassy (frustrated).

Now we can write down also the RG equations for the
effective action (34). In this calculation, we put ξ 2

α = σ 2
αβ ≡

σ 2 for simplicity. Following the same logic as earlier, the
equations are found to be10

∂g

∂�
= −8π (g + g′)2y4 cosh(2β2σ 2)

× cosh(2β2σ 2) − 8π (g − g′)2y4,

∂g′

∂�
= −π (g + g′)2y4 cosh(2β2σ 2)

× cosh(2β2σ 2) − π (g − g′)2y4,

∂y

∂�
= 2π (1 − g − g′ − μ+ − μ− − β2σ 2)y,

∂μ

∂�
= −8πμ,

∂σ 2

∂�
= −2πβ4σ 4y4. (36)

Like in the clean case, the chemical potential is irrelevant
and the solutions for fixed point are the same as for the PR
beams, including the spin-glass fixed point. We conclude that
the phase structure of the optical system is repeated in strongly
correlated doped antiferromagnets, which also exhibit the spin-
glass phase and have the phase diagram sketched in Fig. 16.
In this context, it is more interesting to plot the phase diagram
in the σ 2 − 1/g′ plane, mimicking the x − T phase diagram
of quantum critical systems [38] (remember that the coupling
constants g,g′ behave roughly as inverse temperature in XY -
like models). Bear in mind that all phases shown are about
vortex dynamics; i.e., one should not compare Fig. 16 to the
textbook phase diagram of high-temperature superconductors,
which accounts also for the charge or stripe order and the
superconducting order. All vortex phases would be located
inside the pseudogap regime of the superconductor, where
various exotic orders can coexist (assuming, of course, that
our model is an adequate approximation of the magnetic order
in a cuprate or similar material, which is a complex question).
Crucially, the spin-glass phase (blue curves) flows toward finite
disorder σ 2, whereas the remaining two phases end up at zero
disorder, either at infinite 1/g′ (PC, red flows) or at zero 1/g′
(conductor, green flows). The RG flows in the conductor phase
are almost invisible in the figure, as the flows are much slower
than in the remaining two phases.

Discussion

Early papers which found and explored the spin-glass
phase in a very similar model are Refs. [39,40,47,49]. The

10For the most general case of different and nonscalar σ 2
αβ and ξ 2

α ,
the flow equations for them complicate significantly and we will not
consider them.
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FIG. 16. The phase diagram of the two-sublattice-doped Heisen-
berg antiferromagnet model in the σ 2-T plane (we have rescaled
σ 2 �→ 12σ 2). Since T ∼ 1/g′, we can alternatively understand
the vertical axis as 1/g′. Black dashed curves are approximate
phase boundaries. RG flows (starting from black dots) are colored
differently according to the phase they belong to: spin glass (blue),
PC (red), and conductor (green). At high temperatures, the vortex
conductor becomes either a perfect vortex conductor or a spin glass.
Spin glass (blue) is recognized by the fact that the RG equations flow
to nonzero disorder at finite and large g′ (low temperatures). The PC
phase (red) flows toward zero disorder and zero coupling (infinite
T ), collapsing practically to a single trajectory. The flows for the
conductor (green) end up at T = σ 2 = 0 but are not shown to scale
in the figure. Parameter values are u = r = 1 with varying v so as to
have g = −0.5 for all trajectories.

main difference is that the papers cited consider the spiral
(noncollinear) spin order. These works are all inspired by
the cuprate materials, the most celebrated brand of high-
temperature superconductors. While Refs. [40,47] explore in
detail the transport properties, we have no pretension either
to provide a realistic model of cuprates or to explore in detail
all the properties of the spin-glass phase. We are content to
see that the PR system of Z vortices reproduces the phase
structure of a certain kind of dirty Heisenberg antiferromagnets
(with O(3) spins and Z2 vortices), besides the more obvious
connection to systems which directly reproduce the Z vortices
in multicomponent U(1) systems like multicomponent Bose-
Einstein condensates and type-1.5 superconductors.

VI. CONCLUSIONS

We have investigated the light intensity patterns in a nonlin-
ear optical system consisting of a pair of counterpropagating
laser beams in a photorefractive crystal. We have studied
this system as a strongly interacting field theory and have
focused mostly on the formation and dynamics of vortices.
The vortices show a remarkable collective behavior and their
patterns are naturally classified in the framework of statistical
field theory: The effective action shows several different

phases with appropriate order parameters, and the system is
essentially an XY model with two flavors, i.e., two kinds of
vortex charge, for the two beams. The interaction between
the flavors is the central reason that the total energy of the
Coulombic interactions between the vortices in general cannot
be locally minimized at every point. In the presence of disorder,
a phase with multiple free energy minima arises, where the
absence of long-range order is complemented by the local
islands of ordered vortex structure, and which resembles spin
glasses.

The phase diagram is simple in terms of the effective
parameters—vortex coupling constants—and quite complex
when expressed in terms of the experimentally controllable
quantities—the intensity of the laser beams, the intensity of the
background photonic lattice, and the properties of the photore-
fractive crystal (the last is not controllable but can be estimated
reasonably well [3]). The lesson is that the approach we adopt
can save us from demanding numerical work if the space of
original parameters is blindly explored. Our phase diagrams
can serve as a starting point for guided numerical simulations,
suggesting what phenomena one should specifically look
for. So far the field-theoretical and statistical approach was
not much used in nonlinear optics (important exceptions are
Refs. [9–12,14,15,50,51,59,60]). We hope to stimulate work in
this direction, which is promising also because of the potential
of the photorefractive systems to serve as models of strongly
correlated condensed matter systems. They make an excellent
testing ground for various models because of the availability
and relatively low cost of experiments.

In this work, we have focused on the relation of the
photorefractive counterpropagating system to the model of an
O(3) doped antiferromagnet with two sublattices. The authors
of previous works on this model [40,47,48,58] were motivated
mainly by the ubiquitous problem of understanding the
pseudogap phase in cuprate superconductors. The applicability
of the model to this particular problem is still an open
question; it may well be that cuprate physics goes far beyond.
Nevertheless, it is an important quantum magnetic system in its
own right and serves as an illustration of how one can simulate
condensed matter systems in photorefractive optics.

Another field where vortices are found as solutions of
a nonlinear Schrödinger equation are cold atom systems
and Bose-Einstein condensates [26]. Notice, however, that
Bose-Einstein condensates in optical traps are usually (but not
always; see Ref. [30]) three-dimensional systems with vortex
lines (rather than XY -type systems with point vortices) and our
formalism would be more complicated there: In three spatial
dimensions, vortices give rise to emergent gauge fields. The
multicomponent systems of this kind give rise to so-called
type-1.5 superconductors [53], which are a natural goal of
further study.

A more complete characterization of the glasslike phase
is also left for further work. The reader will notice we
have devoted very little attention to the correlation functions
in various parameter regimes or the scaling properties of
susceptibility, which should further corroborate the glassy
character of the system. This is quite difficult in general but
very exciting as it offers an opportunity to tune the parameters
(e.g., disorder strength) freely in the optical system and study
the glasslike phase and its dynamics.
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APPENDIX A: NUMERICAL ALGORITHM

In order to solve numerically the system [(1) and (2)], we
employ a variation on the method of Refs. [61,62]. The method
does not make use of any analytical ansatz: It is an ab initio
numerical procedure which integrates the equations of motion.
The system has four independent variables: the transverse
coordinates (x,y), the longitudinal coordinate (formal time) z,
and the (physical) time t . That means we have essentially three
nested loops: (i) At every z slice we integrate the transverse
Laplacian and the interaction terms for the whole z axis, (ii)
we advance the time t , and (iii) we repeat the whole procedure
until reaching some time tf , which certainly should be much
longer than the relaxation time τ .

The important point is the very different natures of the
initial and boundary conditions for various coordinates. The
boundary conditions in the (x,y) plane, i.e., at the crystal edge
are not crucial: We have either just one or a few Gaussian beams
whose intensity drops exponentially away from the center and
is practically zero at the crystal edge, or we have a large lattice
consisting of many (of the order of 50–100) Gaussian beams so
the edge effects only affect a small portion of the whole lattice.
Therefore, imposing periodic boundary conditions (stemming
naturally from the integration in Fourier space, see the next
paragraph) are perfectly satisfying. Crucially, however, the CP
geometry means that F (t ; z = 0; x,y) = F0(x,y) and B(t ; z =
L; x,y) = B0(x,y) are given functions, fixed for all times. We
thus have a two-point boundary value problem along z and
have to iterate the z integration several times until we reach the
right solution. Finally, the initial condition for the relaxation
equation (2) is that the crystal is initially at equilibrium,
meaning that E(t = 0) = −Ix/(1 + Ix); specifically, for zero
background lattice, E(t = 0) = 0.

The algorithm now has the following structure:
(1) The innermost loop integrates in the x-y plane. This

is a Poison-type (elliptic) equation, thus we employ the
operator-split method, integrating the Laplacian operator in the
Fourier space and the interaction term (the EF and EB terms)
in real space, in the second-order leapfrog scheme. Thus, at
every time instant ti = i�t , we start from z = 0 where we set
the condition F (i�t ; z = 0; x,y) = F0(x,y), divide the z axis
into N steps of size �z = L/N , and at every slice z = j�z

perform the frog’s leap: We do the fast Fourier transform
(FFT) to turn the (x,y) dependence into (qx,qy) dependence,11

then we advance the Laplacian for �z/2 as F (i�t ; j�z; q) ≡
F̃

(0)
i,j �→ F̃

(1)
i,j = exp(−iq2�z/2)F̃ (0)

i,j , and then we do the in-
verse FFT and advance the interaction in real space as

11We denote the fields in Fourier space with a tilde, e.g., F̃ .

F
(2)
i,j = exp[i�E(i�t ; j�z; x,y)]F (1)

i,j . Finally we do the FFT
again and advance the Laplacian for the remaining half-step,
F̃i,j+1 = exp (−iq2�z/2)F̃ (2)

i,j . Once we reach j = N , the
integration goes backward, along the same lines, updating
now the B field [starting from B0(x,y)], where all signs in
the exponents of the above formulas are to be reversed. When
we reach z = 0 again, we are done. In this loop, we use the
field E1,j as already known for all j .

(2) The above loop will, in general, produce results
inconsistent with the charge field Ei,j because the equation for
E couples F and B and we have ignored that by integrating
the two fields one after the other instead of simultaneously.
This is, of course, commonplace in two-point boundary value
problems: Either only one boundary condition can be imposed
exactly and the other is shot for or, as in our case, both
are imposed exactly but at the cost of the solution being
inconsistent with the equations, so we have to iterate the
system to arrive at the correct solution everywhere. The second
loop thus iterates the first loop A times, at each step updat-
ing the charge field as E

(a−1)
i,j �→ E

(a)
i,j = Ei−1,j − τ [E(a−1)

i,j +
I

(a−1)
i,j /(1 + I

(a−1)
i,j )]/(1 + I

(a−1)
i,j ). The number of iterations A

is not fixed: We stop iterations when the intensity pattern
stabilizes,

∑
j

∑
x,y(I (a)

i,j − I
(a−1)
i,j ) < ε, for some tolerance ε.

Here, Ii,j refers to total intensity, i.e., |F |2 + |B|2 + Ix .
(3) Finally, the outermost loop integrates in time t , from

t = 0, with the initial condition E(t = 0) = −Ix/(1 + Ix)
given above. The integration time tf is divided into M =
tf /�t intervals, and at the end of each step we update
(Fi,j ,Bi,j ,Ei,j ) �→ (Fi+1,j ,Bi+1,j ,Ei+1,j ). Only the charge
field is directly integrated (as written above), in the first-order,
Euler scheme. The beam envelopes depend on time only
parametrically, through E(t), and they evolve by using an
updated Ei,j in the first two loops at every time step.

This procedure is very close to that in Ref. [61]; the main
difference is that we use a second-order (leapfrog) scheme,
while on the other hand our time integration is of the lowest,
linear order instead of second order as in Ref. [61].

APPENDIX B: TIME-DEPENDENT PERTURBATION
THEORY AND THE EXISTENCE OF EQUILIBRIUM

CONFIGURATIONS

1. Stability analysis: fixed points and limit cycles

In this appendix, we consider the time evolution of the CP
beams and show the existence of a stable equilibrium point
with nonzero intensity. This means that the system reaches a
stationary state for long times, justifying the basic assumption
of the paper that one can study the vortex configurations within
equilibrium statistical mechanics. Not all patterns are stable:
Depending on the boundary conditions and parameter values,
the system may or may not have a stable equilibrium, and
nonequilibrium solutions in photorefractive optics are well
known [37,50]. For our purposes, however, it is enough to
identify the region of parameter space where the equilibrium
exists; other cases are not the topic of this paper.

The time evolution of the beams �α and the charge field
E in (k,q) space is obtained by differentiating Eqs. (1) with
respect to time and plugging in ∂E/∂t from the relaxation
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equation (2):

∂�±
α

∂t
= −�

τ

[(1 + I )E + I ]

αk − q2 − �E
�±

α ,

(B1)
∂E

∂t
= − 1

τ
[(1 + I )E + I ].

This system has three equilibrium points. One is the 0 point,

(�±
+ ,�±

− ,E) =
(

0,0,− Ix

1 + Ix

)
,

and the remaining two are related by a discrete symmetry
�± �→ �∓, so we denote them as “±” points, with the “+”
point being

(�±
+ ,�±

− ,E) =
(√

E(1 + Ix) + Ix

1 + E
eiφ+ ,0,E

)
,

and the “−” point has instead �+ = 0 and �− =√
(E(1 + Ix) + Ix)/(1 + E) exp(iφ−). Notice that the phase

φ± remains free to vary, so this solution supports vortices.
The 0 point is the trivial vacuum, i.e., the zero-intensity
configuration with only background lattice. The fluctuation
equations about this point to quadratic order read

∂tX = −
[

− f+X1X5,−f+X2X5,−f−X3X5,−f−X4X5,

− 1

1 + Ix

(
X2

1 + X2
2 + X2

3 + X2
4

)− (1 + Ix)X5

]
,

(B2)

where we have introduced the real variables X1,3 =
Reδ�±,X2,4 = Imδ�±,X5 = δE and

f± = �(1 + Ix)2

�Ix ∓ (1 + Ix)(k ± q2)
. (B3)

The system (B2) is degenerate at linear order; thus, we need
a quadratic order expansion to analyze stability. The simplest
approach is to construct a Lyapunov function for Eq. (B2). The
function V (X) = X2 is positive for and only for X �= 0, and
its derivative is

dV

dt
= −2f+

(
X2

1 + X2
2

)
X5 − 2f−

(
X2

3 + X2
4

)
X5

− 1

1 + Ix

(
X2

1 + X2
2 + X2

3 + X2
4

)
X5 − (1 + I5)X2

5,

(B4)

which is strictly negative for X nonzero if f± > 0 and X5 > 0.
However, we always have X5 > 0 because dX5/dt in the full
relaxation equations (B1) has a strictly negative right-hand
side and E grows monotonically from zero to −Ix/(1 + Ix),
and at any finite t we have E(t) − E(t = ∞) = X5 > 0. Thus
the trivial equilibrium point is locally stable for f+ > 0,f− >

0, i.e., k > q2. It is much harder to construct the Lyapunov
function for the global equations (B1): In this case, there are no
additional symmetries and the stability of higher dimensional
systems is in general an extremely difficult topic. Thus there
may well be regions far away from the 0 point which do not
flow toward it.

The “±” pair is quite hard to study. All hope of expanding
the system to second order and understanding the resulting
complicated five-variable system is lost. This time, however,
we can do a nontrivial first-order analysis as the system is
nondegenerate and nicely reduces to the (X1,X5) subsystem.
Rescaling X1 �→ (1 + E0)−3/4[Ix + E0(1 + Ix)]1/2 and t �→
t{(1 + E0)/[Ix + E0(1 + Ix)]}1/4, the equation of motion for
the ± point reads

∂t

(
X1

X5

)
=
(

− a±
�E0+k+q2 −1

1 − a±
�E0+k+q2

)(
X1

X5

)

+O
(
X2

1 + X2
5; X2,X3,X4

)
, (B5)

with a± being some (known) positive functions of �,E0,Ix

(independent of k,q). This is precisely the normal form for
the Andronov-Hopf bifurcation [63], and the bifurcation point
lies at k = −�E0 − q2. As a reminder, the bifurcation happens
when the off-diagonal element in the linear term changes sign:
The fixed point is stable when a±/(�E0 + k + q2) is positive.
The sign of the nonlinear term determines the supercritical or
subcritical nature of the bifurcation. A negative sign means
the fixed point is stable everywhere before the bifurcation
and is replaced by a stable limit cycle after the bifurcation
(supercritical). A positive sign means the fixed point coexists
with the stable limit cycle before the bifurcation and the
(X1,X5) plane is divided among their attraction regions; after
the bifurcation there is no stable solution at all (subcritical).12

In conclusion, stable + equilibrium exists for k > −�E0 −
q2 where E0 is best found numerically. Exactly the same
condition holds for the − point. For k < −�E0 + q2, dynam-
ics depends on the sign of the nonlinear term in (B5): For
the positive sign, we expect periodically changing patterns.
If the term is negative and the bifurcation is subcritical,
various possibilities arise: The system may wander chaotically
between the + and the − point, or it may end up in the attraction
region of the 0 point and fall onto the trivial solution with zero
intensity. Naively, the attraction regions of the two fixed points
(± and 0) are separated by the condition −�E0 − q2 = q2, i.e.,
qc = √−�E0(�,τ )/2, where we have emphasized that E0 is
in general nonuniversal. The actual boundary may be more
complex, however, as our analysis is based on finite-order
expansion around the fixed points, which is not valid far away
from them.

The outcome is that the system generically has stable trivial
and nontrivial (nonzero intensity) equilibria, in addition to
time-dependent, periodic, or aperiodic solutions. Numerical
integration gives a similar picture of the stability diagram
in Fig. 17. Numerically we find that the stability limit is
k > � − q2, i.e., E0 ≈ −1. The region of applicability of our
formalism lies in the top right corner of the diagram (nontrivial
equilibrium), above k ≈ 1/L. Formally, both k and q can be
any real numbers. In practice, however, k is discrete and its
minimal value is of the order 1/L. The spatial momentum q

12One should not take the stability in the whole (X1,X5) plane in
the supercritical case too seriously. We have expand the equations of
motion in the vicinity of the fixed points and the expansion ceases to
be valid far away from the origin.
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FIG. 17. Stability diagram in the q-k plane. The onset of insta-
bility for k < kc(q) is found numerically for a range of q values. The
solid lines are the analytical prediction for the stability of the 0 point
(kc = q2, magenta) and of the + point (kc = �E0 − q2 ≈ � − q2,
red). The black dashed line at q = qc ≈ 1 separates the stability
regions of the two points. The domain of applicability of our
main results is the top left corner (nontrivial equilibrium), above
k > kmin ∼ 1/L and for not very large q values. Parameter values:
� = 2,Ix = 0.

lies between the inverse of the transverse length of the crystal
(which is typically an order of magnitude smaller than L, i.e.,
minimal q can be assumed equal to zero) and some typical
small-scale cutoff which in our case is the vortex core size.
We made no attempt to study the nonequilibrium behavior in
detail or to delineate the boundary between the oscillatory and
the chaotic regime since it is irrelevant for the main story of
the paper.

From a practical viewpoint, the �-Ix plane can be divided
into two regions. One of them has a single stable “+” or
“−” equilibrium or a + �→ − limit cycle whose amplitude
vanishes in the thermodynamic limit at all scales, i.e., for all
(k,q). This region can be legitimately described within the
formalism of partition functions and equilibrium field theory.
The second region flows toward the trivial fixed point and does
not support vortices—this can also (trivially) be described
by our formalism, as it always corresponds to the insulator
regime, with no stable vortices. Thus the consistency check
is that our method predicts no other phases in this region but
insulator. In the third regime, long-term dynamics is either a
limit cycle with amplitude of order unity or chaos. This regime
was studied in detail in some earlier publications (e.g., Ref. [3]
and references therein), and it cannot be reached within our
present formalism.

2. Numerical checks

Now we complement the analytical considerations with
numerical evidence that the phases described in the main
text exist as long-term stable configurations. In Fig. 18,
we show the time evolution of a vortex lattice in three
different phases, where a visual inspection clearly suggests
the system approaches equilibrium. In contrast, in Fig. 19 we
see first a pattern that oscillates forever, i.e., follows a limit
cycle [Fig. 19(a)], becomes incoherent [wandering chaotically
over the unstable manifold, Fig. 19(b)], or dissipates away
(reaching the 0-fixed point), in Fig. 19(c). The loss of stability
corresponds to an Andronov-Hopf bifurcation, as found earlier
for nonvortex patterns in Ref. [32].

FIG. 18. Time evolution of patterns at five different times: (a) perfect conductor phase, (b) frustrated insulator phase, and (c) insulator
phase. In all cases, the approach to equilibrium is obvious, and we expect that for long times a thermodynamic description is justified. The
parameters are the same as in Fig. 6, for the corresponding phases.
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FIG. 19. Time evolution of nonequilibrium patterns. In panel (a), the limit cycle leads to permanent oscillatory behavior, in panel (b)
wandering along the unstable manifold between the equilibrium points gives rise to chaos, and in panel (c) dissipation wins and dynamics dies
out. The parameters are the same as in the previous figure, except that the length L is increased three times.

Dynamics can be most easily traced by looking at the
numerically computed relaxation rate

1

X

dX

dt
=
∑

x,y |X(tj+1x,y) − X(tj ; x,y)|2∑
x,y |X(tj ; x,y)|2 , (B6)

FIG. 20. Time evolution of the relaxation rate r for the various
situations from Figs. 18 and 19, illustrating the relaxation to nontrivial
(non-zero-intensity) equilibrium, i.e., “±”-fixed points [Figs. 18(a),
18(c), hollow black circles], limit cycle [Fig. 19(a), full blue circles],
chaos [Fig. 19(b), full red romboids], and the relaxation to trivial
(zero-intensity) equilibrium, i.e., 0 fixed point [Fig. 19(c), full green
squares]. In the main text, we study the cases like the black curves,
where time-independent stable configurations are seen. The symbols
are data points from numerics and the lines are just to guide the eye.

which is expected to reach zero for a generical relaxation
process, where in the vicinity of an asymptotically stable
fixed point X ∼ Xeq + xe−rt will be generically nonzero for
a limit cycle or chaos and will asymptote to a constant for
the 0 point, where Xeq = 0, so we get (1/X)dX/dt ∼ r .
Figure 20 summarizes these possibilities. The black curves,
corresponding to Figs. 18(a) and 18(c), show the situation
which is in the focus of this work—the approach toward static
equilibrium. The blue curve shows the limit cycle leading
to periodic oscillations. The green curve corresponds to the
chaotic regime with aperiodic dynamics and no relaxation, as
in Fig. 19(b). Finally, the red curve corresponding to the pattern
which radiates away in Fig. 19(b) reaches a constant value of
r . In conclusion, the system shows roughly four classes of
dynamics: fixed point, limit cycle, chaos, and incoherence.
Our work only covers the first of the four, but the bifurcation
diagrams in the previous subsection give a good hint of the
part of the parameter space which contains them, facilitating
experimental or numerical verification.

APPENDIX C: PERTURBATION THEORY AND
STABILITY ANALYSIS

In this appendix, we develop the perturbation theory of the
photorefractive beam system starting from the Lagrangian (4).
The perturbation theory yields the criterion for the stability of
the intensity patterns as they propagate along the z axis. For-
mally, it is just the perturbative diagrammatic calculation of the
propagator. This calculation explicitly excludes topologically
nontrivial patterns and thus is somewhat peripheral for our
main goal, understanding the vortex dynamics. But the general
ways by which an envelope �± can evolve along the z axis and
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become unstable remain valid also for vortices. In particular,
we will end up with a classification of geometrical symmetries
of the intensity pattern �†�; the same symmetries are seen in
vortex patterns and are an important guide for numerical and
experimental work—how to recognize instabilities and also
phases of the system.

Our system is strongly nonlinear, thus a naive perturbation
theory about the trivial vacuum, i.e., constant beam intensity
is out of question. The right way is to perturb about a
nontrivial solution, which approximates a stable pattern. This
means we treat the light intensity as constant in time z

but nonconstant in space (x,y). This is the hallmark of
spatial dynamical solitons: They propagate with a constant
profile along the z axis and to a good approximation do
not interact with each other and do not radiate [3]. We thus
write � = �0 + δ�, giving �†� = I0 + F0(δ�†

+ + δ�+) +
B0(δ�†

− + δ�−) + δ�†δ� + O(|δ�|2) with F 2
0 + B2

0 = I0.
The lowest-order Lagrangian for �0 now reads

L0 = �
†
0��0 + �I0 − �(1 + τu + τE0)

× ln(1 + τu + Ix + I0), (C1)

which determines the shape of the solution �0(x,y) in the
first approximation. The dynamical term with ∂z� drops out
(it is proportional to the equation of motion for �). Nontrivial
propagation in time z is obtained from second-order expansion
of the potential which is given in the next appendix in Eq. (D1)
and we will not copy it here. Varying the quadratic expansion
with respect to the fluctuation δ� gives the linearized equation
of motion for δ�:

[±iσ3∂z − q2 + � − (1 + τu + τE0)]δ�∓

∓�
1 + τu + τE0

(1 + τu + Ix + I0)2
δ�± = 0, (C2)

where δ�+ ≡ δ�†,δ�− ≡ δ�. In homogenous spacetime
(z,x,y), we can transform to momentum space in both
transverse and longitudinal directions. In the transverse plane,
we get (x,y) �→ (qx,qy) and � �→ −q2. The longitudinal
coordinate or time z transforms as z �→ kn where kn = πn/L,
so the time maps to discrete frequencies. The reason is, of
course. that its domain is finite, corresponding to the crystal
length L.

Now we can derive the bare propagator (Green’s function)
of the fluctuating dynamical field δ� by inserting the appropri-
ate source S(z) on the right-hand side of Eq. (C2). Normally,
the source in the equation for the Green’s function is just
the Dirac δ function but the counterpropagating nature of our
beams imposes a two-sided source:

S(z) =
(

δ(z) 0

0 δ(z − L)

)
. (C3)

With this source (also Fourier-transformed in z), Eq. (C2) gives
the bare propagator G

(0)
αβ for the fields δ�±

αβ :

G
(0)
αβ(kn,q) = [−iknSαγ (kn) + A∗

αδSδγ (kn) − BαδSδγ (kn)]

× [−k2
n + A∗

γ δAδβ − BγδB
∗
δβ + [A∗,B]γβ

]−1
.

(C4)

The auxiliary matrices A,B are defined as follows:

Aαβ = i

(
P0 + P1 − q2 P0

−P0 −P0 − P1 + q2

)
,

Bαβ = i

(
P0 P0

−P0 −P0

)
, (C5)

where P1 = (1/4)I0�(1 + τu + τE0)/(1 + τu + Ix + I0)2,

P0 = � − �(1 + τu + τE0)/(1 + τu + Ix + I0), and
S(kn) = diag(1,eiknL).

Now we have the basic ingredient of the perturbation
theory: the bare propagator. The self-energy correction � of
the propagator from the potential Veff can be expanded in a
power series over δ�, which gives an infinite tower of vertices.
Simple combinatorial considerations give the expansion

� =
∑

j1,j2,j3∈N

(−1)j1+j2+j3 (j1 + j2 + j3 − 1)!

j1!j2!j3!

× �(1 + τu + τE0)

(1 + τu + I0 + Ix)j1+j2+j3+1
(�†

0δ�)j1

× (�0δ�
†)j2 (δ�†δ�)j3 , (C6)

and the contraction over the internal indices of �±,δ�± is
understood. Now we can formulate the diagrammatic rules.
We have two kinds of propagators, G(0) and its Hermitian
conjugate. The mean-field values �±

0 are external sources.
The term of order (j1,j2,j3) contains j1 + j3 propagator lines
G(0) (j1 of them ending with the source �0) and j2 + j3 lines
(G(0))

†
(j2 of them ending with a source �

†
0); altogether, there

are j ≡ j1 + j2 + 2j3 lines. The expansion has to be truncated
at some j . Since the mass dimension of � is 1, the (j1,j2,j3)
diagram has the scaling dimension 2 − 2(j1 + j2 + 2j3) < 0,
so all diagrams are irrelevant in the IR. This means we can
make a truncation at small j .13 The leading terms are those
where the order of the perturbation in δ�±, which equals j1 +
j2 + 2j3, is the smallest. This gives two classes of diagrams,
one with j1 = 1,j2 = j3 = 0 and another with j2 = 0,j1 =
j3 = 0. They contain a single external source and introduce
the wave-function renormalization, G(0) �→ ZG(0), which does
not influence the stability analysis. The four quadratic terms
[with (j1,j2,j3) = (2,0,0),(0,2,0),(1,1,0),(0,0,1)] introduce a
mass operator. Only the terms (1,1,0) and (0,0,2) are trivial
(noninteracting); the other two are interacting as they contain
(δ�±)2 and require the calculation of an internal loop, giving
the dressed propagator

G−1
αβ (kn,q) = [G(0)(kn,q)]−1

αβ + (m2)αβ, (C7)

where the mass squared is a positive matrix, because the
corresponding coefficients in (C6) have positive signs [from
the term (−1)j1+j2+j3 with j1 + j2 + j3 = 2] and the integral
of the bare propagator is also positive. Explicitly, it reads

(m2)αβ = �(1 + τu + τE0)

(1 + τu + I0 + Ix)2

∑
kn

∫ ∞

0
dqqG

(0)
αβ (kn,q),

(C8)

13We do not worry about the UV divergences: We have an effective
field theory and the UV cutoff is physical and finite.
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FIG. 21. Dispersion relation (position of the poles of the propagator) k(q), where k is the continuous approximation of the discrete effective
momentum kn = πnL, for Ix = 0 [(a), (b)] and Ix = 1 [(c), (d)]. The plots (b) and (d) are enlargements of the plots (a) and (c). Blue lines
denote Rek and red lines show Imk. Notice that the propagator contains only k2

n and q2, so the pole has two copies with opposite signs and is
either real or pure imaginary. Dashed lines are the corrected relations, with dressed propagator instead of the bare one. In the top panels, the
region of instability, with Imkn �= 0, is cured by the nonlinear corrections, whereas in the bottom panels the instability remains. This generically
happens at finite q and corresponds to the edge instability. Parameter values: I0 = 1, � = 15, L = 10 mm.

where the discrete “frequency” kn is summed in steps of π/L.
Other than the mass renormalization, the dressed propagator
has the same structure as the bare one. Now we will consider
what this means for the stability of the patterns.

1. The pole structure, stability, and dispersion relations

Consider the poles of the propagator defined by the zeros
of the eigenvalues of the matrix G−1

αβ (kn,q). The stable solution
corresponds to the situation where the perturbation δ�± dies
out along z, so the stability of the solution is determined by
the condition that the pole in q should have a nonpositive
imaginary part, i.e., that a small perturbation decays. The
denominator depends on kn,q solely through k2

n,q
2; it is

linear in k2
n and quadratic in q2. Therefore, each of the

two eigenvalues λ± defines two pairs of opposite poles,
±q∗+,±q∗−,±q∗∗+,±q∗∗−. Out of these, two pairs are positive
for all parameter values, so no imaginary part can arise, and we
have either two pairs of centrally symmetric imaginary poles,
or one such pair, or none at all. We thus expect the sequence
of symmetry-breaking transitions:

O(2) −→ C4 −→ C2. (C9)

Full circular symmetry is expected when there is no instability.
With a single pair of unstable eigenvalues, we expect a square-
like pattern withC4 symmetry, and with two pairs only a single
reflection symmetry axis remains, yielding the group C2. Only
in the presence of disorder in the background lattice intensity
pattern Ix can we expect the full breaking of the symmetry

group down to unity, but this is an explicit breaking and is not
captured by this analysis.

The dispersion relation for a typical choice of parameter
values is represented in Fig. 21, where we plot the location of
the pole k(q) in the continuous approximation (interpolating
between the kn values), with real parts of the pole in blue
and imaginary in red. Since we have two pairs of opposite
eigenvalues, the dispersion is P symmetric in x,y, and z

(remember that time is really another spatial dimension), and
any dispersion relation with a nonzero imaginary part will
have a branch in the upper half-plane, i.e., an unstable branch.
The only way out of instability is that the pole is purely
real, i.e., infinitely sharp—this quasiparticle-like excitation
signifies a solitonic solution. In Fig. 21, the dashed lines are
drawn with the bare propagator G(0) and the full lines with the
dressed propagator G, for the sets of parameter values. The
perturbation always reduces the instability, i.e., the magnitude
of the imaginary part of the poles—in Figs. 21(a) and 21(b)
completely, resulting in zero imaginary part, and in Figs. 21(c)
and 21(d) only partially. This reduction of instability likely
explains the fact that linear stability analysis works extremely
well for hyper-Gaussian beams (which have most power at
small values of q), as found in Ref. [32].

The fact that the imaginary region always lies at finite q

implies that the instability always starts at a finite scale, which
corresponds to the behavior seen in the edge instability, which
is shown, e.g., in Fig. 4. In order to understand the central
instability, which starts from a single point, corresponding to
q → ∞, one needs to take into account also the higher order
corrections from the potential (C6) which, as we discussed,
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FIG. 22. The movement of the poles in the complex momentum
plane in the case of central instability, for four different values of
the PR coupling constant � = 5,7,9,11. The complex momentum k

is denoted by ω. Starting from the C4-symmetric situation with two
pairs of complex-conjugate poles, we first break the symmetry down
to C2 and eventually lose all geometric symmetry as the two pairs
merge into two real poles. Parameter values I0 = Ix = 1,L = 10 mm.

diverge at q → ∞. While we always have a natural UV
cutoff, it may happen that the corrections become large (though
finite) before that UV scale is reached. We postpone a detailed
account for the subsequent publication, and content ourselves
to give only the diagram of the movement of the poles in
the complex plane. Higher order terms bring q-dependent
corrections and break the inversion symmetry, resulting in the
evolution of poles, as in Fig. 22. The instability corresponds to
the situations where at least one pole has a positive imaginary
part, i.e., the first three situations in the figure. The last pattern,
with no symmetry at all and two real poles, is stable (but not
asymptotically stable, as there is no pole with nonzero negative
imaginary part).

The analysis performed here is obviously incomplete, and
we have contented ourselves merely to give a sketch of how
the instabilities considered in the main text arise, as well
as to formulate a perturbation scheme which allows one
to study such phenomena. Further work along the lines of
Refs. [20,32,36] is possible by making use of our formalism,
and we plan to address this topic in the future.

APPENDIX D: DERIVATION OF THE VORTEX
HAMILTONIAN FROM THE MICROSCOPIC

LAGRANGIAN

Starting from the vortex solution (6), we want to obtain an
effective Hamiltonian for the vortex-vortex interaction. The
task is to separate the kinetic term of the winding phase (with
∇θ0± = ∑

i Q± ln |r − ri |) from (i) the intensity fluctuations
δψ± about some background value ψ0± and (ii) the nonvortex
phase fluctuations (δθ±) in (6). The first task requires us

to integrate out the amplitude fluctuations in the quadratic
approximation. We first write � = �0 + δ� and expand the
Lagrangian to quadratic order:

L = L0 + L2,

L0 = 1

2
∂rψ

†
0∂rψ0 + I0

2r2
|∇θ0α|2,

L2 = 1

2
∂rδ�

†
α∂rδ�α

+ 1

2r2
δ�†

α|∇θ0α|2δ�α + Veff(δ�±),

Veff(δ�
±) = −�δ�†δ� − �

1 + τu + τE0

2(1 + τu + Ix + I0)2

× [(�0δ�
†)2 + (�†

0δ�)2 − 2(1 + τu+ Ix + I0)

× δ�†δ� − (�0σ2δ�
†)(�†

0σ2δ�)]. (D1)

The zeroth-order (nonfluctuating) term L0 determines the in-
tensity I0 = ψ

†
0ψ0 and produces the kinetic term for the vortex

phase θα , which gives just two decoupled copies of the
conventional XY vortex gas. The quadratic part L2 becomes
quite involved when we separate the amplitude δψ and the
phase δθ . Inserting (6) into (D1), one gets a quadratic action
for δψα and δθα . The rest gives a coupled quadratic action
for the amplitude and phase fluctuations. Altogether, the
Lagrangian is

L = 1

2
(δψ ′2

+ + δψ ′2
− ) + 1

2r2
(δψ2

+ + δψ2
−)|∇θα|2

+ δψαK̂αβδψβ + (δψ†
αψα∇θα∇δθα + H.c.) + · · · ,

(D2)

where (· · · ) denote all terms of cubic or higher order in
amplitude or phase fluctuations δψα,δθα , and we have left
out the constant terms independent of all field values. Primes
denote the derivatives with respect to r . The first term
defines the intensity fluctuations through ψα(r), and the
second term (transformed through partial integration) yields
the aforementioned conventional Coulomb gas of vortices
after inserting the vortex solution from (6) for θα . The third
term has the meaning of stiffness or mass matrix for intensity
fluctuations and the last term gives rise to the coupling between
the flavors, upon integrating out δψ . The matrix K̂ is

K̂ = 1(
b + 3

2I0
)(

b − 1
2I0

)
(

b + I0
2 I0

I0 b + I0
2

)
,

(D3)
b = �

1 + τE0

2(1 + τE0)2
(2 + 2Ix + 3I0).

The action is quadratic in δψ ; therefore, we know how to
integrate it out and obtain an effective action depending only on
phase fluctuations. To do that, we need to solve the eigenvalue
equation for δψ obtained from (D2), which reads

∂rrδψα − Kαβδψβ =
( |∇θ |2

2r2
+ λ±

)
δψα, (D4)
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and is solved by diagonalizing the system δψα �→ δχα =
Uαβδψβ and reducing it to the Bessel equation:

δχ±(r) = √
r{C±Jν[

√
2(K11 ∓ K12 − λ±)r]

+D±Yν[
√

2(K11 ∓ K12 − λ±)r]}, (D5)

with ν =
√

1/4 + |∇θ |2, where Jν,Yν are Bessel functions
of the first and second kinds, respectively. For well-defined
behavior close to the vortex core (for r ∼ a), we have D± = 0,
and C± are arbitrary as the equation is linear. The eigenvalues
λn±,n = 0,1, . . . are obtained by requiring that the fluctuation
decays to zero at the crystal edge r = �:√

2K11 ∓ K12 − λn±� = jn(ν), (D6)

where jn is the nth zero of the Bessel function Jν . The values
λn± are impossible to express analytically in closed form;
however, it is not necessary for our purposes as � � a. The
functional determinant obtained after integrating out χ± is now
expressed in terms of the eigenvalues:

Kαβ = ln

(∏
n

λnαλnβ

)−1/2

= −1

2

∑
n

ln

(
K ′

α + K ′
β + 2jn(ν)2

�2

)
∼

− �

2
(K ′

α + K ′
β) + O

(
1

�

)
, (D7)

where K ′
± = 2K11 ∓ K12. Now we are left with a solely phase-

dependent quadratic Lagrangian:

L = ψ0α∇θα∇δθαK̂αβψ0β∇θβ∇δθβ + I0

2r2
|∇θα|2. (D8)

The final task is to integrate out the phase fluctuations, which
is a trivial Gaussian integration, yielding

L = I0

2r2
|∇θα|2 + I0∇θαK−1

αβ ∇θβ. (D9)

The resulting Lagrangian now depends only on the vortexing
phases θα . The first term is carried from the original La-
grangian, and it does not mix the flavors. But the second term,
stemming from the fluctuations, has nonzero mixed ± cross
terms. The quadratic derivative terms can be transformed by
partial integration to the familiar Coulomb gas form of the XY

model, with the same-flavor coupling which is already present
in absence of fluctuations, and the coupling between the
vortices of different flavors. Thus the existence of two beams
together with the fact that amplitude and phase fluctuations do
not decouple give us a richer system, with interaction between
two vortex flavors. For future use, it is more convenient to
look at the vortex Hamiltonian Hvort—the difference from
the Lagrangian lies just in the sign of the term Veff . This
finally yields the Hamiltonian [for Eq. (7), repeated here for
convenience]:

Hvort =
∑
i<j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑

i

(g0 	Qi · 	Qi + g1 	Qi × 	Qi), (D10)

with rij ≡ |ri − rj |, and the indices 1 � i,j � N sum over
all the vortices. The coupling constants g,g′,g0,g1 are the
result of integrating out the intensity fluctuations and in general
are given by rather cumbersome (and not very illustrative)
functions of �,I0,τ . We give the expressions at leading order
just for comparison with numerics:

g = I0 + 4b + 2I0

(2b + 3I0)(2b − I0)
,

g′ = 4I0

(2b + 3I0)(2b − I0)
,

b = �
1 + τ

L
− τ I0+Ix

1+I0+Ix

2
(
1 + τ

L
− τ I0+Ix

1+I0+Ix

)2

(
2 + 2

τ

L
+ 2Ix + 3I0

)
.

(D11)

These expressions are used later to redraw the phase diagram
in the space of physical parameters �,I0,Ix,L.

APPENDIX E: MULTIVORTEX MEAN-FIELD THEORY

For a mean-field treatment of a system with multiple
vortices, we start from the Hamiltonian (7) and introduce
the order parameter fields in the following way. Denote the
number of vortices with charge (1,1) by ρ2+ and the number of
vortices (1,−1) by ρ2−; due to charge conservation, this means
we also have ρ2+ vortices of type (−1,−1) and ρ2− vortices
with charge (−1,1). The number of single-charge vortices of
type (1,0) and (0,1) is denoted by ρ1+ and ρ1−, respectively.
Denote also ρ2 ≡ ρ2+ + ρ2− and δρ2 ≡ ρ2+ − ρ2− (notice that
−ρ2 � δρ2 � ρ2), and finally ρ1 ≡ ρ1+ + ρ1−. We insert this
into the vortex Hamiltonian Hvort and assume that the long-
ranged logarithmic interaction ln rij justifies the mean-field
approximation: For i �= j , we can approximate lnrij ∼ ln�,
assuming that average intervortex distance is of the same order
of magnitude as the system size. For the core energy, we know
that g0,g1 ∼ ln(a/ε) ∼ −lnε ∼ ln�, where in the last equality
we have assumed that the UV cutoff ε is of similar order
of magnitude as the inverse of the IR cutoff 1/�, which is
natural.14 Thus all terms are proportional to Lln� and we can
write

Fmf = βln
�

a
[2(g − 1)ρ2 + 2g′δρ2 + (g − 1)ρ1]

≡ Aρ2 + Bδρ2 + B

2
ρ1. (E1)

We use the notation β ≡ L to emphasize the analogy with the
free energy of spin vortices, where β is the inverse temperature.
The analogy is purely formal as our system is not subject
to thermal noise. Now the ground state is determined by
minimizing the free energy, i.e., the effective action of the
system. Notice that Fmf is linear in the fields ρ2,δρ2,ρ1 so the
optimal configurations have either Fmf = 0 or Fmf → −∞,
and the mean-field densities ρ1,2 are either zero or arbitrary

14Nevertheless, this is clearly not a rigorous argument. Our mean-
field calculation is somewhat sketchy and merely assumes that the
long-range interactions can safely be modeled as a uniform vortex
charge field.
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(formally infinite). This is a well-known property of the 2D
Coulomb gas and has to do with the fact that (assuming
the cutoff dependence has been eliminated) this system is
conformal invariant in the insulator phase, so all finite densities
ρ are equivalent: There is no other scale to compare ρ to.
Likewise, the prefactor β can be absorbed into the definition
of the coupling constants g,g′ and thus is not an independent
parameter (this is well known also from the single-flavor case).
Minimizing (E1) is an elementary exercise and we find again
four regimes, corresponding to the four phases we guessed
based on the single-vortex free energy F (1):

(1) For A > 0,A > |B|, the minimum is reached for ρ2 =
δρ2 = ρ1 = 0. In the ground state, there are no vortices at
all—the system is a vortex insulator.

(2) For B > 0,A + B < 0, giving g + g′ < 1,g′ > 0, the
free energy has its minimum for ρ2 > 0 and δρ2 = −ρ2

(notice that −ρ2 � δρ2 � ρ2). This means ρ2+ = 0,ρ2− > 0,
so opposite-charged vortices (Q,−Q) proliferate, and the
system is dominated by the interactions between the charges.
This is the frustrated vortex insulator regime. Since g′ < 0, the
single-charge vortices (density ρ1) are suppressed.

(3) For B < 0,A + B < 0, i.e., g + g′ < 1,g′ < 0, the
minimum is reached for ρ2 = δρ2 > 0, i.e., ρ2− = 0, so the
vortices (Q,Q) can proliferate. However, since g′ < 0, there
is also nonzero single-flavor density ρ1 and the proliferation
of vortices (Q,0) and (0,Q) which generically dominate over
two-flavor vortices. This is the conductor phase, with mostly
single-flavor vortices (as in the standard XY model).

(4) The point A = B = 0 is special: Naively, from (E1),
arbitrary nonzero ρ1,ρ2,δρ2 are allowed. Of course, higher
order corrections will change, this but the energy cost of vortex
formation will generically be smaller than in previous phases.
This is the vortex perfect conductor phase. In the mean-field
approach, it looks like a single point, but that will turn out to
be an artifact of the mean-field approach: For small nonzero
A,B the system still remains in this phase.

In terms of the original parameters g,g′, one sees the
insulator phase is given by g + g′ > 1, and the conductor and
the FI are separated by the line g′ = 0. We can now sketch
the phase diagram, which is given in Fig. 2(a), side by side
with the more rigorous diagram obtained by the RG flow, in
Sec. III B 2.

APPENDIX F: COUNTERPROPAGATING BOUNDARY
CONDITIONS

In the derivation of the vortex Hamiltonian and its RG
analysis, we have pulled under the rug the treatment of
the CP boundary conditions: The effective Hamiltonian (and
consequently the partition function and the phase diagram)
depends solely on the bulk configuration, and nowhere can one
see the fact that �+(z = 0; r,t) and �−(z = L; r,t) are fixed.
Now we will explicitly show that these boundary conditions
are irrelevant in the RG sense; i.e., they contribute additional,
boundary terms to the effective Hamiltonian, but these terms
do not change the fixed points to which the solution flows.

The full Hamiltonian with correct CP boundary conditions
is obtained by adding the F source at z = 0 and the B source
at z = L to the Lagrangian L from (4) or, equivalently, to the
equations of motion. The sources impose the conditions F (z =

0; x,y; t) = F0(x,y) and B(z = L; x,y; t) = B0(x,y) so they
equal

J+ = F0(x,y)δ(z), J− = B0(x,y)δ(z − L), (F1)

and the full Lagrangian is

LCP = L + J+�+ + J−�− �→ L + F0(x,y)�+(z; x,y; t)

+ eikzB0(x,y)�−(z; x,y; t). (F2)

Unlike the Dirac δ source (C3) for the Green’s function,
now the source has nontrivial dependence on transverse
coordinates. Now we can insert the vortex solution (6) in
both �± and F0,B0 and repeat the steps from the subsequent
derivation. The vortex charges in F0 can be denoted by
	P (+)
i ′ ≡ (Pi ′+,0) and 	P (−)

i ′ ≡ (0,Pi ′−); by definition, the +
component of B0 as well as the − component of F0 are zero and
thus carry no vorticity. The primed indices refer to the vortices
in the input beams, and the nonprimed, like before, to the bulk
vortices. Notice the source term changes sign upon performing
the Legendre transform, appearing as −J+�+ − J−�− in the
Hamiltonian.

Now we will check if the RG flow of the Hamiltonian with
boundary terms is affected by the sources. In the notation
introduced above, the total vortex Hamiltonian is

HCP =
∑
i,j

(g 	Qi · 	Qj + g′ 	Qi × 	Qj ) ln rij

+
∑
i ′,j

δ(z)Pi ′+(gQj+ + g′Qj−) ln ri ′j

+
∑
i,j ′

δ(z − L)Pj ′−(gQi− + g′Qi+) ln rij ′ . (F3)

Notice there is no source-source interaction: Same-flavor
interaction cannot exist as Pi ′− = Pj ′+ = 0, and cross-flavor
interaction does not exist as J+ and J− exist at different
z values, i.e., the cross term would be proportional to
δ(z)δ(z − L) and thus vanishes. The presence of sources breaks
the spatial homogeneity, complicating the traces (integrals over
the positions of virtual vortex-antivortex pairs), but does not
change the main line of the calculation. The fluctuation of the
partition function due to vortex pair creation is now

δZ
Z = 1 + y4

4

∑
	q

∫
d2r

×
∫

d2r12e
−C(	q,r1;−	q,r2)−∑j ′ [D+

j ′ (	q,r1)−D−
j ′ (	q,r2)]

× [eC( 	Q1,R1;	q,r1)+C( 	Q1,R1;−	q,r2)+C( 	Q2,R2;	q,r1)+C( 	Q2,R2;−	q,r2)

− 1]. (F4)

We have denoted C( 	Q1,R1; 	Q2,R) ≡ (g 	Q1 · 	Q2 +
g′ 	Q1 × 	Q2) ln R12, and the coupling to the sources is
encapsulated in the function

D±
j ′ (	q,r) ≡ δ(z − z±)(g±	q · 	Pj ′ + g′

± 	q × 	Pj ′ ) ln |r − rj±|,
(F5)
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with z+ = 0,z− = L. The coupling constants g±,g′
± are

obtained from g,g′ in (F4) by replacing

I0 �→
√

I0I±, (F6)

with I+ = |F0|,I− = |B0|. Now the exponential of the extra
term with sources also needs to be expanded in r12, as
the combinations 2r = r1 + r2,r12 = r1 − r2 do not decouple
anymore and exact integration is impossible. After writing
D±

j ′ (	q,r1,2) = D±
j ′ (	q,r) ± r12 · ∇D±

j ′ (	q,r) + · · · and similarly
for C, we notice first that the zeroth-order terms from
Dj ′± cancel out: D±

j ′ (	q,r) + D±
j ′ (−	q,r) = 0. Then we get (at

quadratic order in r12 in the integrand):

δZ
Z = 1 + y4

4

∑
j ′

∫
d2r

∫
d2r12e

−C(	q,r12;−	q,0)

×
{

r12 · [∇C( 	Q1,R; 	q,r) + ∇C( 	Q2,R; −	q,r)]

+ r2
12

2

∣∣∣∣∇C( 	Q1,R; 	q,r) + ∇C( 	Q2,R; −	q,r)

∣∣∣∣
2}

× [r12 · [1 − ∇D+
j ′ (	q,r) + ∇D−

j ′ (	q,r)]

+{r12 · [∇D+
j ′ (	q,r) + ∇D−

j ′ (	q,r)]}2] + · · ·

≡ 1 + y4

4

[
I10 + I20 − I11 + O

(
r3

12

)]
. (F7)

The integral Imn is the term with the contribution of order rm
12

from the second line in the integrand and with the contribution
of order rn

12 from the third line. The integrands in Imn are thus
of order m + n in r12, m coming from the expansion of D±

j ′ and
n from the expansion of C. By homogeneity, I01 = 0 and I02

is the same integral that appears in absence of sources, whose
calculation was used in obtaining (13) and which gives the
right-hand side of the RG flow (14). The remaining integral
I11 is the new ingredient, and the only one which depends on
the sources. Representing it as

I11 = π2

4

∑
j ′

∑
α=±

∑
σ=1,2

δ(z − zα)

× (gα
	Qσ · 	Pj ′α + g′

α
	Qσ × 	Pj ′α)

×∇ 1

|R12| · ∇ 1

|rjα| Ĩj ′α, (F8)

we compute the integral Ĩj ′α in polar coordinates:

Ĩj ′α = 1

2

∫ 2π

0
dθj ln

(
r2

12 − 2r12rj ′α cos θj + r2
j ′α
)∣∣�2

�1
,

(F9)

where θj ′α is the angle between rj ′α and r12. Assuming the RG
scale changes as �1 = �,�2 = �(1 + �), for small � we can
expand the integrand, getting

Ĩj ′α =
∫ 2π

0
dθj ′

�2 − �rj ′α cos θj

�2 − 2�rj ′α cos θj + r2
j ′α

� + O(�2)

= 2π� + O(�2). (F10)

The complicated dependence on the positions of the sources
disappears completely in the first order in �.15 Altogether, by
comparing the outcome of (F7) to the original Hamiltonian
(F3), we see that the renormalization of the bulk interaction
between 	Q1 and 	Q2 is unaffacted by the sources, given
as before by the I02 term, and the source-bulk coupling
renormalizes with a strictly negative shift (as Ĩj ′α = 2π > 0).
The flow equations for g,g′ couplings are unchanged, being
the same as in (14). The bulk-to-boundary couplings g±,g′

±
have the flow equations

∂g±
∂�

= −π3N�,
∂g′

±
∂�

= −π3

2
N�, (F11)

where N = ∑
j ′
∑

α 1 is the total vorticity of the sources. This
obviously flows to g±,g′

± = 0.
Intuitively, one may wonder how come such an important

thing as the CP geometry has no bearing on the vortex
dynamics; surely the behavior of a copropagating system
would be expected to differ from a counterpropagating
system. The answer is that the CP geometry does enter our
calculations—the B beam has an extra minus sign in the
equations of motion (1) (alternatively, in the Lagrangian in
Eq. (4)); equivalently, the symmetry group of the effective
potential in the Lagrangian is SU(1,1), not SU(2) as it would
be for two copropagating beams. Finally, let us emphasize
again that in the numerical simulations we directly solve the
propagation equations (1) together with (2); i.e., we directly
take into account the CP boundary conditions—no analytical
approximations whatsoever are used in the numerics, and no
use is made of the effective vortex Hamiltonian.

APPENDIX G: ORDER PARAMETERS AND RG ANALYSIS
OF THE CP VORTICES IN THE PRESENCE OF DISORDER

1. Saddle-point solutions

We start by rewriting the replicated partition function
Z̄n in terms of pα,qαβ and inserting the constraints which
encapsulate their definition in Eq. (19):

1 �→
∫

D
[
λα

(μ)

]
exp

[
λα

(μ)

(
p(μ)

α − 1

N

N∑
i=1

Q
(μ)
iα

)]
, (G1)

1 �→
∫

D
[
λ

αβ

(μν)

]
exp

⎡
⎣λ

αβ

(μν)

⎛
⎝q

(μν)
αβ − 1

N

N∑
i,j=1

Q
(μ)
iα Q

(ν)
jβ

⎞
⎠
⎤
⎦.

(G2)

We have five constraints, λ++
(μν),λ

−−
(μν),λ

+−
(μν) = λ−+

(μν),λ
+
(μ),λ

−
(μ),

for the corresponding five order parameters in (19). We can
denote

K̂ ≡
(

λ++
(μν) λ+−

(μν)

λ+−
(μν) λ−−

(μν)

)
, 	λ ≡

(
λ+

(μ)
λ−

(μ)

)
. (G3)

We will also sometimes leave out the replica indices μ,ν to
avoid cramming the notation too much. Now we can first
integrate out the vortex degrees of freedom Q

(μ)
iα from (18)

15The additional assumption is that � > rj ′α so the integrand
contains no poles; this is clearly justified as � is the length cutoff.
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to get the effective action

Seff = −β2

4

n∑
μ,ν=1

[σ 2
++(q(μν)

++ )2 + 2σ 2
+−(q(μν)

+− )2 + σ 2
−−(q(μν)

−− )2] − β

n∑
μ=1

[J+
0 (p(μ)

+ )2 + 2J+−
0 p

(μ)
+ p

(μ)
− + J−

0 (p(μ)
− )2]

+ 1

2
ln det K̂ − 1

4
	λK̂−1	λ −

n∑
μ,ν=1

(λ++
(μν)q

(μν)
++ + λ+−

(μν)q
(μν)
+− + λ−−

(μν)q
(μν)
−− ) −

n∑
μ=1

	λ(μ) · 	p(μ). (G4)

The saddle-point equations for the constraints give the con-
straints in terms of the expectation values q(μν),p(μ). Luckily,
the equation for 	λ is easy:

∂Seff

∂	λ = K̂−1	λ − 	p = 0, (G5)

so we immediately solve 	λ = K̂ 	p. Now plugging this into the
equations for the three remaining constraints yields

∂Seff

∂λ±±
= 1

2

Xλ−1
±±

X2 − Y 2
− q±± + 1

4
(p±)2 = 0, (G6)

∂Seff

∂λ+−
= Yλ−1

+−
X2 − Y 2

− q+− + 1

2
p+p− = 0. (G7)

We have denoted X = det λ++ = det λ−−,Y = det λ+− (these
have a well-defined limit for n → 0). It is trivial to write
λ±±,λ+− from the above expressions, and we can feed the
solutions for all the constraints into the effective action and
then solve the saddle-point equations for the order parameters
p±,q++,q−−,q+−. Full equations are too complex to be
solved, even approximately. We will simplify the problem with
the following reasoning. The sums over single-replica order

parameters generically scale as
∑

μ p
(μ)
± ∼ ∑

μ (p(μ)
± )

2 ∼ n,

whereas the double-replica parameters have
∑

μ,ν q
(μν)
αβ ∼ n2.

This means that in the limit n → 0, the p± terms dominate over
qαβ terms. Therefore, if p± �= 0 we can disregard the quantities
qαβ or expand in a series over them, simplifying the equations
significantly. Only if the replica symmetry breaking imposes
p± = 0 (not every replica-symmetry-breaking configuration
does so) are the qαβ order parameters significant, and the
saddle-point equations with p± = 0 are again approachable.

Consider first the case p± = 0. After some algebra, the
effective action is now

Seff = −β2

4

n∑
μ,ν=1

[σ 2
++(q++

(μν))
2 + 2σ 2

+−(q+−
(μν))

2

+ σ 2
−−(q++

(μν))
2] + 1

2
ln(X2|q++|−1 · |q−−|−1

− 4Y 2|q+−|−2). (G8)

Consider first the ansatz when the q±± fields are nonzero,
whereas the mixed-flavor field q+− is zero. In this case,
the second term in (G8), coming from the determinant K̂ ,
simplifies further and we get the saddle-point equation

− β2

2
σ 2

±±q±± − 1

2
(q±±)−1 = 0, (G9)

which is the same as for the infinite-range spin-glass Ising
model [42,54]. One obvious solution is q±± = q+− = 0, the
completely disordered system with no vortex proliferation—
the familiar insulator phase. It is easy to check that this is
indeed a minimum of the effective action Seff . There is also a
replica-symmetric but nontrivial solution

q±±
(μν) = Q±±

0 + (1 − Q±±
0 )δμν, (G10)

which yields the solution Q±±
0 = 1 − 1/(βσ±±). However,

this solution is unstable and is not observable. A stable
nontrivial solution is obtained if the replica symmetry is
broken. The ansatz is well known from the spin-glass literature
(e.g., Ref. [42]) and has a ρ × ρ matrix Q̂±± on the block-
diagonal and the constant zero elsewhere, with

Q̂±± = Q±±
1 + (1 − Q±±

1 )δμν, μ,ν = 1, . . . ,ρ. (G11)

Equation (G9) suggests that Q±±
1 > 0 for sufficiently large β,

i.e., small L. However, no analytical solution for the elements
Q±±

1 exists and they have to be solved for numerically,
by plugging in the solution into the effective action and
minimizing it. This is an easy task (for chosen values of
the parameters and disorder statistics) but we will not do it
here as we do not aim at quantitative accuracy anyway; we
merely want to sketch the phase diagram. Now if the third
field q+− is nonzero, it satisfies the same equation as (G9)
just with σ 2

++ �→ 2σ 2
+−. The three combinations of nonzero

order parameters correspond to the three familiar phases:
q±± �= 0 is the conductor, q+− �= 0 is the frustrated insulator,
and q±±,q+− �= 0 is the perfect conductor.

The solutions with 	p �= 0 yield new physics. In this case, we
have at leading order λ±± = −2X/(X2 − Y 2)(p±)−2,λ+− =
−2Y/(X2 − Y 2)(p+p−)−1, so the effective action is

Seff = −β

n∑
μ=1

[J+
0 (p+

(μ))
2 + 2J+−

0 p+
(μ)p

−
(μ) + J−

0 (p−
(μ))

2]

− ln p+p− + O(|qαβ |2) + O

( |qαβ |
| 	p|2

)
, (G12)

giving the saddle-point equation

J±
0 p±

(μ) + J+−
0

β
p∓

(μ) + (p±
(μ))

−1 = 0, (G13)

which easily gives

p± = s1

√√√√√ 1

J±
0 + s2

J+−
0
β

√
J+

0

J−
0

, (G14)

with s1,2 ∈ {±1}. The solution is the same for every μ and
p±

(μ) = (p±,p±, . . . ,p±). Now, depending on the sign of the
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FIG. 23. Free energy (effective action S
(μ)
eff ) in a given replica

subsystem in a photonic lattice with quenched disorder, for the case
when the order parameter p± = ∑

i Qi± has a nonzero saddle-point
solution for the action in a given subsystem (replica). Darker (blue)
tones are lower values. The ground states of the system are the
local minima. In panel (a) for J + = −J − = 1, there is a single
local minimum. In case (b), for J + = −J − = 1, we see two distinct
minima of equal height, for two different nonzero values of p±. Such
potential energy landscape fits the description of glassy systems.

determinant J+
0 J−

0 − (J+−
0 )

2
, the solutions for different s1,2

may be minima or saddle points. In either case, we have a phase
with nonzero local charge density, which is the meaning of 	p. If
there are multiple minima, we call this phase vortex glass. The
reader may argue that true glass should satisfy more stringent
conditions and that our phase is not a true glass. Depending
on the viewpoint this may well be accepted, and we use the
term “glass phase” merely as shorter and more convenient
than “phase with power-law correlation decay, no long-range
order, and frustrated free energy landscape.” The phase with a
single minimum will be called charge density wave, as it has
a unique ground-state configuration yielding macroscopically
nonzero charge density; i.e., it has a true long-range order.
On the other had, with multiple minima the replica-averaged
charge density sums to zero. The landscape, i.e., the effective
action of the system for given replica (μ) as a function of
p±

(μ), is given in Fig. 23 as the density map of the function
Seff(p+,p−) dependence for J+

0 = −J−
0 = 1 (glass phase, A)

and J+
0 = J−

0 = 1 (charge density wave, B). We see that the
glassy phase shows two inequivalent minima in each replica,
with s1 = −s2 = ±1 in Eq. (G14), so the total action, the
sum of actions of all replica subsystems, can have one and
the same value for many configurations, the definition of a
highly frustrated system, one of the reasons we dub this phase
glass. The charge density wave only has a single minimum for
s1 = s2 = 1.

2. RG flow equations

The starting Hamiltonian is the same as in (18). Now we will write it out more explicitly, keeping the distance-dependent
parts:

βHeff = β

n∑
μ=1

∑
i,j

(
ḡc

	Q(μ)
i · 	Q(μ)

j + ḡ′
c
	Q(μ)

i × 	Q(μ)
j

)
ln rij − β2

2

n∑
μ,ν=1

∑
i,j

Q
(μ)
iα Q

(ν)
iβ σ 2

αβQ
(μ)
jα Q

(ν)
jβ . (G15)

We have denoted the elements of J0 by J++
0 = J−−

0 = ḡc,J
+−
0 = J−+

0 = ḡ′
c (the bars over the letter remind us that these are

disorder-averaged values). The fluctuation of the partition function is completely analogous to the clean case, only it has the
additional nonlocal quartic term. It can again be expanded over r12 as in (12) but the quartic term contains no small parameter for
the power series expansion and has to be kept in the exponential form. Starting from the expression for the fluctuation analogous
to the clean case (12), we get

δZ
Z = 1 + y4

4

∑
	q(ρ),	q(σ )

e− β2

2 (	q(ρ),−	q(σ ),	q(ρ),−	q(σ ))+ β2

2 ( 	Q(μ),	q(ρ), 	Q(ν),	q(σ ))
∫

dr12r
3
12e

g	q(ρ)·	q(ρ)+g′ 	q(ρ)×	q(ρ)

×
[ ∫

drr2
(
g 	Q(μ)

1 · 	q(ρ) + g′ 	Q(μ)
1 × 	q(ρ)

)∇ ln |R1 − r| + (
g 	Q(μ)

2 · 	q(ρ) + g′ 	Q(μ)
2 × 	q(ρ)

)∇ ln |R2 − r|
]2

. (G16)

We have used the notation

(	q1,	q2,	q3,	q4) ≡ σ 2
++q1+q3+q2+q4+ + σ 2

+−(q1+q3−q2+q4− + q1−q3+q2−q4+) + σ 2
−−q1−q3−q2−q4−. (G17)

Now we trace out the fluctuations first by integrating over r and doing some simple algebra:

δZ
Z = [

1 + 16y4(g + g′)2 cosh(β2σ 2
++ + β2σ 2

+−) cosh(β2σ 2
−− + β2σ 2

+−)
( 	Q(μ)

1 · 	Q(ν)
2 + 	Q(μ)

1 × 	Q(ν)
2

)
ln R12

]
× [

1 + 16y4(g − g′)2 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−)
( 	Q(μ)

1 · 	Q(ν)
2 − 	Q(μ)

1 × 	Q(ν)
2

)
ln R12

]
×
[

1 − 2πy4e− β2

2 (σ 2
++(q(μ)

+ q
(ν)
+ )2+σ 2

+−(q(μ)
+ q

(ν)
− )2+σ 2

+−(q(μ)
− q

(ν)
+ )+σ 2

−−(q(μ)
− q

(ν)
− )2)

∫
drr1−β(g	q(μ)·	q(μ)+g′ 	q(μ)×	q(μ))

]
. (G18)

The next step is the summation over all possible ±1 charges of virtual vortices 	q(μ),	q(ν) (the two replica indices mean two
summations from 1 to n), which requires quite some algebra. The renormalized partition function Z̄n finally gives the RG flow
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equations:

∂g

∂�
= −8π (g + g′)2y4 cosh(β2σ 2

++ + β2σ 2
+−) cosh(β2σ 2

−− + β2σ 2
+−)

− 8π (g − g′)2y4 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−),

∂g′

∂�
= −π (g + g′)2y4 cosh(β2σ 2

++ + β2σ 2
+−) cosh(β2σ 2

−− + β2σ 2
+−)

−π (g − g′)2y4 cosh(β2σ 2
++ − β2σ 2

+−) cosh(β2σ 2
−− − β2σ 2

+−),

∂y

∂�
= 2π

[
1 − g − g′ − β2

4
(σ 2

++ + 2σ 2
+− + σ 2

−−)

]
y,

∂σ 2
αβ

∂�
= −2πβ4σ 4

αβy4. (G19)

As discussed in the main text, the fixed point must lie either at y = 0 or y → ∞, depending on the magnitude of g + g′ + β2σ 2.
For y → 0, three clean fixed points remain, which flow to zero disorder: These correspond to PC, FI, and conductor. The
disordered fixed point also has y → 0 but the disorder is nonzero: This is the CDW phase from the mean-field analysis, the dirty
analog of the insulator. Finally, when y → ∞ and nonzero σ 2 at the fixed point, we expect glassy behavior.
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Denz, Two Dimensional Counterpropagating Spatial Solitons in
Photorefractive Crystals, Phys. Rev. Lett 95, 053901 (2005).
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Derivation of the generalized nonlinear sigma model in the
presence of the Dzyaloshinskii Moriya interaction, Phys. B
(Amsterdam, Neth.) 378, 449 (2006).
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